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We theoretically investigate the plasmonic Zitterbewegung
(ZB) effect in binary graphene sheet arrays (GSAs). The sur-
face plasmon polariton (SPP) modes of two minibands are
realized by alternately varying the chemical potentials of
individual graphene sheets in the arrays. Numerical simu-
lations show that SPPs in the array experience characteristic
trembling motion. The oscillating periods of the plasmonic
ZB are strongly dependent on the propagation constant
mismatch and varied in the range of micrometer, while
the amplitude reaches tens of nanometers, making the
ZB effect easier to be observed in practice. © 2015

Optical Society of America

OCIS codes: (240.6680) Surface plasmons; (230.7370) Waveguides;

(160.3918) Metamaterials.
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The relativistic electrons may exhibit a rapid trembling motion
around their average trajectory in the absence of external fields,
which is known as Zitterbewegung (ZB), introduced by
Schrödinger in 1930. The ZB arises from the interference
between the positive and negative energy bands, and the char-
acteristic period of the motion is determined by the bandgap. It
is hard to directly observe the ZB effect experimentally because
of the small amplitude and the large oscillation frequency.
Many theoretical studies have been reported in analogizing this
phenomenon in semiconductors [1], trapped ions [2], photonic
crystals [3], metamaterials [4], and dielectric waveguide arrays
[5]. The ZB effect has also been demonstrated numerically in
binary metallic waveguide arrays [6].

Recently, the graphene-supported surface plasmon polari-
tons (SPPs) have drawn much attention due to their promising
applications. Graphene exhibits a stronger SPP field confine-
ment and lower propagation loss compared with metals [7].
Moreover, the surface conductivity of graphene can be flexibly
tuned by chemical doping or external static electric and mag-
netic fields. These features make graphene a competitive alter-
native to metals in manipulating SPPs [8,9]. Various interesting
optical phenomena are observed in graphene structures, such as

hyperlense [10], negative refraction [11], and discrete Talbot
effect [12].
In this Letter, we shall study the plasmonic ZB phenomenon

in binary graphene sheet arrays (GSAs). It should be mentioned
that the ZB of SPPs is substantially different from that of elec-
trons in graphene. The latter has been intensively investigated
previously [13–15], which refers to the temporal trembling mo-
tion of electrons with a very short period of several femtosec-
onds. The SPPs in ZB motion are governed by the similar
Dirac equation of electrons, but for trembling in real space.
In order to observe plasmonic ZB, two SPP bands are needed
to mimic the positive-energy band and negative-energy band of
a relativistic electron. Thus we build up the binary GSAs by
alternative spatial arrangement of graphene waveguides with
two different chemical potentials. Numerical simulations are
performed to verify the ZB for SPPs in this structures.
The schematic diagram of the binary GSAs is shown in

Fig. 1(a). The graphene sheets are embedded in the dielectric
medium with a relative permittivity denoted by ϵd . The inter-
layer space of graphene in the array is labeled with d . The sur-
face conductivity of graphene σ is modeled by using the Kubo
formula, which depends on the graphene chemical potential μc ,
electron relaxation time τ, and temperature T [16]. We
alternately vary two different graphene sheets A and B with

Fig. 1. (a) Schematic of binary GSAs, made of two interleaved gra-
phene waveguides A and B with chemical potential μc1 and μc2
changes, equally spaced by d . The period of the binary GSAs is
2d . Inset plots spatial phase of the incident beam with a Gaussian
envelope. (b) Diffraction relations of the binary GSAs comprising
two bands separated by 2δ. The dashed and solid curves are the results
calculated by the rigorous method [Eq. (1)] and coupled-mode equa-
tion [Eq. (2)], respectively.
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chemical potential μc1 and μc2 (μc2 > μc1) in the guide array to
achieve two SPP bands. The relaxation time τ of electrons in
graphene is given by τ � μμc∕�ev2F �, where e is the electron
charge, and vF � 106 m∕s is the Fermi velocity. The DC
mobility μ of electrons in high-quality suspended graphene
can reach over 100; 000 cm2 V−1 s−1 at room temperature
T � 300 K [17]. In our study, the incident wavelength
λ � 10 μm and the interlayer space d � 30 nm is initially
considered.

