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We present an approach to engineer Bloch modes by using monolayer graphene decorated on the surfaces of
periodic waveguides or incorporated in cavities. In the terahertz and far-infrared ranges, the presence of graphene
brings about a tunable band shift to Bloch modes in periodic waveguides. Thus, propagating Bloch modes may
become evanescent and vice versa for both TE and TM polarizations. The resonant wavelength in the cavities
experiences a linear dependence on the graphene chemical potential, which also has an effect on the field locali-
zation and enhancement of the cavity modes. This study suggests that graphene modulated periodic waveguides
and cavities may find great applications in terahertz ranges like tunable filters, switches, and modulators. ©2015

Optical Society of America

OCIS codes: (230.7400) Waveguides, slab; (230.4555) Coupled resonators; (250.5403) Plasmonics.
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1. INTRODUCTION

It is an important issue to manipulate light propagation and
confinement for optical processing and connecting in inte-
grated optics [1]. Periodic waveguides, unlike the traditional
z-invariant waveguides, can form photonic bandgaps due to
the periodic index distributions along the propagation direction
[2]. By engineering the dispersion relation, one can modulate
the properties of Bloch modes in periodic waveguides, such as
yielding slow group velocities and anomalous dispersion [3,4].
In addition, cavities can be constructed by introducing defects
in the periodic waveguides. The defect can support a localized
resonant mode and trap light in a volume of subwavelength
scale. Since the mode resonance in the cavities is highly sensi-
tive to the surrounding environment, one has to utilize tunable
materials such as graphene to control the resonance condition,
with the aim of finding applications in ultrafast optical switches
and highly sensitive optical sensors [5,6].

As a two-dimensional material [7], graphene has almost no
structural effect on the original waveguides and cavities; it is
ready to be integrated with traditional photonic devices. In
the infrared and terahertz (THz) ranges, graphene behaves like
a noble metal in the visible range and can support surface plas-
mon polaritons (SPPs) [8,9]. Recently, graphene has been
investigated in combination with traditional devices for many
terahertz applications, such as tunable hyperbolic metamaterials
[10], terahertz absorbers [11,12], and subdiffraction imaging
hyperlenses [13]. Moreover, the flexible and broadband
tunability makes graphene a prospective material to tailor

light propagation [14,15]. In addition, the current develop-
ment of large-scale growth and transfer techniques of
graphene ensures its integration with the existing photonic
platform [16,17].

In this work, we shall employ graphene to engineer Bloch
modes in periodic waveguides and cavities. First, we consider
that the graphene is decorated on the surfaces of the periodic
waveguides. As Bloch modes are formed by propagating waves
scattered forward and backward many times in the periodic
waveguides, such a configuration could enhance the interaction
between light and graphene. We also incorporate graphene in
the cavities formed by introducing defects in the periodic wave-
guides. The enhanced localized field of the resonant mode
could also facilitate the coupling of light and graphene, leading
to the strong modulation of the Bloch modes.

2. BLOCH MODE ENGINEERING WITH
GRAPHENE IN PERIODIC WAVEGUIDES

We start by studying the graphene modulated periodic wave-
guide. As shown in Fig. 1(a), the waveguide consists of air
grooves periodically etched into a silicon slab on a polytetra-
fluoroethylene (PTFE) substrate [18]. The surfaces of the peri-
odic waveguide, parallel and perpendicular to the propagation
direction, are coated with monolayer graphene. The numerical
results presented throughout the paper are obtained with the
aperiodic-Fourier modal method (a-FMM) [19,20]. In the cal-
culation, graphene is modeled as an ultrathin and dispersive
film with a thickness of Δ � 1 nm and an equivalent bulk
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permittivity of ϵg;eq � 1� iσgη0∕�k0Δ� [21]. The surface
conductivity of graphene σg is governed by the Kubo formula
[22] as a function of photon frequency ω, chemical potential
μc, momentum relaxation time τ, and temperature T .
τ � μμc∕�ev2F�, with e being the electron charge and vF �
106 m∕s the Fermi velocity. Here, we choose the impurity-
limited DC mobility μ � 10; 000 cm2∕Vs at room tempera-
ture T � 300 K, which is in accordance with the experimental
results [23].

