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12 ABSTRACT: Here we study the Jahn−Teller (JT) effect on framework flexibility of two
13 analogous hybrid organic−inorganic perovskites, [C(NH2)3][Zn(HCOO)3] (1-Zn) and
14 [C(NH2)3][Cu(HCOO)3] (2-Cu). Single-crystal nanoindentation measurements show
15 that the elastic moduli and hardnesses of 1-Zn are up to ∼52.0% and ∼25.0% greater than
16 those of the JT active 2-Cu. Temperature-dependent X-ray diffraction measurements
17 indicate that the thermal expansion along the b-axis is switched from negative to positive by
18 replacing Zn2+ with Cu2+ on the B-site. These stark distinctions in framework flexibility are
19 primarily attributed to the ∼10.0% elongation of Cu−O bonds induced by the JT effect
20 and associated alterations in octahedral tilting and hydrogen-bonding. Our results
21 demonstrate the prominence of the JT effect in the emerging hybrid perovskites and
22 highlight the possibilities of tuning materials’ properties using orbital order.

23 The JT effect arises from the fact that degenerate electronic
24 states can undergo a lowered energy of their ground state
25 by lifting this degeneracy via a geometrical distortion.1 This
26 orbital order with a quadrupolar nature has far-reaching
27 consequences in modern chemistry and physics of perovskite
28 materials because the emergence of JT active transition metal
29 ions (e.g., Cu2+, Cr2+) on the B-site significantly complicates the
30 electronic nature of the structure.2 Such JT coupling triggers
31 low-symmetry MX6 octahedral distortions which are respon-
32 sible for many intriguing properties in perovskite oxides. For
33 example, the discovery of high-temperature superconductivity
34 in cuprates is largely related to the electron pairing via the JT
35 polaron formation.3 Likewise, the origin of colossal magneto-
36 resistance in manganites involves the JT distortion-induced
37 lattice-polaronic effects.4

38 Recently, the significance of JT effect has been increasingly
39 noted by researchers in the emerging field of hybrid organic−
40 inorganic perovskites (HOIPs).5−10 Compared with compact
41 conventional ABO3 perovskites, the presence of organic
42 components in HOIPs enables the JT distortion to influence
43 the perovskite structure and corresponding physical properties
44 via hydrogen bonding and other dispersion forces.11−13 For
45 example, in [Gua][Cu(HCOO)3] (Gua = C(NH2)3

+), the
46 coupling of the JT effect and the A-site organic Gua cation via
47 hydrogen bonding induces the occurrence of a new type of

48hybrid improper ferroelectricity which is not possible in
49conventional perovskites.5

50More interestingly, further theoretical studies about another
51JT active analogue, [Gua][Cr(HCOO)3], reveal the hybrid-
52ization of the JT distortion of Cr2+, and the rotational modes of
53the Gua cation can also induce such improper ferroelectric
54ordering.8 A very recent experimental work echoes the
55aforementioned significance of the JT effect in creating new
56functionalities by showing the facile control from an orbital
57order−disorder to a multipolar reorientation transition through
58simply varying the metal composition of [Gua][CuxCd1−x
59(HCOO)3].

10 Motivated by these unprecedented discoveries,
60exploiting the JT effect in HOIPs is particularly meaningful and
61could provide new avenues for creating novel functionalities
62that traditional JT active perovskites cannot endow.14

63Here we study the JT effect on the framework rigidity and
64thermal expansion of [Gua][Zn(HCOO)3] (1-Zn) by compar-
65ison with the JT active analogue [Gua][Cu(HCOO)3] (2-Cu).
66Both 1-Zn and 2-Cu crystallize in the orthorhombic system
67with comparable lattice parameters (Pnna, a = 8.3493(3) Å, b =
688.9089(4) Å, and c = 11.7276(5) Å for 1-Zn; Pna21, a =
698.5212(3) Å, b = 9.0321(3) Å, and c = 11.3497(4) Å for 2-
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70 Cu).15 In their perovskite-like structures, the A-, B-, and X-sites
f1 71 are Gua, Cu2+/Zn2+, and HCOO−, respectively (Figure 1a,b).