The dispersion relation of collective SPP mode in binary
GSAs is given by using the transfer matrix method and impos-
ing the Bloch theorem [18]
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, with kz the wave vector of SPPs in the

z direction and k0 � 2π∕λ the wave vector in air. The Bloch
momentum in the x direction is denoted by ϕ � kx�2d � and
ξi � η0σi

iϵd k0
being the plasmonic thickness in the single-layer

graphene sheet A or B [19].
By considering only nearest-neighbor couplings, the normal-

ized amplitude of field distributions in one-dimensional wave-
guide arrays obey the linear coupled-mode equation (CME)
[20,21]

i
dan
dz

� Cg�an−1 � an�1� � �−1�nδan; (2)

where an represents the modal amplitude in the nth graphene
sheet site, and Cg and 2δ are the coupling coefficient and the
propagation constant mismatch between two adjacent gra-
phene sheets. The dispersion relation of the structure can be
obtained from Eq. (2) by assigning to an the form an �
exp�in�2kxd �� exp�ikzz� and reads [21]

kz � ��δ2 � 4C2
g cos

2 �kxd ��1∕2: (3)

The diffraction curves of the super SPP modes in the binary
GSAs for μc1 � 0.15 eV and μc2 � 0.18 eV are plotted in
Fig. 1(b). The binary GSAs support two symmetric minibands
separated by a gap of width 2δ at boundaries of the Brillouin
zone (kx � π

2d). The diffraction curves are similar to the typical
hyperbolic energy-momentum dispersion relations of a freely
moving relativistic massive particle, which suggests that SPP
beam propagation in the binary GSAs for Bloch waves with
wave number kx close to π

2d mimics the dynamics of the rela-
tivistic Dirac equation. The curves obtained from Eq. (3) (solid
curves) agree with rigorous computations (dashed curves) veri-
fying that the coupled-mode model holds well in the binary
GSAs structure. To excite plasmonic ZB in the binary GSAs
effectively, adjacent waveguides are excited with a phase differ-
ence of π∕2, as shown in the inset of Fig. 1(a). After setting
an�z� � �−1�nψ1�n; z� and an�1�z� � −i�−1�nψ2�n; z� in
Eq. (2) and introducing the continuous spatial coordinate
n → x, we arrive at a two-component wave function ψ �
�ψ1;ψ2�T formally satisfies the one-dimensional Dirac equa-
tion [5,6]
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and β �
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�
are the Pauli

matrices. Therefore, the central position of SPP beam xc�z� �
Σx�janj2 � jan�1j2�∕Σ�janj2 � jan�1j2� is expected to rapidly
oscillate around its average trajectory, resulting in the ZB effect
[21]. According to Eq. (4), the trajectory of the central position
of SPP beam can be approximated as

xc�z� � xc�0� � v0z −
�
Cg

2δ

�
sin�2δz�; (5)

where v0 is the mean shift speed of the SPP beam center and is
proportional to C3

g∕δ2 [22]. The last term representing of SPP
oscillation in Eq. (5) suggests the ZB effect. The amplitude RZ
and period PZ of the plasmonic ZB can be written as

RZ � jCg jd
2δ ; PZ � π∕δ: �6�

In order to calculate the ZB amplitude and period, we
calculated the coupling coefficient Cg and propagation con-
stant mismatch 2δ between the two different guides of binary
GSAs through a method similar to that used in [23]. The Cg
value of SPPs between adjacent guides of the GSAs is
Cg � �Cg1 � Cg2�∕2, where the values of Cg1 and Cg2 are
the coupling coefficients in the homogeneous GSAs with
the chemical potential μc1 and μc2, which can be derived as
Cg � �βe − βo�∕4, with βe and βo being the propagation con-
stants of the even and odd collective modes of the GSAs system,
respectively [12]. Note that the even collective mode has a
smaller propagation constant than the odd mode. As a result,
the coupling coefficient is negative, which will result in a neg-
ative transverse shift of SPPs in the binary GSAs. The propa-
gation constant mismatch is 2δ � β1 − β2, where the values of
β1 and β2 are the propagation coefficients in the homogeneous
GSAs with the chemical potential μc1 and μc2, which is given by
β � �βe � βo�∕2 [24]. Figure 2 shows the values of Cg (red
line) and 2δ (blue line) of SPPs in the binary GSAs by varying
the chemical potential difference Δμc between graphene sheets
A and B while μc1 � 0.15 eV, and the interlayer space is fixed
at d � 30 nm. From Fig. 2, we see that the absolute values of
Cg in the binary GSAs are decreased with increasing chemical
potential difference Δμc , while the values of propagation con-
stant mismatch are increased with increasing Δμc . According to
Eq. (6), the calculated amplitudes and periods of plasmonic ZB

Fig. 2. Propagation constant mismatch 2δ (blue line) and coupling
coefficient Cg (red line) between the two adjacent guides versus the
chemical potential difference Δμc when μc1 � 0.15 eV is fixed.
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are RZ � 20, 14, and 11 nm and PZ � 720, 506, and 414 nm
as Δμc � 0.03, 0.05, and 0.07 eV, respectively.

