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We investigate the vector plasmonic lattice solitons (PLSs)
in nonlinear graphene-pair arrays (GPAs) consisting of
periodically arranged double graphene sheets, which are
spatially separated. There are two dispersion bands for
the Bloch modes in the array due to the coupling of surface
plasmon polaritons (SPPs) between the graphene pairs. The
vector PLSs composed of two components originate from
the nonlinear interaction of Bloch modes in different bands.
Both components undergo mutual self-trapping through
the balance between diffraction and self-focusing nonline-
arity of graphene. Thanks to the strong confinement of
SPPs, the vector PLSs can be squeezed into a lateral width
of ∼λ∕100. The study provides a promising approach to
all-optical control on a deep-subwavelength scale. © 2016
Optical Society of America

OCIS codes: (190.6135) Spatial solitons; (190.0190) Nonlinear

optics; (240.6680) Surface plasmons.
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Optical spatial solitons, the stationary propagation of a light
beam with a constant transverse profile, are formed as the dif-
fraction and nonlinear effects reach a balance in a nonlinear op-
tical system [1,2]. As a special type of spatial soliton, vector
solitons have attracted much attention for potential applications
in developing light-control-light techniques [3–5]. The vector
solitons have at least two mutually influenced components with
both being conventional spatial solitons. Also, each component
originates from an eigenmode of the considered optical system
and is modulated by the nonlinear Kerr effect due to the strong
electric field intensity of all components including itself. In order
to ensure robust stationary propagation, the components of vec-
tor solitons are usually incoherent and are of different frequencies
or different polarizations [3]. Recent progress has been made in
spatial solitons by using dielectric and metallic waveguide arrays
[6–11], where the light diffraction can be flexibly engineered
[12]. Furthermore, the solitons in metallic waveguide arrays,
namely, plasmonic lattice solitons (PLSs), possess significantly
small lateral size, as they are formed by surface plasmon polar-
itons (SPPs), which are strongly concentrated on metal surfaces

[13,14]. The vector PLSs also have been demonstrated in
metallic waveguide arrays and may find potential applications
in subwavelength all-optical technology [9].

We have demonstrated that periodic graphene sheet arrays
are able to play a similar role of metallic waveguide arrays in
tailoring SPP diffraction [15,16]. However, the SPP mode
in graphene is substantially different from that on metallic film.
Apart from the common asymmetric SPP mode, there should
be a long-range SPP mode on the metallic film, which corre-
sponds to a plane wave in graphene. The difference is also ap-
plied for array structures. There are usually two dispersion
bands corresponding to the propagating SPP Bloch modes
in metallic waveguide arrays but only one nontrivial band in
graphene sheet arrays. The other one refers to trivial plane
waves due to the 2D feature of graphene. On the other side,
SPPs on graphene exhibit stronger confinement, lower propa-
gation loss, and flexible tunability in comparison with metals
[17,18]. These features make graphene a competitive
alternative to metals in manipulating SPPs.

In this work, we investigate the vector PLSs in nonlinear
graphene-pair arrays (GPAs) considering that graphene is also
an admirable nonlinear material [19–21]. Importantly, the struc-
ture is composed of periodical graphene pairs instead of
single-layer graphene. A graphene pair consisting of two sepa-
rated parallel graphene sheets can support symmetric and anti-
symmetric propagating SPP modes [22–24]. Consequently,
there should be two dispersion bands for the GPAs. The vector
PLSs are composed of two components belonging to different
bands with different frequencies. The stationary propagation
of vector PLSs is obtained by achieving the balance between
the self-focusing nonlinearity of graphene and SPP diffraction.
We also study the vector PLSs shaping by varying the chemical
potential of graphene.