72 In addition, eEach [C(NH2)3
+] cation forms six N−H···O

73 hydrogen bonds with the pseudocubic framework unit in both
74 compounds. Though the atomic radii of Zn2+ and Cu2+ are
75 almost identical (0.74 Å vs 0.73 Å), their coordination bond
76 distances are significantly different. In 1-Zn, the ZnO6
77 octahedra exhibit a trivially distorted coordination geometry
78 with Zn−O bond lengths ranging from 2.086 to 2.127 Å.
79 However, two Cu−O bonds are significantly elongated to 2.360
80 and 2.383 Å, and the other four are compressed to 1.852−2.000
81 Å in the CuO6 octahedra of 2-Cu (Figure 1c,d). Although the
82 CuO6 octahedron deforms considerably, the magnitudes of O−
83 Cu−O angles (82.26−105.87° and 168.34−179.25°) are
84 comparable to the corresponding O−Zn−O angles (82.27−
85 105.53° and 167.2−178.85°). Interestingly, the adjacent JT axes
86 of CuO6 octahedra within the ab-plane are arranged
87 alternatively orthogonal along [110] and [1̅10], leading to an
88 anisotropic packing fashion compared with that in 1-Zn.
89 We first examine the JT effect on elastic modulus (E) and
90 hardness (H) properties. Nanoindentation measurements were
91 performed on selected 1-Zn and 2-Cu single crystals using a
92 three-sided pyramidal Berkovich tip in the quasi-static
93 mode,16−19 where the indenter was along the orientations of
94 the principal axes [normal to (1̅1 ̅0), (110), and (1̅10)], face
95 diagonals [normal to (1 ̅1̅1 ̅) and (1̅11)], and body diagonal
96 [normal to (011)] of the pseudocubic perovskite unit cell
97 (Figures S1 and S2), respectively. Representative load−
98 indentation depth (P−h) curves obtained on relevant crystal

f2 99 faces of both HOIPs are displayed in Figure 2a (full data are
100 shown in Figures S3 and S4). Clearly, faces of 2-Cu crystals
101 were indented to much greater depths compared to those of 1-

102Zn crystals at the same load, indicating its less framework
103rigidity.20,21 The average values of the E and H normal to
104relevant crystal faces of 1-Zn and 2-Cu are shown in Figure 2b,c
105and Table S1.22 Strikingly, the E values of 1-Zn are up to
106∼38.0%, 52.0%, and 49.0% greater than those of 2-Cu along the
107axial, face-diagonal, and body-diagonal directions, respectively.
108The H values show a similar trend, though the discrepancies are
109reduced to ∼25.0%, 13.0%, and 21.0%, respectively.
110To understand the origin of the marked difference in E and
111H between these two HOIPs, we examine their underlying
112molecular structures. As the O−Zn−O and O−Cu−O angles
113show only less than 1.0% difference, the bond angles do not
114lead to any significant influences in framework robustness.15 In
115this regard, the substantial difference in mechanical strengths
116between 1-Zn and 2-Cu primarily arises from the 10.0%
117elongation of Cu−O bond lengths due to the strong JT
118distortions. As expected, the stretched Cu−O bonds can be
119more easily deformed under indentation stress compared with
120the nondistorted Zn−O bonds; thus, 2-Cu is significantly more
121compliant than 1-Zn. Interestingly, the least difference in E
122between 1-Zn and 2-Cu occurs from the axial direction, while
123their face- and body-diagonal directions show larger modulus
124differences. As seen in Figures S1 and S2, half and all JT axes in
125the pseudo cubic unit cell of 2-Cu are deformed when being
126indented axially and diagonally, respectively. The former
127indentation situation involves less compliant CuO6 octahedra
128than the later, hence resulting in lower rigidity contrasts along
129axial orientations than diagonal directions. In terms of hardness
130properties, the lower resistance of 2-Cu toward plastic
131deformation also mainly arises from the drastic elongation of
132the Cu−O bonds due to the JT distortion. The vulnerable Cu−
133O bonds are more sensitive to external stress, which could
134generate more ruptures and facilitate the formation of more
135dislocations and slippages, hence giving rise to much lower H
136values compared with the zinc counterpart.23

137Moreover, we investigate the thermally induced framework
138flexibility of 1-Zn and 2-Cu in the range of 120−300 K via
139temperature-dependent single-crystal X-ray diffraction
140(SCXRD). As shown in Table S2, no phase transitions are
141observed in both HOIPs in the measured temperature range.
142Upon heating, both 1-Zn and 2-Cu expand linearly along the a
143and c axes with thermal expansion coefficients αa(1‑Zn) = 39.8(3)
144and αc(1‑Zn) = 26.6(5) MK−1, and αa(2‑Cu) = 51.8(5) and αc(2‑Cu)=
14525.7(5) MK−1, respectively (Figures S5).24−26 Strikingly, 1-Zn
146exhibits negative thermal expansion (NTE) along the b-axis
147with αb(1‑Zn) = −5.2(5) MK−1, while 2-Cu shows positive
148thermal expansion (PTE) along corresponding direction
149 f3αb(2‑Cu) = 3.2(7) MK−1 (Figure 3a). Such an interesting
150positive-to-negative switch is primarily attributed to the distinct
151hydrogen-bonding modes in these two HOIPs. To elucidate the
152NTE mechanism in 1-Zn, we decompose the six hydrogen
153bonds within a pseudocubic unit cell along three orthogonal
154axes. As seen in Table S3, the total projections of hydrogen-
155bonding (N−H···O distance) along the b-axis is ∼50% larger
156than that along a,27 which consequently leads to significantly
157higher constraints of the pseudocubic unit cell along b- than a-
158axis upon thermal perturbation. In this regard, the a-axis
159expands so rapidly that the b-axis has to shrink upon heating as
160illustrated using the “hinge-strut” model in Figure 3b.28

