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We theoretically investigate high-order harmonic generation (HHG) in the chirped inhomogeneous field. The
results show that by using a chirped pulse, the HHG in the inhomogeneous field can be efficiently controlled. The
harmonic cutoffs can be extended. Supercontinua with photon energies ranging from 201 to 263 eV and isolated
attosecond pulses with durations less than 90 as are produced without carrier–envelope phase stabilization.
Furthermore, it is shown that our scheme is robust against the variation of the inhomogeneity of the laser field.
All our results are well explained by the quantum and classical analysis. © 2017 Optical Society of America
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1. INTRODUCTION

High-order harmonic generation (HHG) is an extremely non-
linear optical phenomenon in the strong-field laser–atom inter-
action. It has been used to produce coherent extreme ultraviolet
(EUV) and soft x-ray sources [1,2] as well as generate attosec-
ond pulses [3]. Attosecond pulses have offered a robust tool for
probing and controlling ultrafast electronic dynamics inside
atoms [4–6], molecules [7–13], and solids [14,15]. Many tech-
niques have been developed to generate isolated attosecond
pulses (IAPs), such as few-cycle laser pulses [16,17], the polari-
zation gating technique [18,19], and two-color or multicolor
fields [20–24].

Recently, HHG in the vicinity of nanostructures has at-
tracted much attention. Due to the surface plasmon resonances
within metallic nanostructures, the intensity of the incident
laser field can be enhanced by several orders of magnitude.
The enhanced laser intensity easily exceeds the threshold inten-
sity for HHG in noble gases [25–30]. In the nanogap where
HHG takes place, the enhanced field is spatially inhomo-
geneous. By using such an inhomogeneous field, HHG in
nanostructures shows some novel characteristics [31–37], for
example, the generation of even order harmonics, the extension
of the harmonic cutoff, and the selection of the quantum path.
Furthermore, it has been proposed to generate IAPs with
inhomogeneous fields [31,32]. However, almost all of the pre-
vious works of HHG in inhomogeneous fields are performed
with the chirp-free pulse. In fact, the chirped pulse has been

demonstrated to be an efficient method to modulate HHG
and generate IAPs in homogeneous fields [38].

In this paper, we have extended the chirped pulse to control
HHG in the inhomogeneous field. Based on the quantum and
classical analysis, we show that the HHG in the inhomogeneous
field can be efficiently controlled by using a slightly chirped
pulse. The harmonic cutoffs can be extended. The superconti-
nua from 201 to 263 eV are obtained against the variation of the
carrier–envelope phase (CEP). Then IAPs with durations below
90 as can be created for all the values of CEP from 0 to −π.
Moveover, we have also discussed the influence of the inhomo-
geneity of the laser field on HHG. We show that our scheme
still holds against the variation of the inhomogeneity.

2. THEORETICAL MODEL

In our simulations, we assume that the incident laser is linearly
polarized along the ~x direction, and then the electron dynamics
are mainly confined along the polarization direction. It is reason-
able to model the HHG process by solving the time-dependent
Schrödinger equation in one spatial dimension (1D-TDSE),
which reads (atomic units are used unless stated otherwise)
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Here, V atom�x� � − 1ffiffiffiffiffiffiffiffi
x2�α

p is the soft-core potential. The

soft-core parameter α is chosen to be 0.667 to match the
ground ionization potential of the neon atom, which is
0.7925 a:u: V laser�x; t� � −E�x; t�x is the potential due to
the laser–electron interaction. The inhomogeneous field is
given by

E�x; t� � Et�t��1� εx�; (2)

where x is the position of the electron (x � 0 refers to the
position for the parent ion). The parameter ε determines
the strength of the spatial inhomogeneity of the laser field.
For example, ε � 0.006 means the field intensity varies by
0.6% over 1 a.u. length.

The field Et�t� is described as

Et�t� � E0f �t� cos�ω0t � ϕ0 � δ�t��; (3)

where E0, ω0, and ϕ0 are the amplitude, angular frequency, and
CEP of the laser field, respectively. The pulse envelope is given
by f �t� � exp�−2 ln�2�t2∕τ2�, where τ is the full width at half-
maximum (FWHM) of the electric field. Here, we adopt the
temporal phase δ�t� � bt2 to introduce the linear chirp, where
b is the chirp parameter, which is given by

b � 2 ln 2

τ2τ0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
τ2 − τ20

q
: (4)

Here, τ0 is the Fourier-limited FWHM. In our simulations,
by using the linear chirp with the chirp parameter b �
−0.0271 fs−2, the FWHM of a 800 nm laser pulse is increased
from the Fourier-limited FWHM τ0 of 5 to 8 fs.

