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High-order-harmonic generation of a doped semiconductor
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We investigate the high-order-harmonic generation (HHG) in doped semiconductors. The HHG is simulated
with the single-electron time-dependent Schrödinger equation. The results show that the high-order harmonics
in the second plateau generated from the doped semiconductors is about one to three orders of magnitude higher
than those from the undoped semiconductor. The results are explained based on the analysis of the energy-band
structure and the time-dependent population imaging. Our paper indicates that doping can effectively control the
HHG in semiconductors.
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I. INTRODUCTION

With the fast development of laser technology, the in-
teraction between intense laser pulses and matters has been
studied extensively over the past several decades and revealed
many interesting phenomena [1–3]. One of the most inter-
esting phenomena is high-order-harmonic generation (HHG)
[4,5], because it promises many important and unprecedented
applications like generating coherent ultrafast extreme violet
radiations [1,6–8] and probing the ultrafast dynamics of
atomic, molecular, and solid systems [9–13].

Recently, high-order harmonics emitted from the bulk
solids were detected [14]. Compared with the gas, the solid
has periodic structure and high density [15,16]. Therefore, it
has potential to produce more efficient HHG than the gas [17].
By analyzing the spectrum of the solid HHG, it is possible
to study the structures of solid materials [17–20]. The solid
HHG can also provide a new path to investigate the attosecond
electron dynamics in solid materials [21] and to reconstruct
the energy-band structures of solid crystals [22].

Recent works have shown that the solid HHG has two-
plateau structure [23–26]. The intensity of the second plateau
is about five orders of magnitude lower than that of the primary
plateau [24]. The one-band model [27] and multibands model
[28–31] are used to explain the mechanism behind HHG. It
is considered that the two-plateau structure is attributed to
the multibands structure of the solid [28,29]. Wu et al. [25]
suggest that the interband current between the valence band
and the first conducting band contributes the primary plateau of
the high-order-harmonic spectrum, and the interband current
between the valence band and the second to the third
conducting bands contributes the second plateau. On the other
hand, the electron-hole recollision model in wave-vector k

space is proposed to explain the mechanism of HHG in solids
[17,26,30,31]. It is suggested that the first plateau arises from
electron-hole recollision, while the higher plateaus arise from
dynamic Bloch oscillations.
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Nowadays, in energy-band engineering, doping is widely
used to improve the physical, e.g., electrical, magnetic, and
optical, characteristics of objects through changing the energy-
band structures of the target [32]. This indicates that the char-
acteristics of HHG in solids can be controlled by doping [33].
In this paper, we investigate HHG in the doped semiconductors
and discuss the influence of doping on HHG. The results show
that the energy bands are changed by doping and the intensity
of the second plateau of HHG is improved by about one to
three orders of magnitude compared with that of the undoped
semiconductor. This result is analyzed based on the picture of
energy bands and the time-dependent population imaging.

II. THEORETICAL MODEL

In our paper, we investigate the laser-crystal interaction
and HHG in the doped and undoped semiconductor by solving
the time-dependent Schrödinger equation (TDSE). The laser
field is polarized along the �x axis. In the length gauge, the
time-dependent Hamiltonian is written as

Ĥ = Ĥ0 + xE(t) (1)

where Ĥ0 = p̂2/2 + v(x). Atomic units are used in this paper
unless otherwise stated. v(x) is the periodic potential of the
lattice. In this paper, the undoped semiconductor is modeled by
Mathieu-type potential [34] v(x) = −v0[1 + cos(2πx/a0)],
with v0 = 0.37 a.u. and the lattice constant a0 = 8 a.u. The
Mathieu-type potential has been widely used to simulate the
optical lattice [35,36] and solid HHG [25,37,38].

For the doped semiconductor, we discuss the situation that
the dopant replaces the atom of the undoped semiconductor
periodically. We assume that the dopant will not change the
lattice constant. The potential based on Mathieu-type potential
is written as

v =
{−v0[1+ cos(2πx/a0)] a � x � b or c � x � d,

−v1[1 + cos(2πx/a0)] b < x < c .

