Control of high-order harmonic generation with chirped inhomogeneous fields

HUA YUAN,1 FANG LI,2,* AND HUA LONG1,3

1School of Physics and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
2Laboratory of Optical Information Technology, Wuhan Institute of Technology, Wuhan 430205, China
3e-mail: longhua@hust.edu.cn

*Corresponding author: lifang_wit@hotmail.com

Received 8 August 2017; revised 25 September 2017; accepted 26 September 2017; posted 28 September 2017 (Doc. ID 304310); published 19 October 2017

We theoretically investigate high-order harmonic generation (HHG) in the chirped inhomogeneous field. The results show that by using a chirped pulse, the HHG in the inhomogeneous field can be efficiently controlled. The harmonic cutoffs can be extended. Supercontinua with photon energies ranging from 201 to 263 eV and isolated attosecond pulses with durations less than 90 as are produced without carrier-envelope phase stabilization. Furthermore, it is shown that our scheme is robust against the variation of the inhomogeneity of the laser field. All our results are well explained by the quantum and classical analysis.

© 2017 Optical Society of America

OCIS codes: (190.7110) Ultrafast nonlinear optics; (190.4160) Multiharmonic generation; (190.2620) Harmonic generation and mixing.

https://doi.org/10.1364/JOSAB.34.002390

1. INTRODUCTION

High-order harmonic generation (HHG) is an extremely nonlinear optical phenomenon in the strong-field laser–atom interaction. It has been used to produce coherent extreme ultraviolet (EUV) and soft x-ray sources [1,2] as well as generate attosecond pulses [3]. Attosecond pulses have offered a robust tool for probing and controlling ultrafast electronic dynamics inside atoms [4–6], molecules [7–13], and solids [14,15]. Many techniques have been developed to generate isolated attosecond pulses (IAPs), such as few-cycle laser pulses [16,17], the polarization gating technique [18,19], and two-color or multicolor fields [20–24].

Recently, HHG in the vicinity of nanostructures has attracted much attention. Due to the surface plasmon resonances within metallic nanostructures, the intensity of the incident laser field can be enhanced by several orders of magnitude. The enhanced laser intensity easily exceeds the threshold intensity for HHG in noble gases [25–30]. In the nanogap where HHG takes place, the enhanced field is spatially inhomogeneous. By using such an inhomogeneous field, HHG in nanostructures shows some novel characteristics [31–37], for example, the generation of even order harmonics, the extension of the harmonic cutoff, and the selection of the quantum path. Furthermore, it has been proposed to generate IAPs with inhomogeneous fields [31,32]. However, almost all of the previous works of HHG in inhomogeneous fields are performed with the chirp-free pulse. In fact, the chirped pulse has been demonstrated to be an efficient method to modulate HHG and generate IAPs in homogeneous fields [38].

In this paper, we have extended the chirped pulse to control HHG in the inhomogeneous field. Based on the quantum and classical analysis, we show that the HHG in the inhomogeneous field can be efficiently controlled by using a slightly chirped pulse. The harmonic cutoffs can be extended. The supercontinua from 201 to 263 eV are obtained against the variation of the carrier-envelope phase (CEP). Then IAPs with durations below 90 as can be created for all the values of CEP from 0 to $-\pi$.

Moreover, we have also discussed the influence of the inhomogeneity of the laser field on HHG. We show that our scheme still holds against the variation of the inhomogeneity.

2. THEORETICAL MODEL

In our simulations, we assume that the incident laser is linearly polarized along the \hat{x} direction, and then the electron dynamics are mainly confined along the polarization direction. It is reasonable to model the HHG process by solving the time-dependent Schrödinger equation in one spatial dimension (1D-TDSE), which reads (atomic units are used unless stated otherwise)

$$i \frac{\partial \psi(x, t)}{\partial t} = H(x, t)\psi(x, t)$$

$$= \left[-\frac{1}{2} \frac{\partial^2}{\partial x^2} + V_{\text{atom}}(x) + V_{\text{laser}}(x, t)\right]\psi(x, t).$$

(1)
Here, \(V_{\text{atom}}(x) = -\frac{1}{\sqrt{x^2 + \alpha}} \) is the soft-core potential. The soft-core parameter \(\alpha \) is chosen to be 0.667 to match the ground ionization potential of the neon atom, which is 0.7925 a.u. \(V_{\text{laser}}(x, t) = -E(x, t)x \) is the potential due to the laser–electron interaction. The inhomogeneous field is given by

\[
E(x, t) = E_s(t)(1 + \varepsilon x),
\]

where \(x \) is the position of the electron (\(x = 0 \) refers to the position for the parent ion). The parameter \(\varepsilon \) determines the strength of the spatial inhomogeneity of the laser field. For example, \(\varepsilon = 0.006 \) means the field intensity varies by 0.6% over 1 a.u. length.