The band diagrams of the fundamental Bloch modes in the
periodic waveguides without (red curves) and with (blue
curves) graphene are illustrated in Figs. 1(b)–1(e). Figures 1(b)
and 1(c) denote TE polarization (Ey; Hx; Hz , with Ey parallel
to the groove), while Figs. 1(d) and 1(e) represent TM polari-
zation (Hy; Ex; Ez , with Hy parallel to the groove). The pres-
ence of graphene brings about a blue band shift to the
fundamental Bloch modes for both TE and TM polarizations.
For TE polarization, as the bottom of the conduction band
experiences a more obvious blueshift than the top of the
valence band as graphene is introduced, the bandgap is en-
larged, while for TM polarization, the blueshift at the top of
valence band becomes more obvious, making the bandgap be-
come narrower. The mechanism behind the blue band shifts

can be qualitatively explained from the effective medium
approximation (EMA) point of view [10,24]. As the operation
wavelength (of orders of 50 μm) is much larger than the
waveguide period (10 μm), the periodic waveguide can be
equivalent to a homogeneous medium. In the absence of
graphene, the effective permittivity ϵeff ;w∕o of the periodic
waveguide satisfies 1 � ϵair < ϵeff ;w∕o < ϵr � 3.422. As gra-
phene is introduced, the effective permittivity becomes
ϵeff ;w∕t � ϵeff ;w∕o � iσgη0∕�k0weff �, with weff being the effec-
tive mode width. In THz and far-infrared ranges �ℏω < j2μcj�,
the intraband transition process dominates and graphene
manifests a Drude-like surface conductivity [25,26] σg �
ie2μc∕�πℏ2�ω� iτ−1��. As Im�σg� > 0, we have Re�ϵeff ;w∕t� <
Re�ϵeff ;w∕o�. Since the real part of the Bloch wave vector is
positively correlated with the effective permittivity, the Bloch
wave vectors satisfy k0 < Re�kz;w∕t� < Re�kz;w∕o� < ffiffiffiffi

ϵr
p

k0
in the valence and conduction bands. So the presence of gra-
phene could bring about blue band shifts to the fundamental
Bloch modes.

In the bandgaps, the imaginary parts of the Bloch wave
vectors increase for TE polarization and decrease for TM
polarization where graphene exists. In the valence or conduc-
tion bands below the light lines without graphene, the imagi-
nary parts of the Bloch wave vectors vanish. Thus, the modes
experience no propagation loss. While in the presence of gra-
phene, very tiny but nonzero values of the imaginary parts of
the Bloch wave vectors emerge. Due to the intrinsic loss of
graphene caused by the intraband transition in the terahertz
ranges, the Bloch modes also experience a tiny propagation
loss as they interact with graphene. As the band curves inter-
sect the light lines, the fundamental Bloch modes become
leaky and cause considerable propagation loss. Note that
the presence of graphene pushes up the dispersion curves.
The lower frequency limits for the emerging leaky Bloch
modes lift accordingly.

Figure 2 illustrates the normalized field intensity distribu-
tions of the fundamental Bloch modes at the frequencies de-
noted by a–h in Fig. 1. In the vicinity of the bottoms of
the conduction bands for both TE and TM polarizations
shown in Figs. 2(a)–2(d), the periodic waveguides support
propagating and evanescent Bloch modes with and without gra-
phene, respectively. As the presence of graphene pushes up the
bottoms of the conduction bands, the frequency regimes from
a∕λ � 0.24 to 0.26 for TE and a∕λ � 0.333 to 0.343 for TM
polarizations transform from the conduction to the forbidden
bands, making the modes in the ranges change from propagat-
ing to evanescent. In contrast, near the top of the valence bands
shown in Figs. 2(e)–2(h), the Bloch modes in the ranges from
a∕λ � 0.202 to 0.207 for TE and a∕λ � 0.30 to 0.307 for
TM polarizations can be tuned from evanescent to
propagating. The interaction strengths between the graphene
and the Bloch modes differ from the graphene on the upper
surfaces to those on the side surfaces of the periodic waveguides.
At the bottoms of the conduction bands for TE polarization
shown in Figs. 2(a) and 2(b), the Bloch mode energy is con-
centrated in the grooves of the periodic waveguides. As
jEy;sidej > jEy;upperj, the graphene on the side surfaces plays a
leading role when interacting with the Bloch modes. At the