(2)

The potentials of the doped (the blue dashed line) and
undoped (the red solid line) semiconductor in a repetitive unit
are shown in Fig. 1. The potential parameter of the dopant
between b and c is v1 = 0.52 a.u. One can see five atoms in
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FIG. 1. The blue dashed line shows the potential of the one-
dimensional (1D) undoped semiconductor. The red solid line shows
the potential of the 1D doped semiconductor.

the region [a,d]. Between b and c, the potential parameter of
the origin atom v0 is replaced by that of the dopant atom v1.
So the doping rate is 0.2.

To obtain the energy bands of the doped and undoped
semiconductors, we solve the eigenvalue equation of Ĥ0,

Ĥ0ϕn(x) = Enϕn(x), (3)

where n is the eigenstate number and ϕn(x) is the eigenstate
wave function. To solve the eigenvalue equation, we diago-
nalize Ĥ0 on a coordinate grid [39]. With the finite-difference
method, the operator Ĥ0 is represented by an N × N matrix
H, where N is the number of the grid points. The nonzero
elements of the matrix H are given by

Hi,i = 1

(dx)2
+ Vi,

Hi,i+1 = − 1

2(dx)2
,

Hi+1,i = Hi,i+1, (4)

where the grid spacing dx is 0.25 a.u. and Vi is the ith element
of the one-dimensional (1D) grid of v(x). The results of both
doped and undoped semiconductors are calculated in the real
space within the region [0,4000] a.u. (500 lattice periods).

Figure 2 shows the energy-band structure of the doped
and undoped semiconductors. The red circles and the black
points correspond to the doped semiconductor and the un-
doped semiconductor, respectively. Each energy band of the
undoped semiconductor can be distinguished clearly. The
valance band (VB) and conducting bands (CB1, CB2, and
CB3) correspond to the state numbers 501-1000, 1001-1500,
1501-2000, and 2001-2500. The energy gap between VB and
CB1 is labeled as e1 and the energy gap between CB1 and
CB2 is labeled as e2. It is shown in Fig. 2(b) that the band
gaps e1 and e2 of the doped semiconductor are narrower than
those of the undoped semiconductor.

Doping changes the periodicity of the semiconductor.
Therefore, compared with the undoped semiconductor, the
energy bands of the doped semiconductor are split into small
bands and the small energy bands corresponding to state
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FIG. 2. (a) The energy-band structures of the doped and undoped
semiconductors. The black points show the eigenvalue of the
undoped semiconductor, while the red circles show the eigenvalue
of the doped semiconductor. We choose one point every 20 points.
(b) The band-structure region that includes the gaps e1 and e2.

number 1-100, 501-600, and 1001-1100 locate away from
other energy bands. As a result, the energy gaps e1 and e2
become much narrower in the doped semiconductor.

To obtain the time-dependent wave function ψ(t), we solve
the TDSE using the second-order split-operator method:

ψ(t + dt) = exp

(
− idtT̂

2

)
exp(−idtV̂ )

×exp

(
− idtT̂

2

)
ψ(t) + O(dt3) (5)

where T̂ = p̂2/2 and V̂ = v(x) + xE(t). The number of the
time points is 10 000. In Eq. (4), commutation errors give rise to
the third-order term in dt . Equation (4) is solved by the spectral
method [40]. We solve the first and the third term on the right-
hand side in momentum space by the fast Fourier-transform
algorithm. The second term is multiplied directly in position
space. In this paper, we adopt a sine-squared envelope for the
driving laser pulses with the total duration of eight optical
cycles (tc). The wavelength of the driven laser is 3.2 μm and
the intensity is 8.087 × 1011 W/cm2. We choose the eigenstate
populated at the top of the valence band as the initial state
[25,37]. To overcome the unphysical reflections of the wave
function ψ(t) at the edges of the grid spacing, we use a cos

1
8

absorbing boundary. The width of the absorbing boundary is
kL, where k = 0.0833 is the scale and L = 4000 a.u. is the
length of the real space we used. We find that the k is small
enough to ensure the results are stabilized Since the lowest
band is very flat and deeply bound, it plays a negligible role in
the HHG dynamics.