We start from investigating the linear properties of GPAs.
As shown in Fig. 1, the structure is composed of alternative
graphene sheets and the dielectric layers, which are arranged
periodically along the x axis. The period of structure is d �
d 1 � d 2 with d 1 representing the spacing of graphene in each
period and d 2 the side-by-side distance of adjacent graphene
pairs. The dielectric relative permittivity is denoted by ϵd.
The surface conductivity σg �λ; μc ; τ� of graphene is governed
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by the Kubo formula [25], where λ is the incident wavelength
in air, μc is the chemical potential of graphene, and τ is the
momentum relaxation time. We consider the transverse mag-
netic (TM) waves propagating along the z direction. According
to the Maxwell’s equations and Bloch theorem, the dispersion
relation of SPPs in GPAs reads as follows:

cos�φ� � cosh�κd � � ζ sinh�κd � � ζ2

2
sinh�κd 1� sinh�κd 2�;

(1)

where the Bloch momentum is given by φ � kxd with kx the
Bloch wave vector along the x direction, κ � �k2z − ϵd k20�1∕2,
k0 � 2π∕λ, kz is the propagation constant, and ζ �
iκη0σg∕�ϵd k0� with η0 the impedance in vacuum. The param-
eters are given by d 1 � 60 nm, d 2 � 80 nm, ϵd � 1,
μc � 0.15 eV, and τ � 0.5 ps [26,27].

The dispersion relation, the dependence of the propagation
constant kz on the lateral Bloch momentum, is shown in
Fig. 2(a) for the wavelength λ1�9.8 μm and λ2 � 10.2 μm.
In contrast with the metal-dielectric arrays [9], the bandgap is
determined by the edge of the Brillouin zone for GPAs.

As the self-focusing nonlinearity of graphene would balance
the normal diffraction [12], the two components of the vector
solitons, respectively, arise from the Brillouin center kx �0 for
λ1�9.8μm and the Brillouin edge kx�π∕d for λ2�
10.2μm, as presented with blue and red dots in Fig. 2(a).
The real parts of the propagation constants are Re�kz� �
49.1 μm−1 and 39.7 μm−1, respectively. The corresponding
SPP wavelength for the two components are λp � 0.13 and
0.16 μm. The relation between the imaginary part of the propa-
gation constant and the Bloch momentum is shown in Fig. 2(b),
which reveals the propagation loss of the two components. The
calculated propagation lengths of SPPs are given by Lp � 6λp
and 5λp. The mode profiles for the two components without con-
sidering the nonlinearity are shown in Figs. 2(c) and 2(d), respec-
tively. In each unit graphene pair of the GPA, the mode is formed
by either symmetric or asymmetric coupling of SPPs in individual
graphene. The profile corresponding to the first component
(kx � 0) is unstaggered at the neighboring periodic units, while
the other one is staggered for the second component (kx � π∕d ).

The dispersion relation also can be achieved by using a
numerical computation [28]. The method is based on solving
an eigenvalue equation based on Maxwell’s equations, which is
given by [8] 

0 k0ϵr �x�
η0

η0
k0

∂
∂x

1
ϵr�x�

∂
∂x � k0η0 0

!�
Hy
Ex

�
� kz

�
Hy
Ex

�
; (2)

where ϵr�x� stand for the relative permittivity along the x axis.
The transverse magnetic field and electric field, Hy and Ex ,
compose the eigenvector, while the propagation constant kz
is the eigenvalue. In the calculation, graphene is treated as a
thin film with an equivalent thickness Δ ≈ 1 nm. Then, the
relative equivalent permittivity of graphene could be given
by ϵg � 1� iσgη0∕�k0Δ� [29]. In the linear case, the calcu-
lated wave vectors of SPPs are given by kz � 50.05�
0.65i μm−1 at λ1 � 9.8 μm and kz � 40.52� 0.68i μm−1

at λ2 � 10.2 μm. The values coincide fairly with the exact re-
sults by solving Eq. (1). The method developed here aims at
dealing with nonlinear systems.