The field \(E_s(t) \) is described as

\[
E_s(t) = E_0 f(t) \cos[o_0 t + \phi_0 + \delta(t)],
\]

where \(E_0, o_0, \) and \(\phi_0 \) are the amplitude, angular frequency, and CEP of the laser field, respectively. The pulse envelope is given by \(f(t) = \exp[-2 \ln(2)t^2/\tau^2] \) where \(\tau \) is the full width at half-maximum (FWHM) of the electric field. Here, we adopt the temporal phase \(\delta(t) = bt^2 \) to introduce the linear chirp, where \(b \) is the chirp parameter, which is given by

\[
b = \frac{2 \ln 2}{\tau^2 \tau_0} \sqrt{\tau^2 - \tau_0^2}.
\]

Here, \(\tau_0 \) is the Fourier-limited FWHM. In our simulations, by using the linear chirp with the chirp parameter \(b = -0.0271 \) fs\(^{-2}\), the FWHM of a 800 nm laser pulse is increased from the Fourier-limited FWHM \(\tau_0 \) of 5 to 8 fs.

We use the split-operator method to solve Eq. (1) [39,40]. To avoid the reflections from the spatial boundaries, at each time step the electron wave function is multiplied by a mask function of the form \(\cos^{3/8} \). The neon atom is in the initial state (ground state) before we turn on the laser. The ground state is obtained by imaginary time propagation with the soft-core potential. Once the electron wave function \(\psi(x, t) \) is obtained, the time-dependent dipole acceleration can be calculated by

\[
a(t) = \frac{d^2\langle x \rangle}{dt^2} = -(\psi(x, t)[H(x, t), [H(x, t), x]]\psi(x, t)).
\]

By Fourier transforming the time-dependent dipole acceleration, we can get the harmonic spectrum, which is given by

\[
I_q = |a_q|^2 = \left| \frac{1}{T} \int_0^T a(t) \exp(-iqt) \, dt \right|^2,
\]

where \(T \) is the duration of the laser pulse. The attosecond pulse can be obtained by superposing several orders of harmonics,

\[
I(t) = \sum_q |a_q \exp(iqt)|^2.
\]

Here \(q \) corresponds to the harmonic order.

3. RESULTS AND DISCUSSION

Figure 1(a) shows the harmonic spectra in the chirp-free inhomogeneous field. Here, an 8 fs, 800 nm field with laser intensity \(I_0 = 3.0 \times 10^{14} \) W/cm\(^2\) is adopted. The inhomogeneity parameter \(\varepsilon \) is 0.006. The CEP \(\phi_0 \) of the laser pulse is chosen to be 0 and \(-\pi\). As shown in this figure, the cutoff of the harmonic spectrum with \(\phi_0 = 0 \) is 263 eV and a 108 eV (from 155 to 263 eV) supercontinuum is obtained near the cutoff. While for the case of \(\phi_0 = -\pi \), the harmonic cutoff shrinks back to 201 eV and discrete harmonics are generated in the cutoff region. For comparison, we calculate the harmonic spectra in the chirped inhomogeneous field, as shown in Fig. 1(b). Here, the chirp parameter is chosen to be \(b = -0.0271 \) fs\(^{-2}\), and other parameters are the same as in Fig. 1(a). For the case of \(\phi_0 = 0 \), the harmonic cutoff is 263 eV, which is the same as that in the chirp-free field. However, the bandwidth of the supercontinuum decreases to 62 eV (from 201 to 263 eV). When CEP \(\phi_0 \) changes to \(-\pi\), the harmonic cutoff is extended to 269 eV and the discrete harmonics in the cutoff region disappear compared with the chirp-free case. Furthermore, a supercontinuum with a 79 eV (from 190 to 269 eV) bandwidth is obtained.

To clarify the difference of the harmonic spectra between the chirp-free and chirped inhomogeneous fields, we next investigate the classical electron trajectories and the time–frequency distributions of the harmonic spectra. The classical electron trajectories are calculated based on the three-step model [41]. The results in the chirp-free field with \(\phi_0 \) of 0 and \(-\pi\) are presented separately in the left and right columns, respectively, of Fig. 2. For the case of \(\phi_0 = 0 \), the harmonics near the cutoff are dominated by the highest emission peak (labeled as \(P_1 \)) around 0.25 \(T_0 \), as shown in Fig. 2(b). The classical electron trajectories contributing to the peak \(P_1 \) are labeled as \(R_1 \) in Fig. 2(a). For \(R_1 \), the electron is ionized around \(-0.5T_0 \) and moves toward the positive-x direction. Since the electron is accelerated by the electric field \(E(x, t) = E_s(t)(1 + \varepsilon x) \) whose effective peak amplitude increases with