With the time-dependent wave function ψ(t), the laser-
induced current can be obtained as

j (t) = −〈ψ(t)|p̂|ψ(t)〉. (6)

We multiply j (t) by a Hanning window [25]. The harmonic
spectrum is obtained by calculating the Fourier transform of
the laser-induced current:

H (ω) ∝ |j (t)eiωtdt |2. (7)

To better analyze the HHG in the doped and undoped semi-
conductors, the time-dependent population imaging (TDPI) is
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FIG. 3. The blue line shows the HHG spectrum of the undoped
semiconductor. The red dash-dotted line shows the HHG spectrum of
the doped semiconductor.

also calculated [39]. To obtain the TDPI, the instantaneous
population Cn(t) on each eigenstate is calculated by the
modulus square of the time-dependent projection of ψ(t) on
ϕn as

|Cn(t)|2 = 〈ϕn|ψn(t)〉2. (8)

The corresponding eigenvalue of ϕn is En. |Cn(t)|2 can
be understood as the time-dependent probability of electrons
occupying on the eigenenergy En. Then the TDPI picture
is obtained by plotting |Cn(t)|2 as a function of time t and
eigenenergy En.

III. RESULTS AND DISCUSSION

Figure 3 shows the HHG spectrum of the doped (blue solid
line) and undoped (red dash-dotted line) semiconductors. The
HHG spectrum of the undoped semiconductor shows a two-
plateau structure. The first plateau starts at the 18th order and
has a cutoff at the 32nd order. The second plateau starts at the

40th order and has a cutoff at the 112nd order. For the HHG
spectrum of the doped semiconductor, the intensities of the
high-order harmonics between the 10th and the 32nd orders
are lower than those of the undoped semiconductor, while the
intensities of the high-order harmonics between the 40th and
the 80th orders are about two orders of magnitude higher than
those of the undoped semiconductor. The second plateau is
dramatically enhanced by the doping.

To understand the mechanism of the enhancement of the
second plateau intuitively, we show the TDPI picture in Fig. 4.
Figure 4(a) shows the electron populations in the energy bands
of the undoped semiconductor. They are driven forth and back
in each energy band by the external laser field. The oscillations
of electron populations in the energy bands correspond to
the laser-driving Bloch oscillations of electrons in reciprocal
space. Figure 4(b) shows the electron populations in the energy
bands of the doped semiconductor. Besides the oscillations of
electron populations, one can also see the reflection of electron
populations at the border of the energy bands, i.e., at the border
of the Brillouin zone in Fig. 4(b). This is because the energy
bands of the doped semiconductor are separated into small
bands. As the doping rate is 0.2, the Brillouin zone of the doped
semiconductor becomes 0.2 times of the undoped semiconduc-
tor. Therefore it is easier for electrons to oscillate to the border
of the Brillouin zone of the doped semiconductor. And at the
border of the Brillouin zone, the electrons can be reflected in
the same band or much more easily tunnel to higher bands [41].
So the electron populations in CB2 and CB3 of the doped semi-
conductor are higher than those of the undoped semiconductor.

The phenomenon mentioned above can also be explained
by the band structure of the doped semiconductor. When the
laser field interacts with the semiconductor, the electrons in the
VB begin to oscillate in the same band and have the possibility
to tunnel to energy band CB1 through the band gap e1. We
label it as process 1. After they populate on CB1, there are two
possible paths. On the one hand, some of them can oscillate to
the border of the Brillouin zone and tunnel to higher-energy
bands CB2 and CB3 through a narrow band gap e2. Then
these electrons in CB2 and CB3 can transfer to VB and radiate

FIG. 4. (a) The TDPI picture of the undoped semiconductor model. (b) The TDPI picture of the doped semiconductor model. Blue areas
are band gaps.
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FIG. 5. (a) The comparison between the total population of CB2
and CB3 in the doped semiconductors with that of the undoped
semiconductors. (b) The comparison of average intensity of the
second plateau (between 40th and 80th orders) between the doped
and undoped semiconductors. (c) The band gap e1 between VB and
CB1 of different doped semiconductors. (d) The band gap e2 between
CB2 and CB3 of different doped semiconductors.