Taking into account the nonlinearity, the surface conduc-
tivity of graphene can be written as σg �σg;linear�
σNL�jEz1j2�jEz2j2�. The nonlinear conductivity σNL is given
by [19,20]

σNL � −i
3

8

e2

πℏ2

�
eV F

μcω

�
2 μc
ω
; (3)

where ω denotes the frequency and the Fermi velocity
V F ≈ c∕300. It is obvious that the equivalent permittivity
of graphene is intensity-dependent. Considering the nonline-
arity of graphene, Eq. (2) turns into a nonlinear eigenproblem,
which could be solved by using the self-consistent method [30].
Two localized fields each having a Gaussian distribution
are adopted as initial values for the iterative calculation. We
set 80 V2∕μm2 as the maximum intensity of the first compo-
nent and 100 V2∕μm2 for the second. In each step of the
iteration, the permittivity of graphene is updated with
the solved field distribution of the previous step. Repeating
the process of solving the field distribution of the two compo-
nents and updating the permittivity, we can obtain the trans-
verse distribution of the vector PLSs until the eigenvalues are
stable. The results are shown in Fig. 3. From Fig. 3(a), the first
component (λ1 � 9.8 μm) has a similar but localized profile in

Fig. 1. Diagram of the GPA. The graphene pair in each period of
the array is composed of double graphene sheets. The period of the
GPA is given by d � d 1 � d 2.

Fig. 2. (a) Real part of the propagation constants (kz ) of Bloch
modes as a function of the Bloch momentum. Dash and solid curves
correspond to λ1 � 9.8 μm and λ2 � 10.2 μm, respectively. The blue
(red) dot denotes component 1 (component 2). (b) Imaginary part of
the propagation constants (kz ) as a function of the Bloch momentum.
(c) The Bloch mode corresponding to component 1 as kx � 0. (d) The
Bloch mode corresponding to component 2 as kx � π∕d. The
positions of graphene sheets are denoted by the red dashed lines.
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comparison with the Bloch mode shown in Fig. 2(c). It could be
viewed as nonlinear counterpart of the Bloch mode in the
Brillouin center of the first band. The intensity distribution
of the first component, jE j2 � jEx j2 � jEz j2, is illustrated in
Fig. 3(b). The FWHM of the first component is about
0.22 μm or 0.02λ1. The sharp peaks of the intensity reveal
the strong confinement of SPPs on the graphene sheets. The
transverse electric field and the intensity of the second compo-
nent are shown in Figs. 3(c) and 3(d). The effective width of the
vector PLSs for the two components is given by [9,10]

w1;2 �
�Z

x2jE1;2j2dx∕
Z

jE1;2j2dx
�1∕2

: (4)

The calculated results are w1 � 0.08 μm and
w2 � 0.13 μm, corresponding to 0.008λ1 and 0.013λ2, re-
spectively. Because the band curve of the second component
has a larger curvature than that of the first component, it
has a little bit larger width.

To shed more light on vector PLS, we also investigate their
propagation by using the modified split-step Fourier beam
propagation method [8]. The propagation of vector PLS without
considering the loss of graphene is shown in Figs. 4(a) and 4(b).
It shows that the two components of the vector soliton remain
constant lateral profiles all the time during propagation. If one of
the two components is absent, the other has to suffer remarkable
diffraction, as shown in Figs. 4(c) and 4(d). A stationary propa-
gation of vector PLS requires both components at work. In other
words, the two components influence each other simultaneously.
The propagation of one component can be controlled by the
other one. Taking the loss into consideration, the propagation
of the vector PLS is illustrated in Figs. 4(e) and 4(f). The propa-
gation distances of both components are roughly the same. The
propagation distance of the second component is a little bit
smaller than that of the first one because the loss rests with
the original linear eigenmodes, as shown in Fig. 2(b). The propa-
gation loss of the first component is smaller than the second one.
Thereafter, the propagation length of the vector PLSs is mainly
determined by the second component.

The propagation constants of the two components versus
the peak intensity of the second component denoted by I 2
are plotted in Figs. 5(a) and 5(b). One sees that the propagation
constants of both components increase as I 2 increases. For a
fixed value of I2, the propagation constants also increase as
the peak intensity of the first component I 1 increases.
Considering that the second component, originating from
the second band, is located in the bandgap, the intensity I 2
should reach the maximum at the bottom of the first band
for each value of I 1. The limitation of I2 also appears for
the first component as I 1 varies, although the first component
originates from the first band and lies in the semi-infinite gap
above, as shown in Fig. 5(a). When the intensity I 1 � 0 or
I 2 � 0, the vector PLSs turn to scalar solitons. It should be
mentioned that there is a bound state for the first (second) com-
ponent even if its intensity approaches to zero, which results
from the nonlinear mutual self-trapping effect induced by
the second (first) component.

