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Abstract: We investigate the nonlinear supermodes of surface plasmon polaritons in 
graphene multilayers with arbitrary number of graphene layers. Apart from the symmetric and 
anti-symmetric supermodes which exist in linear multilayer graphene waveguides, more 
asymmetric supermodes emerge in the nonlinear counterparts as the field symmetry is broken. 
The number of asymmetric supermodes relies largely on the layer number of graphene. There 
is a certain threshold of field intensity for the emergence of each individual asymmetric 
supermode. The threshold increases as the incident wavelength or chemical potential of 
graphene increases. The study may find applications in building all-optical mode converters 
and switches. 
© 2017 Optical Society of America 
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1. Introduction 
Graphene is a two-dimensional material composed of carbon atoms, which exhibits unique 
electronic and optical characteristics [1–3]. In terahertz and far infrared regime, graphene 
behaves like a metal and can support transverse magnetic (TM) polarized surface plasmon 
polaritons (SPPs) due to the coupling between electrons and electromagnetic waves. 
Graphene SPPs possess many unique features such as huge mode localization, low 
propagation loss, and flexible tunability [4–7]. The previous researches of graphene SPPs 
mainly focus on the linear optical properties of graphene [8, 9]. Recently, the nonlinear 
optical properties of graphene have also attracted much attention [10–13], ranging from self-
action of SPPs in graphene [14], four-wave mixing in graphene flakes [15] to the generation 
of subwavelength spatial solitons in graphene arrays [16]. As a fundamental issue, the 
supermodes considering the nonlinear of graphene have been demonstrated in double-layer 
graphene waveguide, which can find applications in nonlinear optical couplers [17]. The 
supermode refers to the guided modes in composite-array waveguides initially introduced to 
describe the modes in phase-locked arrays of semiconductors lasers [18]. The supermodes in 
graphene multilayers are yielded by the coupling of individual SPP mode in each single 
graphene sheet. It has been demonstrated that the number of linear supermodes in multilayer 
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graphene is equal to that of graphene sheets and the profiles of the supermodes are either 
symmetric or antisymmetric [19]. 

In this work, we investigate the nonlinear supermodes in graphene multilayers with finite 
number of layers. In the presence of Kerr nonlinearity of graphene excited by high light 
intensity, the multilayer structure can support asymmetric supermodes except for the 
symmetric and anti-symmetric ones. The generation condition of the asymmetric supermodes 
is explored by using the first-principle numerical simulations. The total number of nonlinear 
supermodes is related to the layer number of graphene. The dependence of the intensity 
threshold to yield asymmetric supermodes on the wavelength and chemical potential is also 
discussed in detail. 

2. Nonlinear supermodes in graphene multilayers 
We start by discussing the nonlinear optical response of graphene. Compared to conventional 
bulk dielectrics, the optical nonlinearities of which are described by the second- and third-
order nonlinear susceptibilities χ(2) and χ(3), graphene is a two-dimensional conducting 
material. The nonlinear property of graphene can be described by the total surface current J = 
JL + JNL = (σg,L + σg,NL|E|2)E [20], where JL = σgE is the conventional linear surface current 
with σg modeled by Kubo formula [21–23]. JNL = σg,NL|E|2E is the Kerr nonlinear surface 
current with σg,NL being the third-order nonlinear surface conductivity which is given by 
[24,25] 
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where ω is the light frequency and μc the chemical potential. VF = c/300 is the Fermi velocity 
and c is the speed of light. Here we choose λ = 10 μm (ħω = 0.124 eV) and μc = 0.15 eV. 
Since 3ħω/2 > |μc|, the third-harmonic light can induce interband transition, which can be 
neglected here when considering graphene SPPs [26,27]. It should also be mentioned that no 
second-order nonlinear response exists in graphene due to the centrosymmetric nature of the 
structure. 