high-order harmonics in the second plateau. We label this as
process 2. On the other hand, some of the electrons in CB1 can
transfer back to VB and radiate high-order harmonics in the
first plateau. In Fig. 4(a), only a small portion of electrons of
the undoped semiconductor can arrive at the top of CB1 (i.e.,
the border of the Brillouin zone), so process 1 and process 2 are
weak. Thus the electron populations in CB2 and CB3 are small
and the intensity of the second plateau is low. On the other
hand, in Fig. 4(b), because the energy bands become smaller,
most of the electrons can populate on the top of the small
energy bands and tunnel to higher-energy bands. Additionally,
it is shown in Fig. 2(b) that doping makes the band gaps e1
and e2 of the doped semiconductor narrower than those of
the undoped semiconductor. Therefore, process 1 and process
2 are strengthened. Consequently, the electron populations in
CB2 and CB3 of the doped semiconductor are larger. And the
second plateau of the doped semiconductor is about two orders
of magnitude higher than that of the undoped semiconductor.
On the other hand, the smaller Brillouin zone and the narrower
band gap e1 can strength the populations in CB1, while the
narrower band gap e2 can make more populations in CB1
transfer to CB2, resulting in less transitions from CB1 to
VB. So the intensity of the first plateau is about one order
of magnitude lower than that of the undoped semiconductor.
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FIG. 6. The blue lines in each figure show the HHG spectrum
of the undoped semiconductor. The red dash-dotted lines show
the HHG spectrum of the doped semiconductors under differ-
ent doping rates 0.05, 0.1, 0.167, and 0.33 in Figs. 6(a)–6(d).
v1 = 0.52 a.u.

To further investigate the effect of doping, we compare
the populations on CB2 to CB3 of the doped semiconductors
with different values of v1. The results are shown in Fig. 5.
In Fig. 5(a), C is the total electron population of the energy
bands CB2 to CB3 in the doped semiconductor, and C0 is the
population of the energy bands CB2 and CB3 in the undoped
semiconductor. Figure 5(b) shows the comparison between
the average intensities in the second plateau (between 40th
and 80th orders) of the doped and undoped semiconductors. I

is the average intensity of the high-order-harmonics spectrum
of the doped semiconductors and I0 is the average intensity
of the undoped semiconductor. Compared with the undoped
semiconductor (v1 = 0.37), the average intensities of high-
order harmonics of the doped semiconductors are all improved.
It is also shown that the curves in Figs. 5(a) and 5(b) have
similar variation tendency. They both have maximums around
v1 = 0.22 and minimums around v1 = 0.37. Figure 5(c) shows
the band gaps e1 between VB and CB1 at different values of
v1. Figure 5(d) shows the band gaps e2 between CB2 and CB3
at different values of v1. The minimums of e1 and e2 around
v1 = 0.22 in Figs. 5(c) and 5(d) correspond to the maximums
of populations and intensities in Figs. 5(a) and 5(b), while the
maximums of e1 and e2 around v1 = 0.37 correspond to the
minimums of populations and intensities.
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Figure 5 shows that with the decreasing band gaps e1 and
e2 the possibilities of electrons tunneling to higher-energy
bands become larger. Then the electron populations in the
energy bands CB2 to CB3 and the intensity of the second
plateau of the doped semiconductor high-order harmonics will
be increased. The populations in CB2 to CB3 are primarily
controlled by the band gap e1. Meanwhile, they can also be
modulated by the band gap e2. Therefore one can control
the species of dopants to control the semiconductor HHG,
especially the second plateau.

We also investigate the HHG of the doped semiconductors
under different doping rates at v1 = 0.52 a.u. They are
compared with that of the undoped semiconductor in Fig. 6. It
is shown in Figs. 6(a) and 6(b) that the intensities of the high-
order harmonics of the doped semiconductors between the 10th
and the 32nd orders are about half those of the undoped semi-
conductor, while the intensity of the second plateau increases
rapidly as the doping rate rises from 0 to 0.1. In Figs. 6(c)
and 6(d), as the doping rate is larger than 0.1, the intensities
of the high-order harmonics of the doped semiconductors be-
tween the 40th and the 70th orders are about one to two orders
of magnitude higher than those of the undoped semiconductor.

IV. CONCLUSION

We simulate the HHG in the doped and undoped semi-
conductors based on a 1D single-electron model in periodic
potentials. The results indicate that the HHG in the semi-
conductors can be effectively controlled by doping. Both
TDPI and energy-band pictures are used to analyze the
mechanism. Doping changes the energy-band structure of the
semiconductors and makes the Brillouin zone and band gaps
e1 and e2 narrower than before. The small Brillouin zone and
narrow band gaps e1 and e2 strengthen the electron populations
in CB2 to CB3, and improve the intensity of the second plateau
of the high-order harmonics. Our paper indicates that one
can control the HHG of the semiconductor by controlling the
species of dopants and the doping rate.