The influence of I 2 on the effective width is shown in
Figs. 5(c) and 5(d). The effective width of the first component

Fig. 3. For the first component of the vector PLSs arising from the
Brillouin center kx � 0 for λ1 � 9.8 μm; (a), (b) normalized transverse
electric field (Ex) and intensity distribution. For the second component
arising from the Brillouin edge kx � π∕d for λ2 � 10.2 μm; (c),
(d) normalized transverse electric field (Ex) and intensity distribution.
Positions of graphene sheets are denoted by the green dashed lines.

Fig. 4. (a), (b) Stable propagation of the first component and the
second component without loss. (c), (d) Single propagation of the first
component and the second component when the other one is re-
moved. (e), (f ) Stable propagation of the first component and the sec-
ond component in lossy GPAs. The field distribution is shown by
log�jE j2� in all figures.

Fig. 5. (a), (b) Propagation constants of the first component and the
second component vary with the intensities of both components. I 1 � 0,
30, 60, 90, 120 V2∕μm2. (c), (d) Effective width of the first component
and the second component vary with the intensities of both components.
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decreases as the intensities I1 and I2 increase. When I 1 >
60 V2∕μm2 or I 2 > 120 V2∕μm2, the value of w1 almost keeps
at constant, as shown in Fig. 5(c). In this circumstance, the first
component has concentrated into the region of a single graphene
pair with a width about 0.06 μm and can no longer be squeezed.
As for the second component shown in Fig. 5(d), the effective
width decreases first, and then increases after reaching a mini-
mum of w2 � 0.12 μm. The minimum is almost independent
on I1. The width of the second component reaches its minimum
as its propagation constant locates in the middle of the bandgap.
As I2 increases further, the propagation constant approaches to
the bottom of the first band and the width increases.

We also investigate the influence of chemical potential. The
variation of band structure with chemical potential for the lin-
ear case is shown in Figs. 6(a) and 6(b). Here we only provide
the first (second) band for the first (second) component as λ1 �
9.8 μm (λ2 � 10.2 μm). Generally, the propagation constants
corresponding to different components decrease as the chemi-
cal potential increases. From Fig. 6(a), the curvature at the
Brillouin center increases as the chemical potential increases,
where the first component is growing. As a result, the first com-
ponent becomes wider as the chemical potential increases, as
shown in Fig. 6(c). The situation is roughly the same for
the second component but for a larger beam width, as shown
in Figs. 6(b) and 6(d). The reason lies in the fact that the cur-
vature of the second band is remarkably larger than the first
one, indicating stronger diffraction of SPPs. It should be noted
that the maximum intensities of two components are fixed at
I 1 � 80 V2∕μm2 and I 2 � 100 V2∕μm2, respectively. By
comparing the variation of two components, the second one
is more sensitive to the chemical potential than the first one
in the range of μc � 0.15–0.22 eV. As the chemical potential
increases further, strong coupling occurs, and the case is out of
our consideration scope, as shown in Fig. 6(b).

In conclusion, we have investigated the vector PLSs in nonlin-
ear graphene-pair arrays. Every graphene pair of GPAs consisting
of two separated parallel graphene sheets can support symmetric
and antisymmetric SPP modes. Consequently, there should be

two bands of SPP Bloch modes in GPAs. The components of
the vector solitons have different frequencies and arise from
Bloch modes of two bands in GPAs. They undergo mutual
self-trapping through the balance between SPPs diffraction and
the nonlinearity effect of graphene. Due to the strong confinement
of SPPs in graphene, the vector PLSs manifest a deep-subwave-
length width. By varying the chemical potential of graphene,
the effective width of vector PLSs can be flexibly tuned. This study
may find applications in optical switches, optical circuits, and
soliton-based navigation on a deep-subwavelength scale.
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varies with the chemical potential of graphene. (b) For the second
component λ2 � 10.2 μm, the second band varies with the chemical
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