We use the split-operator method to solve Eq. (1) [39,40].
To avoid the reflections from the spatial boundaries, at each
time step the electron wave function is multiplied by a mask
function of the form cos1∕8. The neon atom is in the initial state
(ground state) before we turn on the laser. The ground state is
obtained by imaginary time propagation with the soft-core
potential. Once the electron wave function ψ�x; t� is obtained,
the time-dependent dipole acceleration can be calculated by

a�t� � d 2hxi
d t2

� −hψ�x; t�j�H �x; t�; �H �x; t�; x��jψ�x; t�i: (5)

By Fourier transforming the time-dependent dipole acceler-
ation, we can get the harmonic spectrum, which is given by

I q � jaqj2 �
���� 1T

Z
T

0

a�t�exp�−iqwt�dt
����
2

; (6)

where T is the duration of the laser pulse. The attosecond pulse
can be obtained by superposing several orders of harmonics,

I�t� �
����
X

q
aq exp�iqwt�

����
2

: (7)

Here q corresponds to the harmonic order.

3. RESULTS AND DISCUSSION

Figure 1(a) shows the harmonic spectra in the chirp-free inho-
mogeneous field. Here, an 8 fs, 800 nm field with laser inten-
sity I0 � 3.0 × 1014 W∕cm2 is adopted. The inhomogeneity
parameter ε is 0.006. The CEP ϕ0 of the laser pulse is chosen

to be 0 and −π. As shown in this figure, the cutoff of the har-
monic spectrum with ϕ0 � 0 is 263 eV and a 108 eV (from
155 to 263 eV) supercontinuum is obtained near the cutoff.
While for the case of ϕ0 � −π, the harmonic cutoff shrinks
back to 201 eV and discrete harmonics are generated in the
cutoff region. For comparision, we calculate the harmonic spec-
tra in the chirped inhomogeneous field, as shown in Fig. 1(b).
Here, the chirp parameter is chosen to be b � −0.0271 fs−2,
and other parameters are the same as in Fig. 1(a). For the case
of ϕ0 � 0, the harmonic cutoff is 263 eV, which is the same as
that in the chirp-free field. However, the bandwidth of the
supercontinuum decreases to 62 eV (from 201 to 263 eV).
When CEP ϕ0 changes to −π, the harmonic cutoff is extended
to 269 eV and the discrete harmonics in the cutoff region dis-
appear compared with the chirp-free case. Furthermore, a
supercontinuum with a 79 eV (from 190 to 269 eV) bandwidth
is obtained.

To clarify the difference of the harmonic spectra between
the chirp-free and chirped inhomogeneous fields, we next
investigate the classical electron trajectories and the time–
frequency distributions of the harmonic spectra. The classical
electron trajectories are calculated based on the three-step
model [41]. The results in the chirp-free field with ϕ0 of 0
and −π are presented separately in the left and right columns,
respectively, of Fig. 2. For the case of ϕ0 � 0, the harmonics
near the cutoff are dominated by the highest emission peak
(labeled as P1) around 0.25 T 0, as shown in Fig. 2(c). The
classical electron trajectories contributing to the peak P1 are
labeled as R1 in Fig. 2(a). For R1, the electron is ionized around
−0.5T 0 and moves toward the positive-x direction. Since
the electron is accelerated by the electric field E�x; t� �
Et�t��1� εx� whose effective peak amplitude increases with
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Fig. 1. (a) Harmonic spectra of neon atoms driven by an 8 fs,
800 nm chirp-free inhomogeneous field for two different CEP values
of ϕ0 � 0 (the red solid line) and ϕ0 � −π (the green solid line).
(b) Same as (a) but driven by an 8 fs, 800 nm chirped inhomogeneous
field with a negative chirp parameter b � −0.0271 fs−2. In our sim-
ulations, except for the chirp parameter, other parameters are the same
as in Fig. 1(a).
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jxj, the electron gains more energy. The maximum energy of
the peak P1 is 263 eV [Fig. 2(c)], which decides the harmonic
cutoff. Besides, for the peak P1, only the short quantum path
survives [32,33]. The maximum energy of the second highest
emission peak P2 is 155 eV. Then a broadband 108 eV (from
155 to 263 eV) supercontinuum is obtained. While in the case
of ϕ0 � −π in Fig. 2(b), the electron ionized around −0.5T 0