The steady electromagnetic field distributions are numeri-
cally calculated to verify the above analytical results. The
computations are performed by using the FDFD method
[25,26], where the graphene sheets are assumed to be free-
standing in air with ϵd � 1. Graphene is equivalent to a very
thin metal film with a thickness of Δ � 1 nm. Thus we can
define an equivalent bulk permittivity for graphene given by
ϵg � 1� iσgη0∕�k0Δ� while η0 ≈ 377Ω represents the air
impedance. The minimum mesh size equals 0.2 nm in the
FDFD calculation. To excite plasmonic ZB in the binary
GSAs effectively, a TM-polarized Gaussian beam is incident
into the binary GSAs with the phase difference of π∕2 between
adjacent waveguides. The distributions of simulated electric
field intensity (jE j2) of SPP beams at different Δμc are shown
in Figs. 3(a)–3(c), and the corresponding beam center positions
xc are shown in Figs. 3(d)–3(f). The trembling motions of the
SPP beam are observed clearly, which correspond to the plas-
monic ZB effect. Both the period and the amplitude of the
oscillation decrease as Δμc increases. The simulated amplitudes
and periods of plasmonic ZB are RZ � 20, 16, and 12 nm and
PZ � 750, 500, and 400 nm as Δμc � 0.03, 0.05, and
0.07 eV, respectively, which qualitatively agree with the
analytic results acquired by Eq. (6). The centers of SPP beams
undergo the negative transverse shifts, and the shift is reduced
as Δμc increases, which is due to the fact that the shift speed v0
decreases as Δμc increases according to Eq. (5).

The relations of ZB amplitude RZ and period PZ versus the
chemical potential difference Δμc between graphene sheets A
and B are explored. The values of RZ and PZ under different
Δμc are plotted in Fig. 4. One can see that RZ and PZ decrease
as Δμc increases. These numerical results of RZ and PZ are
consistent with our general predictions acquired by us-
ing Eq. (6).

Finally, the ZB period PZ as a function of the interlayer
space (d ) and wavelength (λ) while μc1 � 0.15 eV and μc2 �
0.18 eV is depicted in Fig. 5 for embedding materials of air
(ϵd � 1) and KCl (ϵd � 2.13). The period of ZB depends
weakly on d due to hyperbolic dispersion around the bounda-
ries of the Brillouin zone. When the incident wavelength

varies, we can also observe plasmonic ZB occurring in the same
binary GSAs. PZ increases with the incident wavelength λ
increases. Furthermore, the value of PZ decreases as the permit-
tivity of embedding material increases.
In conclusion, we have demonstrated that plasmonic ZB can

be excited in a wide range of wavelengths in binary GSAs. SPP
modes of the two bands are realized in the binary GSAs by alter-
nately varying the chemical potentials of individual graphene
sheets. The evolutions of the SPP beams satisfy a negative-
coupled Dirac equation in the binary GSAs, thus the beam
center of SPPs undergoes a tremble motion with negative trans-
verse shift. FDFD numerical simulations verified the plasmonic
ZB as periodic spatial oscillatory motions of the SPP beams
around their mean trajectories. The oscillating periods of the
plasmonic ZB are strongly dependent on the propagation con-
stant mismatch. The period of ZB varied in the range of microm-
eter, while the amplitude reaches tens of nanometers, which
could help realizing an experimental observation of ZB. The
study paves the way for using GSAs as an advantageous platform
for the simulation of quantum theory in two-dimensional sys-
tems. By arranging graphene sheet waveguide in a slightly differ-
ent layout, one could investigate the optical analogue of
relativistic Klein tunneling at the nanoscale, as proposed and
demonstrated in dielectric waveguide lattices [27,28].
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Fig. 3. Evolution of beam intensity (jE j2) in the binary GSAs (a)–
(c) and corresponding central positions xc of SPP beams (d)–(f) as the
chemical potential difference Δμc = [(a), (d)] 0.03 eV, [(b), (e)]
0.05 eV, and [(c), (f)] 0.07 eV, respectively.