ACKNOWLEDGMENT

This paper was supported by the National Natural Sci-
ence Foundation of China under Grants No. 11234004, No.
11404123, No. 11574101, No. 11422435, and No. 11627809.

[1] F. Krausz and M. Ivanov, Rev. Mod. Phys. 81, 163 (2009).
[2] P. B. Corkum and F. Krausz, Nat. Phys. 3, 381 (2007).
[3] Z. Wang, K. Liu, P. Lan, and P. Lu, Phys. Rev. A 91, 043419

(2015); J. Phys. B 48, 015601 (2015).
[4] J. L. Krause, K. J. Schafer, and K. C. Kulander, Phys. Rev. Lett.

68, 3535 (1992).
[5] K. J. Schafer, B. Yang, L. F. DiMauro, and K. C. Kulander, Phys.

Rev. Lett. 70, 1599 (1993).
[6] P. M. Paul, E. S. Toma, P. Breger, G. Mullot, F. Augé, P.

Balcou, H. G. Muller, and P. Agostini, Science 292, 1689
(2001).

[7] M. Hentschel, R. Kienberger, C. Spielmann, G. A. Reider, N.
Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher,
and F. Krausz, Nature (London) 414, 509 (2001).

[8] F. Wang, W. Liu, L. He, L. Li, B. Wang, X. Zhu, P. Lan, and P.
Lu, Phys. Rev. A 96, 033407 (2017).

[9] M. Uiberacker, T. Uphues, M. Schultze, A. J. Verhoef, V.
Yakovlev, M. F. Kling, J. Rauschenberger, N. M. Kabachnik,
H. Schröder, M. Lezius et al., Nature (London) 446, 627
(2007).

[10] A. Schiffrin, T. Paasch-Colberg, N. Karpowicz, V. Apalkov, D.
Gerster, S. Mühlbrandt, M. Korbman, J. Reichert, M. Schultze,
S. Holzner et al., Nature (London) 493, 70 (2012).

[11] S. R. Leone, C. W. McCurdy, J. Burgdörfer, L. S. Cederbaum,
Z. Chang, N. Dudovich, J. Feist, C. H. Greene, M. Ivanov, R.
Kienberger et al., Nat. Photonics 8, 162 (2014).

[12] P. Lan et al., Phys. Rev. Lett. 119, 033201 (2017).
[13] D. Wang, X. Zhu, X. Liu, L. Li, X. Zhang, P. Lan, and P. Lu,

Opt. Express 25, 23502 (2017).
[14] S. Ghimire, A. D. DiChiara, E. Sistrunk, P. Agostini, L. F.

DiMauro, and D. A. Reis, Nat. Phys. 7, 138 (2010).
[15] S. Ghimire, A. D. DiChiara, E. Sistrunk, G. Ndabashimiye, U. B.

Szafruga, A. Mohammad, P. Agostini, L. F. DiMauro, and D. A.
Reis, Phys. Rev. A 85, 043836 (2012).

[16] T. T. Luu, M. Garg, S. Yu. Kruchinin, A. Moulet, M. Th.
Hassan, and E. Goulielmakis, Nature (London) 521, 498
(2015).

[17] G. Vampa, T. J. Hammond, N. Thiré, B. E. Schmidt, F. Légaré,
C. R. McDonald, T. Brabec, and P. B. Corkum, Nature (London)
522, 462 (2015).

[18] C. Yu, X. Zhang, S. Jiang, X. Cao, G. Yuan, T. Wu, L. Bai, and
R. Lu, Phys. Rev. A 94, 013846 (2016).

[19] S. Jiang, C. Yu, G. Yuan, T. Wu, Z. Wang, and R. Lu, J. Phys.:
Condens. Matter 29, 275702 (2017).

[20] A. F. Kemper, B. Moritz, J. K. Freericks, and T. P. Deveraux,
New J. Phys. 15, 023003 (2013).

[21] M. Schultze, K. Ramasesha, C. D. Pemmaraju, S. A. Sato, D.
Whitmore, A. Gandman, J. S. Prell, L. J. Borja, D. Prendergast,
K. Yabana, D. M. Neumark, and S. R. Leone, Science 346, 1348
(2014).