Taking the graphene optical nonlinearity into account, we stack monolayer graphene sheet 
and dielectric medium alternatively, forming a multilayer structure. The embedded dielectric 
medium is quartz with a relative permittivity of εd = 4 [17]. As shown in Fig. 1, the position 
of graphene is denoted by n with n ∈ [1, N] and N being the total layer number of graphene. 
The interlayer space between graphene is d = 30 nm. Consider the graphene SPPs propagate 
along z direction, the nonlinear supermodes can be described by the following eigen equation 
[28] 
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where k0 and η0 are the vacuum wave number and impedance, respectively. εr(x) denotes the 
local permittivity distribution along x direction. The equivalent permittivity of graphene is 
given by εg = 1 + iσgη0/(k0Δ) [29], with σg being the total surface conductivity. Here graphene 
is treated as an equivalent thin film with a thickness of Δ ≈1 nm. β is the propagation constant 
and (Hy, Ex)

T is the transverse mode profiles of the nonlinear supermodes. 
The nonlinear supermodes can be obtained by numerically solving the eigen equation with 

self-consistent iteration method [30,31]. In order to obtain the nonlinear solutions, we choose 
the mode profiles of the linear supermodes as the initial values in the iteration. The relative 
permittivity is then updated in terms of the solved electromagnetic field distribution of the 
previous step. Repeating the process of solving the electromagnetic field and updating the 
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permittivity, once the difference between two adjacent calculation results of field distribution 
exceeds the accuracy of 10−4, the iteration will be ceased and the stable eigenvalues can be 
obtained [32]. The stable eigenvalues are exactly the propagation constants of the nonlinear 
supermodes and the eigenvectors are the profiles of the supermodes. The electric field 
intensity of SPPs is given by |E|2 = |Ex|

2 + |Ez|
2. The peak value of the intensity reads I0 = 

|E|2max, which is utilized to feature the intensity of the supermodes. 

 

Fig. 1. Schematic of the nonlinear graphene multilayer. The position of graphene is denoted by 
n with n ∈ [1, N] and N is the total number of graphene sheets. The interlayer space is denoted 
by d, σg is the surface conductivity of graphene, and εd is the relative permittivity of quartz 
medium between graphene. 

The propagation constants of the nonlinear supermodes are shown in Fig. 2 as the total 
number of graphene layers N varies. As N increases, more nonlinear supermodes could be 
supported. As N is fixed, one sees that the propagation constants reveal remarkable 
differences for different nonlinear supermodes. Analogous to the linear cases, the mode 
wavelength and propagation length of the nonlinear supermodes are given by λp = 2π/Re(β) 
and Lp = 1/[2Im(β)], respectively [33]. Generally, the mode wavelength of the supermode 
decreases, the propagation length increases accordingly. 

Due to the nonlinearity of graphene, the propagation constants of the supermodes depend 
largely on the field intensity. In Figs. 2(a) and 2(b), we choose a low peak intensity of I0 = 2 
V2/μm2, there are N supermodes in a graphene multilayer with N layers of graphene. The 
index of the supermodes is labeled by s in an ascending order of the real part of the 
propagation constant. The situation is similar to that of linear case [19]. In Figs. 2(c) and 2(d), 
we choose the peak intensity I0 = 40 V2/μm2. It shows that more supermodes emerge 
compared to the case of lower intensity in Figs. 2(a) and 2(b). It should be mentioned that the 
intensity of I0 = 40 V2/μm2 is far lower than the intensity damage threshold of graphene 
[34,35]. As denoted with red crosses in Figs. 2(c) and 2(d), there also exists supermodes 
which are asymmetric. The index of the asymmetric supermodes is labeled by s′ in the order 
of the emergence as the intensity increases. To see clearly the asymmetric supermodes, the 
propagation constants are separated from all modes and shown in Figs. 2(e) and 2(f). 
Generally, in the nonlinear case, the number of asymmetric modes becomes larger as the 
number of graphene layers increases. The propagation constant increases as the layer number 
increases. At the same time, the propagation loss decreases, following the same property of 
the symmetric and anti-symmetric supermodes in the linear case. 
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Fig. 2. Propagation constants of the supermodes for different number of graphene sheets. (a) 
real and (b) imaginary parts of the propagation constants as the peak intensity I0 = 2 V2/μm2. 
(c) real and (d) imaginary parts of the propagation constants as the peak intensity I0 = 40 
V2/μm2. (e) real and (f) imaginary parts of the propagation constants of the asymmetric 
supermodes. The arrows represent the increasing order of the label s or s′. 