(a)

(b) (c)

(d) (e)

Fig. 1. Schematics of graphene modulated periodic waveguides
and band diagrams of fundamental Bloch modes with and without
graphene. (a) The refractive indices are nr � 3.42, nair � 1.0,
and ns � 1.4. The period is a � 10 μm with W r � 8 μm,
W g � 2 μm, and H r � 5 μm. Real and imaginary parts of the
Bloch wave vectors (b) and (c) for TE polarization and (d) and
(e) for TM polarization. The gray dashed lines in (b) and (d) denote
the light lines beneath which guided Bloch modes exist. The red and
blue circles denoted by a–h represent the particular frequencies near
the edges of the bandgaps. The graphene chemical potential is
μc � 0.5 eV.
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top of the valence bands with the mode energy
concentrated in the ridges of the periodic waveguides shown
in Figs. 2(e) and 2(f ), since jEy;upperj > jEy;sidej, the graphene
on the upper surfaces has greater influence on the Bloch
modes than that on the side surfaces. For TM polarization,
as Ex and Ez components of the Bloch modes induce surface
currents on the graphene at the side and upper surfaces,
respectively. So the graphene on the respective surfaces has dif-
ferent influences on the Bloch modes.

In Fig. 3, we plot the band diagrams of the fundamental
Bloch modes without graphene and with graphene as
μc � 0.1, 0.3, 0.5, and 0.7 eV. It shows that a larger chemical
potential of graphene could bring about a more obvious blue-
shift to the band diagrams. For TE polarization shown in
Figs. 3(a) and 3(b), the bottoms of the conduction bands mani-
fest a continuous blueshift from a∕λ � 0.241 (41.5 μm) to
0.263 (38.0 μm). Meanwhile, the imaginary parts of the
Bloch wave vectors are nearly doubled as μc � 0.7 eV with re-
spect to that without graphene. In contrast to TE polarization,
both the bandgaps and the imaginary parts of Bloch wave vec-
tors for TM polarization shrink as μc increases. The influence of
μc on the Bloch modes is determined by the optical response of
graphene within the present frequencies. In THz and far-
infrared ranges, graphene manifests a Drude-like surface con-
ductivity σg � ie2μc∕�πℏ2�ω� iτ−1��. Since σg is proportional
to μc, the interaction between Bloch modes and graphene could
be enhanced by increasing the chemical potential. As graphene
modulated periodic waveguides are applied to tunable band
stop filters, both the center wavelength and bandwidth could
be tuned continuously by varying the chemical potential of the
coated graphene.

It is interesting to investigate the influence of graphene on
the metal periodic waveguides. Recent studies [27,28] have
shown that spoof SPPs can propagate along the periodically cor-
rugated surfaces in THz and far-infrared ranges. The dispersion

relation of these surface Bloch modes is mainly engineered by
the geometry of the corrugation. Since graphene is a 2D
material with only one atomic thickness, the influence of gra-
phene on spoof SPPs is negligible. In visible ranges, the pres-
ence of graphene on the metal surfaces can increase the
propagation loss of metal SPPs. In this work, we will focus
our discussion on the influence of graphene on dielectric
periodic waveguides.

3. GRAPHENE MODULATED CAVITIES

Now we consider the graphene modulated cavities. As shown in
Fig. 4(a), the cavity is constructed by changing the ridge length
of the center unit cell of the periodic waveguides. The inside
walls of the cavity are covered by monolayer graphene. The
whole structure is illuminated by the fundamental mode of
the slab waveguide from the left side. With the periodic cells
at both sides acting as Bragg mirrors, the cavity can support a
localized resonant mode. The transmission spectra of the cavity
are calculated numerically with the a-FMM and a semi-analyti-
cal method [29]. Here, we denote Φ1 and Φ−1 as the funda-
mental modes propagating forward and backward in the slab
waveguides, respectively. B1, B−1 and B 0

1, B
0
−1 are the counter-

propagating fundamental Bloch modes in the periodic wave-
guides and the cavities, respectively. Considering the
boundary conditions at each interface, we have8>><

>>:

Φ1 � r−1Φ−1 � a1B1 � a−1B−1

a1u1B1 � a−1u−1B−1 � b1B 0
1 � b−1B 0

−1

b1u 0
1B

0
1 � b−1u 0−1B

0
−1 � c1B1 � c−1B−1

c1u1B1 � c−1u−1B−1 � t1Φ1

; �1�

where r−1, t1, a1, a−1, b1, b−1, c1, c−1 represent the correspond-
ing mode amplitudes. u1 � exp�ikz;1Lp�, u−1 � exp�−ikz;1Lp�,

Fig. 2. Normalized field intensity distributions of the fundamental
Bloch modes at frequencies denoted by a–h in Fig. 1. (a) and (b) jEyj2
distributions at a∕λ � 0.25 for TE polarization. (c) and (d) jHyj2 dis-
tributions at a∕λ � 0.337 for TM polarization. (e) and (f ) jEyj2 dis-
tributions at a∕λ � 0.206 for TE polarization. (g) and (h) jHyj2
distributions at a∕λ � 0.304 for TM polarization. In (a), (c), (e),
and (g), graphene does not exist. In (b), (d), (f ), and (h), graphene
is coated on the surfaces of the periodic waveguides.

(a) (b)

(c) (d)

Fig. 3. Band diagrams of the fundamental Bloch modes without
graphene and at the presence of graphene as μc � 0.1, 0.3, 0.5,
and 0.7 eV. Real and imaginary parts of Bloch wave vectors (a)
and (b) for TE polarization and (c) and (d) for TM polarization.
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u 0
1 � exp�ik 0z;1Lc�, and u 0

1 � exp�−ik 0z;1Lc� with kz;1, k 0z;1 being
the fundamental Bloch wave vectors and Lp, Lc the lengths
of the periodic waveguide and the cavity, respectively. To
solve Eq. (1), we perform generalized inner products with
Φ1 and Φ−1 by applying the Bloch mode orthogonality con-
dition [30,31], and we yield

hΦm;Φ−ni�
ZZ

s
�Em×H−n−E−n×Hm� · ẑdS�Fδm;n (2)

withΦm�jEm;Hmiexp�ikmz�,Φ−n � jE−n;H−ni exp�ik−nz�,
and δm;n is 1 for m � n and 0 otherwise. F is a complex con-
stant used for normalizing the modes (here, we choose F � 1).
We obtain the modal lectance and transmittance R1 � jr−1j2
and T 1 � jt1j2.

The transmission spectra of the graphene modulated cavity
for both TE and TM polarizations are illustrated in Figs. 4(b)
and 4(c). The red curves represent the numerical results and the
blue circles denote the analytical data; they agree well with each
other. As we only consider the fundamental Bloch modes in the
analytical calculation while all Bloch modes (guided and leaky)
are included in the numerical simulations, the spectrum
coincidence indicates that most of the electromagnetic energy
is transported by the fundamental Bloch modes. Particularly,
for TE polarization, the resonant peak of the cavity locates
at λm � 48.7 μm, with the transmittance reaching 60%. For
TM polarization, the resonant peak locates at λm � 32.9 μm,
which is near the top of the valence band of the periodic
waveguides.

The transmission spectra of the cavity can be tuned by the
cavity geometry or graphene chemical potential. In Figs. 5(a)
and 5(b), the resonant peaks both exhibit redshifts as the cavity
ridge lengths Lr increase. For the TE polarization shown in
Fig. 5(a), the resonant peaks have shifts of λm � 41–49 μm,
which covers the whole bandgap of the periodic waveguides
and manifests a strong modulation of the transmission

spectrum. The three series of resonant peaks correspond to
the first- to third-order longitudinal modes, the transmittances
of which all decrease to the minima near the center of the
bandgaps and increase to the maxima at the tops of the valence
bands. For the TM polarization shown in Fig. 5(b), the reso-
nant peak experiences a redshift of λm � 31.6–33.5 μm with
the transmittance at λm increasing significantly from 13.4% to
40% as the cavity length increases. Figures 5(c) and 5(d) show
the transmission spectra as μc increases from 0.05 to 0.95 eV.
In general, the resonant peaks manifest linear dependences on
the chemical potential. For TE polarization, the resonant
peak shifts linearly from λm � 49.2 to 48.2 μm with the trans-
mittance at λm decreasing from T 1 � 80% to 30%. For the
TM polarization shown in Fig. 5(d), the resonant peaks also
experience blueshifts as μc increases, but the tuning ranges
are narrower than those of TE polarization.