[22] G. Vampa, T. J. Hammond, N. Thiré, B. E. Schmidt, F. Légaré,
C. R. McDonald, T. Brabec, D. D. Klug, and P. B. Corkum,
Phys. Rev. Lett. 115, 193603 (2015).

[23] G. Ndabashimiye, S. Ghimire, M. Wu, D. A. Browne, K. J.
Schafer, M. B. Gaarde, and D. A. Reis, Nature (London) 534,
520 (2016).

[24] M. Wu, D. A. Browne, K. J. Schafer, and M. B. Gaarde, Phys.
Rev. A 94, 063403 (2016).

[25] M. Wu, S. Ghimire, D. A. Reis, K. J. Schafer, and M. B. Gaarde,
Phys. Rev. A 91, 043839 (2015).

[26] T.-Y. Du and X.-B. Bian, Opt. Express 25, 151
(2017).

[27] K. A. Pronin, A. D. Bandrauk, and A. A. Ovchinnikov, Phys.
Rev. B 50, 3473(R) (1994).

[28] P. G. Hawkins, M. Y. Ivanov, and V. S. Yakovlev, Phys. Rev. A
91, 013405 (2015).

[29] P. G. Hawkins and M. Y. Ivanov, Phys. Rev. A 87, 063842
(2013).