moves toward the negative-x direction. The electron is accel-
erated by the electric field whose effective peak amplitude
decreases with jxj. The corresponding emission peak around
0.25T 0 is greatly suppressed [Fig. 2(d)], which only contrib-
utes to the low-order harmonics. The harmonics near the cutoff
are dominated by the emission peaks P3 around −0.25T 0 and
P4 around 0.75T 0. The corresponding electron trajectories are
labeled as R3 and R4, as shown in Fig. 2(b). For R3 and R4, the
electrons are ionized at about −T 0 and 0, respectively, and
move toward the positive-x direction. The largest excursion dis-
tances of the electrons are close for R3 and R4. Then the maxi-
mum energies of the peaks P3 and P4 are almost the same. The
interference of the peaks P3 and P4 contributes to the discrete
harmonics in the cutoff region [see the green line in Fig. 1(a)].
Moreover, in Fig. 2(b), the electrons of R3 and R4 are acceler-
ated by the second strongest peak of the electric field. For the
case of ϕ0 � 0, the electron of R1 is accelerated by the strongest
one [see Fig. 2(a)]. Therefore, the maximum energy of the cor-
responding emission peaks P3 and P4 are smaller than that of
the peak P1. That is why the harmonic cutoff is suppressed in
the case of ϕ0 � −π [see Fig. 1(a)].

Figure 3 shows the classical electron trajectories and the
time–frequency distributions of the harmonic spectra in the
chirped inhomogeneous field for the case of ϕ0 � 0 (the left
column) and ϕ0 � −π (the right column). In the case of
ϕ0 � 0, the harmonics near the cutoff are dominated by the
highest emission peak P 0

1 around 0.25 T 0 in Fig. 3(c). For
P 0
1, the electron is ionized at about −0.5 T 0 and moves toward

the positive-x direction [see R 0
1 in Fig. 3(a)]. This is similar to

the chirp-free case with ϕ0 of 0. However, different from the
chirp-free case, the second highest emission peak P 0

2 shown in
Fig. 3(c) is extended to 201 eV. This is because in the trailing

edge of the negatively chirped laser pulse, the effective wave-
length is longer than that in the chirp-free case.

The electron corresponding to the peak P 0
2 is accelerated

further away from the parent ion [see R 0
2 in Fig. 3(a)] and gains

more energy. As a consequence, the energy difference between
the peaks P 0

1 and P
0
2 is smaller and the bandwidth of the super-

continuum with ϕ0 � 0 is shortened. In the case of ϕ0 � −π
[Fig. 3(d)], the emission peak P 0

4, of which the electron is
accelerated in the trailing edge of the laser pulse [see R 0

4 in
Fig. 3(b)], is extended to 269 eV. The emission peak P 0

3 is sup-
pressed to 190 eV compared to the peak P3 [see Fig. 2(d)] due
to the electron acceleration in the leading edge of the laser pulse
[see R 0

3 in Fig. 3(b)]. Therefore, a 79 eV supercontinuum is
obtained in the case of ϕ0 � −π.

In Fig. 4, we discuss the influence of the inhomogeneity on
HHG in the chirped inhomogeneous field. Here, the inhomo-
geneity parameter ε is chosen to be 0.003, 0.005, and 0.007.
Other parameters are the same as in Fig. 1(b). As can be seen
from Fig. 4, the cutoff extension and supercontinuum gener-
ation are robust against the variation of the inhomogeneity of
the laser field. Note that we also investigate HHG in the
chirped inhomogeneous field with a positive chirp parameter
b � 0.0271 fs−2. In this case, the cutoff extension and super-
continuum generation still hold. It should be mentioned that
when considering the collective effect of HHG from atoms in-
jected into the gap of the bow-tie array, the supercontinuum
near the cutoff is mainly from the contribution of the harmonic
emissions driven by the laser field with the largest field
inhomogeneity.