The red (or blue) shift of the cavity resonant wavelength can
also be understood in terms of the EMA point of view. The
resonant wavelength satisfies the Fabry–Perot condition [32]
arg�rb��2πneffLeff ;c∕λm�2mπ, with neff �Re� ffiffiffiffiffiffi

ϵeff
p �. Here,

ϵeff and Leff ;c are the effective permittivity and length of the
cavity, respectively, and rb is the Bragg reflection coefficient
of the periodic waveguides beside the cavity. λm is the resonant
wavelength with m being the order of the longitudinal mode.
As we increase the cavity ridge length Lr at fixed μc, both ϵeff ;w∕t
and Leff ;c are increased. To satisfy the resonant condition, the
resonant wavelength λm will experience a redshift. For μc ∈
�0.05 eV; 0.95 eV� at fixed cavity ridge length Lr, since
Im�σg� ∝ μc, the real part of the cavity effective permittivity
Re�ϵeff ;w∕t� � Re�ϵeff ;w∕o� − Im�σg�η0∕�k0weff � will decrease
as μc increases. Noting that both Leff ;c and arg�rb� are fixed,

(a)

(b) (c)

Fig. 4. Schematic and transmission spectra of the graphene modu-
lated cavity. (a) Lc, Lp are the lengths of the cavity and the periodic
waveguide (with five periods at each side), with Lr being the center
ridge length. Graphene is decorated on the cavity inside walls. The
periodic waveguides are connected with monomode slab waveguides
at both sides. (b) and (c) Transmission spectra of the cavity for TE and
TM polarizations. Red curves and blue circles represent the numerical
and analytical results. (b) Lr � 0.8W r. (c) Lr � 1.8W r. μc is fixed at
0.5 eV.

(a) (b)

(c) (d)

Fig. 5. Influences of cavity ridge length Lr and graphene chemical
potential μc on the transmission spectra. (a) and (c) TE polarization.
(b) and (d) TM polarization. (a) and (b) Transmission spectra tuned
by ridge length Lr at fixed μc � 0.5 eV. (a) Lr ∈ �0.2W r; 3.2W r� and
(b) Lr ∈ �1.4W r; 2.0W r�. (c) and (d) Transmission spectra tuned by
graphene chemical potential μc ∈ �0.05 eV; 0.95 eV� for different
ridge lengths. (c) Lr � 0.8W r and (d) Lr � 1.8W r.
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the resonant wavelength λm will experience a blueshift. We
also calculate the cavity transmission spectra without
graphene and with graphene at μc � 0 eV, both of which
manifest very slight differences with that of μc � 0.05 eV.
As for μc � 0 eV�ℏω > j2μcj�, the interband transition proc-
ess dominates and graphene possesses a constant surface con-
ductivity σg ≈ e2∕�4ℏ� [7,26] with a near-zero imaginary part
Im�σg�, making the effective permittivity Re�ϵeff ;w∕t� nearly
unchanged. So the presence of graphene has negligible influ-
ence on the cavity resonant wavelength. In this paper, we only
consider the intraband regime �ℏω < j2μcj� within which a
Drude-like model of graphene is applicable.

The Q-factor can be obtained from the transmission spec-
trum of the cavity which is given by Q � λm∕Δλ [33], with λm
being the resonant wavelength and Δλ the full width at half-
maximum. In the absence of graphene, the Q-factor is Q �
84.9. As graphene is introduced, the Q-factors become
Q � 76.5, 88.5, and 89.1 at μc � 0.05, 0.5, and 0.95 eV.
The Q-factor is limited by the intrinsic loss of graphene and
the radiative loss of the cavity. As the intrinsic loss is determined
by the electron relaxation time of graphene τ � μμc∕�ev2F�, we
can increase τ to reduce the loss. In practice, one can improve
the carrier mobility μ by controlling the graphene charge envi-
ronment such as by placing organic molecules and nanopar-
ticles near the graphene [34]. We can also increase τ by
increasing the chemical potential μc via electric gating and
chemical doping. In addition, gain material may also be em-
ployed in the cavity to compensate for the loss of graphene.
The cavity radiative losses consist of two decay mechanisms
[2]: the energy can decay into the periodic waveguides beside
the cavity or radiate into the cladding and substrate. The Q-
factors can be improved by increasing the number of periods
beside the cavity to increase the Bragg reflection of periodic
waveguides. The out-of-plane radiating loss can be reduced
by choosing the substrate with a low refractive index.