![Figure 1](image-url)
The electron corresponding to the peak P_1 is accelerated further away from the parent ion [see R_3 in Fig. 3(a)] and gains more energy. As a consequence, the energy difference between the peaks P'_1 and P'_2 is smaller and the bandwidth of the supercontinuum with $\phi_0 = 0$ is shortened. In the case of $\phi_0 = -\pi$ [Fig. 3(d)], the emission peak P'_4, of which the electron is accelerated in the trailing edge of the laser pulse [see R'_4 in Fig. 3(b)], is extended to 269 eV. The emission peak P'_4 is suppressed to 190 eV compared to the peak P_4 [see Fig. 2(d)] due to the electron acceleration in the leading edge of the laser pulse [see R'_4 in Fig. 3(b)]. Therefore, a 79 eV supercontinuum is obtained in the case of $\phi_0 = -\pi$.

In Fig. 4, we discuss the influence of the inhomogeneity on HHG in the chirped inhomogeneous field. Here, the inhomogeneity parameter ϵ is chosen to be 0.003, 0.005, and 0.007. Other parameters are the same as in Fig. 1(b). As can be seen from Fig. 4, the cutoff extension and supercontinuum generation are robust against the variation of the inhomogeneity of the laser field. Note that we also investigate HHG in the chirped inhomogeneous field with a positive chirp parameter $b = 0.0271 \text{ fs}^{-2}$. In this case, the cutoff extension and supercontinuum generation still hold. It should be mentioned that when considering the collective effect of HHG from atoms injected into the gap of the bow-tie array, the supercontinuum near the cutoff is mainly from the contribution of the harmonic emissions driven by the laser field with the largest field inhomogeneity.

In the following, we investigate the CEP dependence of the generated harmonic spectrum with the chirped inhomogeneous field in Fig. 5(b). For comparison, the result with the chirp-free inhomogeneous field is also plotted in Fig. 5(a). In our simulations, the CEP ϕ_0 of the 800 nm pulse changes from 0 to $-\pi$, and the other parameters are the same as in Figs. 1(a) and 1(b), respectively. As shown in Fig. 5(a), the spectral profiles present a clear CEP dependence in the chirp-free case. The harmonic cutoffs decrease from 263 to 201 eV and the generated supercontinua are gradually suppressed when ϕ_0 changes from 0 to $-\pi$.
However, for the case of the chirped field in Fig. 5(b), the harmonic spectra are less sensitive to CEP. The harmonic cutoffs are almost maintained at 263 eV as ϕ_0 varies from 0 to $-\pi$. Supercontinua with photon energies ranging from 201 to 263 eV are obtained against the variation of CEP. It should be stressed that in our simulations, when we use a pulse with a small chirp, a big inhomogeneity parameter should be chosen to keep the CEP independence of the generated harmonic spectrum. On the contrary, for a pulse with a big chirp, the CEP independence of the generated harmonic spectrum can hold with a small inhomogeneity parameter.

Finally, by superposing the broadband supercontinuum from 201 to 248 eV, the CEP-dependent IAP with a chirped inhomogeneous field is presented in Fig. 6(a). One can see that IAPs can be obtained for all the values of CEP from 0 to $-\pi$. For a clear insight, we show the temporal profiles of IAPs with $\phi_0 = 0$, -0.25π, -0.5π, -0.75π, and $-\pi$ in Fig. 6(b). It is shown that the durations of IAPs are all below 90 as. It is noted that we also investigate the CEP-dependent IAP in the chirp-free inhomogeneous field by superposing the harmonics from 186 to 232 eV. In this case, IAPs can only be obtained in the range of CEP from 0 to -0.8π. Moreover, due to the gradually suppressed supercontinua, as shown in Fig. 5(a), the durations of IAPs are gradually increased to 130 as when the CEP ϕ_0 changes from 0 to -0.8π.

4. CONCLUSION

In conclusion, HHG in the chirped inhomogeneous field has been investigated. Based on the quantum and classical analysis, we demonstrate that HHG in the inhomogeneous field can be efficiently controlled by using a chirped pulse. The harmonic
cutoffs can be extended. As CEP varies from 0 to $-\pi$, the harmonic cutoffs are almost maintained at 263 eV and supercontinua ranging from 201 to 263 eV can be generated. Such supercontinua support the generation of IAPs with durations as short as 90 as. By investigating the influence of the inhomogeneity of the laser field, it is helpful to relax the requirement of CEP stabilization of the laser for the generation of IAPs.

Funding. National Natural Science Foundation of China (NSFC) (11234004, 11404123, 11422435, 11574101, 11627809).

Acknowledgment. Numerical simulations presented in this paper were carried out using the High Performance Computing experimental testbed in SCTS/CGCL.

REFERENCES