The transverse electric field (Ex) distributions of the supermodes in the nonlinear graphene 
multilayer are depicted in Fig. 3 as N = 3 and 4, respectively. The peak intensity of the 
supermode is given by I0 = 40 V2/μm2. There are four and six supermodes in the two 
graphene multilayers, respectively. As N = 3, the first three supermodes (s = 1, 2, 3) have 
explicit symmetric profiles with respect to the geometric center of the graphene multilayer. 
The last supermode (s′ = 1) is asymmetric and is similar to the mode of s = 3, except for 
symmetry breaking. The same features can be found for N = 4. The last two asymmetric 
modes (s′ = 1, 2) are similar to the mode of s = 4. The difference lies in that the maximum 
intensity locates in different layers of graphene. 

The reason for the emergence of asymmetric supermodes can be explained as follows. 
Although the graphene multilayer structure is symmetric, the surface conductivities of 
individual graphene sheets are different when taking into account the nonlinearity of 
graphene. Considering that the light is concentrated in the region with higher permittivity, the 
SPPs in the multilayer structure experience highest intensity at the graphene with largest 
surface conductivity. Note that larger surface conductivity suggests larger equivalent 
permittivity of graphene [29]. As long as the incident field is asymmetric, the asymmetric 
supermodes can thus be excited. The number of asymmetric supermodes can be determined 
with a phenomenological analysis. For a specific asymmetric mode, the peak field intensity 
appears in a specific layer of graphene. Note that the geometric structure is symmetric, there 
exists N/2 asymmetric supermodes as N is even and the value becomes (N − 1)/2 as N is odd. 
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For example, as N = 3 shown in Fig. 3(a), the peak intensity can locate at any graphene sheets 
(n = 1, 2, 3). However, the asymmetric modes with the peak intensity at n = 1 and n = 3 refer 
to the same mode. So there is only one asymmetric supermode. As N = 4 shown in Fig. 3(b), 
the asymmetric modes with the peak intensity at n = 1 and n = 4 (or n = 2 and n = 3) refer to 
the same mode. Thus there exists two asymmetric supermodes. So the multilayer structure 
with N layers of graphene can support in total 3N/2 nonlinear supermodes as N is even and 
(3N−1)/2 supermodes as N is odd. 

 

Fig. 3. Transverse electric field (Ex) distributions of the supermodes for the peak intensity I0 = 
40 V2/μm2. (a) Mode profiles of four supermodes as N = 3. (b) Mode profiles of six 
supermodes as N = 4. The red dashed lines represent the position of graphene. 

3. General properties of supermodes 

 

Fig. 4. Electric field intensity (|E|2) distribution of the supermodes in the nonlinear graphene 
multilayer as N = 4. The field intensity is given by I0 = 40 V2/μm2. 

                                                                                             Vol. 25, No. 2 | 23 Jan 2017 | OPTICS EXPRESS 1239 



We now focus on the propagation of the nonlinear supermodes in the graphene multilayer. As 
a nonlinear eigenmode is injected into the graphene multilayer, the evaluation of the mode 
profile in the waveguide can be demonstrated by taking advantage of the modified split-step 
Fourier beam propagation method [36]. There are six supermodes in the graphene multilayer 
as N = 4. All modes can propagate steadily in the structure with the mode profile remains 
fairly constant except for the propagation loss, as shown in Fig. 4. The linear-like supermodes 
are depicted in Figs. 4(a)-4(d). Most of power is carried in two symmetric layers of graphene. 
In contrast, the power is located at a single layer of graphene for the asymmetric supermodes, 
as illustrated in Figs. 4(e) and 4(f). Exciting the asymmetric supermodes may benefit to 
realizing waveguide routing and all-optical switches. 

 

Fig. 5. (a) and (b) The nonlinear propagation constant β versus the peak intensity I0 in the 
nonlinear graphene multilayers of N = 3 and 4, respectively. 