043425-5

https://doi.org/10.1103/RevModPhys.81.163
https://doi.org/10.1103/RevModPhys.81.163
https://doi.org/10.1103/RevModPhys.81.163
https://doi.org/10.1103/RevModPhys.81.163
https://doi.org/10.1038/nphys620
https://doi.org/10.1038/nphys620
https://doi.org/10.1038/nphys620
https://doi.org/10.1038/nphys620
https://doi.org/10.1103/PhysRevA.91.043419
https://doi.org/10.1103/PhysRevA.91.043419
https://doi.org/10.1103/PhysRevA.91.043419
https://doi.org/10.1103/PhysRevA.91.043419
https://doi.org/10.1088/0953-4075/48/1/015601
https://doi.org/10.1088/0953-4075/48/1/015601
https://doi.org/10.1088/0953-4075/48/1/015601
https://doi.org/10.1088/0953-4075/48/1/015601
https://doi.org/10.1103/PhysRevLett.68.3535
https://doi.org/10.1103/PhysRevLett.68.3535
https://doi.org/10.1103/PhysRevLett.68.3535
https://doi.org/10.1103/PhysRevLett.68.3535
https://doi.org/10.1103/PhysRevLett.70.1599
https://doi.org/10.1103/PhysRevLett.70.1599
https://doi.org/10.1103/PhysRevLett.70.1599
https://doi.org/10.1103/PhysRevLett.70.1599
https://doi.org/10.1126/science.1059413
https://doi.org/10.1126/science.1059413
https://doi.org/10.1126/science.1059413
https://doi.org/10.1126/science.1059413
https://doi.org/10.1038/35107000
https://doi.org/10.1038/35107000
https://doi.org/10.1038/35107000
https://doi.org/10.1038/35107000
https://doi.org/10.1103/PhysRevA.96.033407
https://doi.org/10.1103/PhysRevA.96.033407
https://doi.org/10.1103/PhysRevA.96.033407
https://doi.org/10.1103/PhysRevA.96.033407
https://doi.org/10.1038/nature05648
https://doi.org/10.1038/nature05648
https://doi.org/10.1038/nature05648
https://doi.org/10.1038/nature05648
https://doi.org/10.1038/nature11567
https://doi.org/10.1038/nature11567
https://doi.org/10.1038/nature11567
https://doi.org/10.1038/nature11567
https://doi.org/10.1038/nphoton.2014.48
https://doi.org/10.1038/nphoton.2014.48
https://doi.org/10.1038/nphoton.2014.48
https://doi.org/10.1038/nphoton.2014.48
https://doi.org/10.1103/PhysRevLett.119.033201
https://doi.org/10.1103/PhysRevLett.119.033201
https://doi.org/10.1103/PhysRevLett.119.033201
https://doi.org/10.1103/PhysRevLett.119.033201
https://doi.org/10.1364/OE.25.023502
https://doi.org/10.1364/OE.25.023502
https://doi.org/10.1364/OE.25.023502
https://doi.org/10.1364/OE.25.023502
https://doi.org/10.1038/nphys1847
https://doi.org/10.1038/nphys1847
https://doi.org/10.1038/nphys1847
https://doi.org/10.1038/nphys1847
https://doi.org/10.1103/PhysRevA.85.043836
https://doi.org/10.1103/PhysRevA.85.043836
https://doi.org/10.1103/PhysRevA.85.043836
https://doi.org/10.1103/PhysRevA.85.043836
https://doi.org/10.1038/nature14456
https://doi.org/10.1038/nature14456
https://doi.org/10.1038/nature14456
https://doi.org/10.1038/nature14456
https://doi.org/10.1038/nature14517
https://doi.org/10.1038/nature14517
https://doi.org/10.1038/nature14517
https://doi.org/10.1038/nature14517
https://doi.org/10.1103/PhysRevA.94.013846
https://doi.org/10.1103/PhysRevA.94.013846
https://doi.org/10.1103/PhysRevA.94.013846
https://doi.org/10.1103/PhysRevA.94.013846
https://doi.org/10.1088/1361-648X/aa7195
https://doi.org/10.1088/1361-648X/aa7195
https://doi.org/10.1088/1361-648X/aa7195
https://doi.org/10.1088/1361-648X/aa7195
https://doi.org/10.1088/1367-2630/15/2/023003
https://doi.org/10.1088/1367-2630/15/2/023003
https://doi.org/10.1088/1367-2630/15/2/023003
https://doi.org/10.1088/1367-2630/15/2/023003
https://doi.org/10.1126/science.1260311
https://doi.org/10.1126/science.1260311
https://doi.org/10.1126/science.1260311
https://doi.org/10.1126/science.1260311
https://doi.org/10.1103/PhysRevLett.115.193603
https://doi.org/10.1103/PhysRevLett.115.193603
https://doi.org/10.1103/PhysRevLett.115.193603
https://doi.org/10.1103/PhysRevLett.115.193603
https://doi.org/10.1038/nature17660
https://doi.org/10.1038/nature17660
https://doi.org/10.1038/nature17660
https://doi.org/10.1038/nature17660
https://doi.org/10.1103/PhysRevA.94.063403
https://doi.org/10.1103/PhysRevA.94.063403
https://doi.org/10.1103/PhysRevA.94.063403
https://doi.org/10.1103/PhysRevA.94.063403
https://doi.org/10.1103/PhysRevA.91.043839
https://doi.org/10.1103/PhysRevA.91.043839
https://doi.org/10.1103/PhysRevA.91.043839
https://doi.org/10.1103/PhysRevA.91.043839
https://doi.org/10.1364/OE.25.000151
https://doi.org/10.1364/OE.25.000151
https://doi.org/10.1364/OE.25.000151
https://doi.org/10.1364/OE.25.000151
https://doi.org/10.1103/PhysRevB.50.3473
https://doi.org/10.1103/PhysRevB.50.3473
https://doi.org/10.1103/PhysRevB.50.3473
https://doi.org/10.1103/PhysRevB.50.3473
https://doi.org/10.1103/PhysRevA.91.013405
https://doi.org/10.1103/PhysRevA.91.013405
https://doi.org/10.1103/PhysRevA.91.013405
https://doi.org/10.1103/PhysRevA.91.013405
https://doi.org/10.1103/PhysRevA.87.063842
https://doi.org/10.1103/PhysRevA.87.063842
https://doi.org/10.1103/PhysRevA.87.063842
https://doi.org/10.1103/PhysRevA.87.063842


HUANG, ZHU, LI, LIU, LAN, AND LU PHYSICAL REVIEW A 96, 043425 (2017)

[30] G. Vampa, C. R. McDonald, G. Orlando, D. D. Klug, P. B.
Corkum, and T. Brabec, Phys. Rev. Lett. 113, 073901 (2014).

[31] C. R. McDonald, G. Vampa, P. B. Corkum, and T. Brabec, Phys.
Rev. A 92, 033845 (2015).

[32] J. D. Bryan and D. R. Gamelin, in Progress in Inorganic
Chemistry, edited by K. D. Karlin (Wiley, New York, 2005),
Vol. 54; H. Long, L. Bao, A. A. Habeeb, and P. Lu, Opt. Quantum
Electron. 49, 345 (2017).