In the following, we investigate the CEP dependence of the
generated harmonic spectrum with the chirped inhomogeneous
field in Fig. 5(b). For comparison, the result with the chirp-free
inhomogeneous field is also plotted in Fig. 5(a). In our simu-
lations, the CEP ϕ0 of the 800 nm pulse changes from 0 to −π,
and the other parameters are the same as in Figs. 1(a) and 1(b),
respectively. As shown in Fig. 5(a), the spectral profiles present
a clear CEP dependence in the chirp-free case. The harmonic
cutoffs decrease from 263 to 201 eV and the generated
supercontinua are gradually suppressed when ϕ0 changes from

Fig. 2. (a), (c) Classical electron trajectories and time–frequency dis-
tribution in the 8 fs, 800 nm chirp-free inhomogeneous field for the
case of ϕ0 � 0. The electric field is inset in (a) (the red solid line).
(b), (d) The same as (a) and (c) but for the case of ϕ0 � −π. In
our simulations, the parameters are the same as in Fig. 1(a).

Fig. 3. (a), (c) Classical electron trajectories and time–frequency dis-
tribution in the 8 fs, 800 nm chirped inhomogeneous field with a
negative chirp parameter b � −0.0271 fs−2 for the case of ϕ0 � 0.
The electric field is inset in (a) (the red solid line). (b), (d) The same
as (a) and (c) but for the case of ϕ0 � −π. In our simulations, the
parameters are the same as in Fig. 1(b).
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0 to −π. However, for the case of the chirped field in Fig. 5(b),
the harmonic spectra are less sensitive to CEP. The harmonic
cutoffs are almost maintained at 263 eV as ϕ0 varies from 0 to
−π. Supercontinua with photon energies ranging from 201 to
263 eV are obtained against the variation of CEP. It should be
stressed that in our simulations, when we use a pulse with a
small chirp, a big inhomogeneity parameter should be chosen
to keep the CEP independence of the generated harmonic
spectrum. On the contrary, for a pulse with a big chirp, the
CEP independence of the generated harmonic spectrum can
hold with a small inhomogeneity parameter.

Finally, by superposing the broadband supercontinuum
from 201 to 248 eV, the CEP-dependent IAP with a chirped
inhomogeneous field is presented in Fig. 6(a). One can see that
IAPs can be obtained for all the values of CEP from 0 to −π. For
a clear insight, we show the temporal profiles of IAPs with
ϕ0 � 0, −0.25π, −0.5π, π, and −π in Fig. 6(b). It is shown
that the durations of IAPs are all below 90 as. It is noted that
we also investigate the CEP-dependent IAP in the chirp-free
inhomogeneous field by superposing the harmonics from
186 to 232 eV. In this case, IAPs can only be obtained in
the range of CEP from 0 to −0.8π. Moreover, due to the gradu-
ally suppressed supercontinua, as shown in Fig. 5(a), the
durations of IAPs are gradually increased to 130 as when
the CEP ϕ0 changes from 0 to −0.8π.

4. CONCLUSION

In conclusion, HHG in the chirped inhomogeneous field has
been investigated. Based on the quantum and classical analysis,
we demonstrate that HHG in the inhomogeneous field can be
efficiently controlled by using a chirped pulse. The harmonic
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Fig. 4. Harmonic spectra in the chirped inhomogeneous field for
the cases ϕ0 � 0 (the red solid line) and ϕ0 � −π (the green dotted
line) with different inhomogeneity parameters: (a) ε � 0.003,
(b) ε � 0.005, and (c) ε � 0.007. In our simulations, except for
the inhomogeneity parameter, other parameters are the same as in
Fig. 1(b).

Fig. 5. (a), (b) CEP dependence of the generated harmonic spec-
trum in the chirped-free and chirped inhomogeneous fields. In our
simulations, except for CEP, other parameters are the same as in
Figs. 1(a) and 1(b), respectively. The color bar shows the harmonic
spectrum in a logarithmic scale.

Fig. 6. (a) CEP dependence of IAP generated by synthesizing the
harmonics from 201 to 248 eV. (b) Temporal profiles of the IAPs with
different CEPs (0, −0.25π, −0.5π, −0.75π, and −π). In our simula-
tions, except for CEP, other parameters are the same as in Fig. 1(b).
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cutoffs can be extended. As CEP varies from 0 to −π, the har-
monic cutoffs are almost maintained at 263 eV and supercon-
tinua ranging from 201 to 263 eV can be generated. Such
supercontinua support the generation of IAPs with durations
as short as 90 as. By investigating the influence of the inhomo-
geneity on HHG, we show our scheme still holds against the
variation of the inhomogeneity of the laser field. It is helpful to
relax the requirement of CEP stabilization of the laser for the
generation of IAPs.
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