The propagation constant as a function of the intensity is plotted in Fig. 5. As N = 3, there 
are three supermodes as the intensity is weak. For all supermodes, the propagation constant 
increases as the mode intensity increases. As the intensity approaches to I0 ≈34 V2/μm2, there 
appears the asymmetric supermode of s′ = 1, as shown in Fig. 5(a). It suggests that the 
excitation of the asymmetric supermode requires a threshold of intensity. The figure also 
shows clearly that the asymmetric supermode branches out from the highest linear-like 
supermode (s = 3). The similar process exactly happens for N = 4, as shown in Fig. 5(b). 
There are two asymmetric supermodes (s′ = 1, 2) except for the four linear-like modes and 
they both branch from the mode s = 4. The thresholds of intensity for the two supermodes are 
about I0 = 16 and 36 V2/μm2, respectively. In addition, as long as the intensity reaches the 
required excitation threshold, the number of supermodes will not changes and no new 
asymmetric modes emerge as the intensity further increases. It should be mentioned that the 
intensity considered here is far lower than the damage threshold of graphene [34,35]. 

Figures 6(a) and 6(b) illustrate the influence of incident wavelength and chemical 
potential of graphene on the intensity threshold of the asymmetric supermodes for N = 4. 
Generally, the intensity thresholds of the two asymmetric supermodes (s′ = 1, 2) experience 
the same dependence on the chemical potential and wavelength. The higher asymmetric 
supermode (s′ = 2) shown in Fig. 5(b) has larger threshold and is harder to excite. As the 
chemical potential increases, the threshold increases fast. For instance, the threshold of 
intensity reads I0 = 0.03 V2/μm2 at μc = 0.1 eV and λ = 10 μm for the asymmetric supermode 
of s′ = 2. It increases to I0 = 325 V2/μm2 as the chemical potential is doubled, as illustrated in 
Fig. 6(b). On the other hand, when the chemical potential is fixed, the threshold also increases 
quickly as the incident wavelength increases. For example, the threshold reaches I0 = 873 
V2/μm2 at λ = 16 μm and μc = 0.2 eV for the asymmetric supermode of s′ = 2, which is more 
than twice the threshold at λ = 10 μm. Consequently, the threshold of intensity could also be 
sensitively tuned by varying the incident wavelength and chemical potential of graphene. 
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Fig. 6. (a) and (b) The peak intensity threshold of the asymmetric modes versus different 
wavelength λ and chemical potential μc as N = 4. (a) The threshold Ic for mode of s′ = 1. (b) 
The threshold Ic for mode of s′ = 2. 

Now we discuss the experimental proposals of exciting the nonlinear supermodes. The 
key element here is to fulfill the mode matching condition between the excitation field and 
nonlinear mode profiles. The graphene SPPs can be excited by nanoemitters such as quantum 
dots, molecules lying on graphene illuminated by the pumper laser [37,38]. The required 
mode profiles for the nonlinear supermodes can be obtained by individually controlling the 
amplitudes and relative phases of SPPs in each graphene by adjusting the size and orientation 
of nanoemitters. The required excitation thresholds of the asymmetric supermodes are 
realized by tuning the pump power or the laser spot size. In practice, the laser pump power is 
controlled by applying tunable optical attenuators, and the average laser spot size can be 
tuned by employing objectives with different numerical apertures. 

4. Conclusion 
In conclusion, we have investigated the intensity-dependent propagation constants and mode 
profiles of the supermodes in the nonlinear graphene multilayers. The influence of the number 
of graphene layers is especially concentrated. There are three types of nonlinear supermodes 
which are symmetric, anti-symmetric, and asymmetric. Apart from the N symmetric and anti-
symmetric supermodes in the graphene multilayer with N graphene layers, the numbers of the 
asymmetric supermodes are S = N/2 and (N−1)/2 as N is even and odd, respectively. The 
intensity threshold of asymmetric modes increases sensitively as the incident wavelength or 
chemical potential of graphene increase. The study may find applications in developing all-
optical converters and switches on the deep-subwavelength scale. 

Funding 
973 Program (No. 2014CB921301); National Natural Science Foundation of China (NSFC) 
(Nos. 11304108 and 11674117); Natural Science Foundation of Hubei Province 
(2015CFA040); Specialized Research Fund for the Doctoral Program of Higher Education of 
China (No. 20130142120091). 

                                                                                             Vol. 25, No. 2 | 23 Jan 2017 | OPTICS EXPRESS 1241 