[33] J. D. Cox, A. Marini, and F. J. de Abajo, Nat. Commun. 8, 14380
(2017).

[34] J. C. Slater, Phys. Rev. 87, 807 (1952).
[35] B. M. Breid, D. Witthaut, and H. J. Korsch, New J. Phys. 8, 110

(2006).

[36] R. Chang, S. Potnis, R. Ramos, C. Zhuang, M. Hallaji, A. Hayat,
F. Duque-Gomez, J. E. Sipe, and A. M. Steinberg, Phys. Rev.
Lett. 112, 170404 (2014).

[37] Z. Guan, X.-X. Zhou, and X.-B. Bian, Phys. Rev. A 93, 033852
(2016).

[38] T.-Y. Du, Z. Guan, X.-X. Zhou, and X.-B. Bian, Phys. Rev. A
94, 023419 (2016).

[39] X. Liu, X. Zhu, P. Lan, X. Zhang, D. Wang, Q. Zhang, and P.
Lu, Phys. Rev. A 95, 063419 (2017).

[40] M. D. Feit, J. A. Fleck, Jr., and A. Steiger, J. Comput. Phys. 47,
412 (1982).

[41] J.-B. Li, X. Zhang, S.-J. Yue, H.-M. Wu, B.-T. Hu, and H.-C.
Du, Opt. Express 25, 18603 (2017).

043425-6

https://doi.org/10.1103/PhysRevLett.113.073901
https://doi.org/10.1103/PhysRevLett.113.073901
https://doi.org/10.1103/PhysRevLett.113.073901
https://doi.org/10.1103/PhysRevLett.113.073901
https://doi.org/10.1103/PhysRevA.92.033845
https://doi.org/10.1103/PhysRevA.92.033845
https://doi.org/10.1103/PhysRevA.92.033845
https://doi.org/10.1103/PhysRevA.92.033845
https://doi.org/10.1007/s11082-017-1170-9
https://doi.org/10.1007/s11082-017-1170-9
https://doi.org/10.1007/s11082-017-1170-9
https://doi.org/10.1007/s11082-017-1170-9
https://doi.org/10.1038/ncomms14380
https://doi.org/10.1038/ncomms14380
https://doi.org/10.1038/ncomms14380
https://doi.org/10.1038/ncomms14380
https://doi.org/10.1103/PhysRev.87.807
https://doi.org/10.1103/PhysRev.87.807
https://doi.org/10.1103/PhysRev.87.807
https://doi.org/10.1103/PhysRev.87.807
https://doi.org/10.1088/1367-2630/8/7/110
https://doi.org/10.1088/1367-2630/8/7/110
https://doi.org/10.1088/1367-2630/8/7/110
https://doi.org/10.1088/1367-2630/8/7/110
https://doi.org/10.1103/PhysRevLett.112.170404
https://doi.org/10.1103/PhysRevLett.112.170404
https://doi.org/10.1103/PhysRevLett.112.170404
https://doi.org/10.1103/PhysRevLett.112.170404
https://doi.org/10.1103/PhysRevA.93.033852
https://doi.org/10.1103/PhysRevA.93.033852
https://doi.org/10.1103/PhysRevA.93.033852
https://doi.org/10.1103/PhysRevA.93.033852
https://doi.org/10.1103/PhysRevA.94.023419
https://doi.org/10.1103/PhysRevA.94.023419
https://doi.org/10.1103/PhysRevA.94.023419
https://doi.org/10.1103/PhysRevA.94.023419
https://doi.org/10.1103/PhysRevA.95.063419
https://doi.org/10.1103/PhysRevA.95.063419
https://doi.org/10.1103/PhysRevA.95.063419
https://doi.org/10.1103/PhysRevA.95.063419
https://doi.org/10.1016/0021-9991(82)90091-2
https://doi.org/10.1016/0021-9991(82)90091-2
https://doi.org/10.1016/0021-9991(82)90091-2
https://doi.org/10.1016/0021-9991(82)90091-2
https://doi.org/10.1364/OE.25.018603
https://doi.org/10.1364/OE.25.018603
https://doi.org/10.1364/OE.25.018603
https://doi.org/10.1364/OE.25.018603