In Fig. 6, we simulate the first- to third-order longitudinal
resonant modes for TE polarization. Figure 6(a) denotes the
axial field distributions of the first-order longitudinal mode
for Lr � 0.8W r as μc � 0.05 and 0.95 eV, respectively. The
field intensity decays exponentially from the cavity centers
to both sides, and the decay rate is larger for μc � 0.95 eV than
that of μc � 0.05 eV, making the former possess a smaller cav-
ity mode volume. The field intensity enhancements, the ratio
of the intensity maxima in the cavity center to the mode inten-
sities in the output slab waveguides, are 20 and 46 times as
μc � 0.05 and 0.95 eV. In Fig. 6(b), the ridge length increase
to Lr � 1.8W r to support the second longitudinal mode. The
field intensity enhancements are 48 and 107 times as μc �
0.05 and 0.95 eV. For the third-order longitudinal mode as
Lr � 2.6W r, the field intensity enhancements become 88
and 94 times as μc � 0.05 and 0.95 eV. It shows that a larger
chemical potential of graphene will facilitate the field localiza-
tion of the cavity modes, and the intensity enhancement effects
are obvious for lower order longitudinal modes than higher or-
der ones. As the resonant mode can confine the electromagnetic
energy in the subwavelength scale to enhance the light–matter
interaction and the resonant condition is sensitive to the sur-
rounding environment, the graphene modulated cavity may

find wide applications in optical sensing. Since graphene man-
ifests good temperature stability, the optical sensors can operate
normally over a wide temperature range.

In terms of experimental implementations of the graphene
modulated periodic waveguides and cavities, the coated gra-
phene could be grown by chemical vapor deposition (CVD)
and then mechanically transferred onto the surfaces of the
waveguides or cavities [35]. It is also important to consider
the influence of bending of graphene on its properties.
Bending at the edges of waveguides might break the graphene
or produce defects on the graphene, which could invalidate the
material description of planar graphene [36,37]. The local
Fermi energy (chemical potential) of monolayer graphene is
inversely proportional to curvature radius of bending [38],
and only a curvature radius of less than about 10 nm at the
edges can have a substantial effect on the surface conductivity
of graphene. As both the operation wavelength (∼50 μm) and
the waveguide period (10 μm) are much larger than the typical
curvature radius, the influence of local bending of graphene
could be negligible. In practice, the sharp edges of the wave-
guides can be smoothed by etching techniques to further
reduce the effects of bending.

4. CONCLUSIONS

In conclusion, we have investigated the Bloch mode propaga-
tion and confinement engineered by monolayer graphene

Fig. 6. Normalized jEyj2 distributions of the first- to third-order
longitudinal cavity modes for TE polarization. The top blue curves
and the bottom figures represent the axial mode profiles at x � 0
and the corresponding two-dimensional field distributions.
(a) Lr � 0.8W r, λm � 49.2 and 48.2 μm for μc � 0.05 and
0.95 eV. (b) Lr � 1.8W r, λm � 47.6 and 45.9 μm for μc � 0.05
and 0.95 eV. (c) Lr � 2.6W r, λm � 44.8 and 43.2 μm for μc �
0.05 and 0.95 eV.

1752 Vol. 32, No. 8 / August 2015 / Journal of the Optical Society of America B Research Article



decorated on the surfaces of periodic waveguides or incorpo-
rated in the cavity. The multiple scattering of waves in the peri-
odic waveguides or cavities yields the strong interaction of light
and graphene, leading to the strong modulation of the Bloch
modes. The presence of graphene brings about a blueshift to
the band structure. By varying the frequencies, the propagating
modes may become evanescent and vice versa. Moreover, the
cavity transmission spectra can be tuned either by the cavity
length or graphene chemical potential. The increase of the cav-
ity length can give rise to a redshift in the resonant wavelength,
which also undergoes a linear dependence on the graphene
chemical potential. By increasing the chemical potential, one
can facilitate the field localization and enhancement of the cav-
ity modes. The study suggests that the graphene modulated
periodic waveguides and cavities may find great applications
in tunable THz filters, sensors, and modulators.
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