Fig. 4. Dependence of the ZB amplitude RZ (red line) and period
PZ (blue line) on the chemical potential difference Δμc between gra-
phene sheets A and B. The lines and markers represent the analytical
and numerical results, respectively.

Fig. 5. Influence of the interlayer space, wavelength on PZ for dif-
ferent embedding materials: (a) air and (b) KCl.
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Numerical simulations presented in this Letter were carried
out using the High Performance Computing experimental
testbed in SCTS/CGCL (see http://grid.hust.edu.cn/hpcc).

REFERENCES

1. W. Zawadzki and T. M. Rusin, J. Phys. Condens. Matter 23, 143201
(2011).

2. R. Gerritsma, G. Kirchmair, F. Zähringer, E. Solano, R. Blatt, and C. F.
Roos, Nature 463, 68 (2010).

3. X. Zhang, Phys. Rev. Lett. 100, 113903 (2008).
4. L. G. Wang, Z. G. Wang, and S. Y. Zhu, Euro. Phys. Lett. 86, 47008

(2009).
5. S. Longhi, Opt. Lett. 35, 235 (2010).
6. S. Ding and G. P. Wang, J. Opt. Soc. Am. B 31, 603 (2014).
7. F. J. García de Abajo, ACS Photon. 1, 135 (2014).
8. A. Vakil and N. Engheta, Science 332, 1291 (2011).
9. P. Y. Chen and A. Alù, ACS Nano 5, 5855 (2011).

10. T. Zhang, L. Chen, and X. Li, Opt. Express 21, 20888 (2013).
11. H. Huang, B. Wang, H. Long, K. Wang, and P. Lu, Opt. Lett. 39, 5957

(2014).
12. Y. Fan, B. Wang, K. Wang, H. Long, and P. Lu, Opt. Lett. 39, 3371

(2014).
13. T. M. Rusin and W. Zawadzki, Phys. Rev. B 76, 195439 (2007).

14. T. M. Rusin and W. Zawadzki, Phys. Rev. B 78, 125419 (2008).
15. T. M. Rusin and W. Zawadzki, Phys. Rev. B 80, 045416 (2009).
16. G. W. Hanson, J. Appl. Phys. 104, 084314 (2008).
17. K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg,

J. Hone, P. Kim, and H. L. Stormer, Solid State Commun. 146,
351 (2008).

18. C. Qin, B. Wang, H. Huang, H. Long, K. Wang, and P. Lu, Opt.
Express 22, 25324 (2014).

19. B. Wang, X. Zhang, K. P. Loh, and J. Teng, J. Appl. Phys. 115,
213102 (2014).

20. N. Christodoulides and R. I. Joseph, Opt. Lett. 13, 794 (1988).
21. A. A. Sukhorukov and Y. S. Kivshar, Opt. Lett. 27, 2112 (2002).
22. F. Dreisow, M. Heinrich, R. Keil, A. Tünnermann, S. Nolte, S. Longhi,

and A. Szameit, Phys. Rev. Lett. 105, 143902 (2010).
23. W. Lin and L. Chen, J. Opt. Soc. Am. B 27, 112 (2010).
24. B. Wang, X. Zhang, X. Yuan, and J. Teng, Appl. Phys. Lett. 100,

131111 (2012).
25. B. Wang, X. Zhang, F. J. García-Vidal, X. Yuan, and J. Teng, Phys.

Rev. Lett. 109, 073901 (2012).
26. Y. Fan, B. Wang, H. Huang, K. Wang, H. Long, and P. Lu, Opt. Lett.

39, 6827 (2014).
27. S. Longhi, Phys. Rev. B 81, 075102 (2010).
28. F. Dreisow, R. Keil, A. Tünnermann, S. Nolte, S. Longhi, and A.

Szameit, Europhys. Lett. 97, 10008 (2012).

2948 Vol. 40, No. 13 / July 1 2015 / Optics Letters Letter

http://grid.hust.edu.cn/hpcc
http://grid.hust.edu.cn/hpcc
http://grid.hust.edu.cn/hpcc
http://grid.hust.edu.cn/hpcc