161However, the situation in 2-Cu is different because of the
162lattice distortion induced by the JT effect. Though the total
163projections of hydrogen-bonding along a- and b-axis in 2-Cu
164are reminiscent of those in 1-Zn, the hydrogen-bonding angle

Figure 1. Framework structures of [Gua][Zn(HCOO)3] (1-Zn) (a)
and [Gua][Cu(HCOO)3] (2-Cu) (b); the coordination environments
of Zn2+ and Cu2+ ions in 1-Zn (c) and 2-Cu (d). Color scheme: Zn2+,
turquoise; Cu2+, green; N, blue; O, red; C, black; H, gray. The N−H···
O bonds are presented as dashed lines, and the two thicker dashed
lines in panel b highlight the elongated H···O bonds induced by the JT
effect in 2-Cu.
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165changes dramatically. As seen in Tables S4, the bond angles of
166N1−H1A···O6 and N1−H1B···O4 in 2-Cu are ∼9° and ∼2°
167larger than the corresponding N1−H1A···O1 angle in 1-Zn,
168which lead to ∼0.20 and ∼0.08 Å longer H1A···O6 and H1B···
169O4 bond lengths. These stretched H-bonds significantly
170weaken the linking strengths between the Gua and framework
171along the b-axis in 2-Cu, thus giving rise to large enough
172thermal expansivity which cannot be compensated by the a-axis
173expansion upon heating. Such a cooperative process, coupled
174with octahedral tilting, lead to an opposite “hinge-strut” motion
175(Figure 3c) compared with the scenario 1-Zn; hence, PTE
176occurs along the b-axis in 2-Cu. Additional structural data are
177detailed in Figures S6 and S7 and Table S5.
178As the hydrogen-bonding constraints in 2-Cu are weaker
179than those in 1-Zn, its framework vibration is expected to be
180larger than that of 1-Zn.22 This is confirmed by the equivalent
181isotropic atomic displacement parameters (Uiso) of the B-site
182metal ions extracted from temperature-dependent SCXRD,
183where the Uiso of Cu atoms are ∼50% larger than those of Zn
184 f4atoms in the whole measured temperature range (Figure 4),
185indicating the average positions of Cu atoms in 2-Cu are less
186localized upon heating.
187We also performed high-pressure powder X-ray diffraction
188measurements to compare the hydrostatic behavior between 1-
189Zn and 2-Cu (Figures S8−S10 and Table S6). Our results
190reveal the 1-Zn and 2-Cu exhibit pressure-induced phase
191transitions at about 1.82−2.87 and 0.66−0.82 GPa, respectively,
192demonstrating 2-Cu is less robust than 1-Zn under hydrostatic
193conditions (Figure S8). The unit cell volume (V) versus

Figure 2. (a) Representative load−indentation depth (P−h) curves, obtained normal to the axial, face-diagonal, and body-diagonal direction oriented
facets of 1-Zn and 2-Cu crystals; extracted experimental data of (b) E and (c) H. The error bars are smaller than experimental data points (the lines
drawn between data points give a guide to the eye).

Figure 3. Thermal expansion behavior of frameworks 1-Zn and 2-Cu.
(a) Relative changes of b-axis lengths of 1-Zn and 2-Cu as a function of
temperature (T); (b, c) “hinge-strut” models of 1-Zn and 2-Cu at low
(solid lines) and high temperature (dashed lines), where the black
dotted lines represent the summed hydrogen-bonding along the a- and
b-axis and the thickness of the lines indicates their strengths.
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194 pressure (P) data prior to phase transitions (0−1.82 GPa for 1-
195 Zn, 0−0.66 GPa for 2-Cu) were fit with the second-order
196 Birch−Murnaghan equations of state using the PASCal
197 software,24 and the isothermal bulk moduli (B) of 2-Cu is
198 25.6(29) GPa, which is smaller than the 30.3(28) GPa of 1-Zn,
199 further indicating the higher framework flexibility of 2-Cu over
200 1-Zn.
201 In summary, we have investigated the JT effect on the
202 framework flexibility of two analogous hybrid perovskites 1-Zn
203 and 2-Cu using combined nanoindentation and diffraction
204 techniques. Our results show that these two compounds exhibit
205 significantly different elastic moduli, hardnesses, thermal
206 expansion, and high-pressure behavior which are primarily
207 caused by their distinct M−O (M = Cu, Zn) bond lengths
208 induced by the strong JT distortion. Our present work
209 demonstrates the prominence of JT effect on physical
210 properties of HOIPs and also provides the principles of
211 controlling materials’ properties using another type of degree of
212 freedom, namely orbital order.10
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