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Abstract. In quantum mechanics, when an electron is quickly ripped off from a molecule, a superposition
of new eigenstates of the cation creates an electron wave packet that governs the charge flow inside,
which has been called charge migration (CM). Experimentally, extracting such dynamics at its natural
(attosecond) timescale is quite difficult. We report the first such experiment in a linear carbon-chain
molecule, butadiyne (C4H2), via high-harmonic spectroscopy (HHS). By employing advanced theoretical
and computational tools, we showed that the wave packet and the CM of a single molecule are
reconstructed from the harmonic spectra for each fixed-in-space angle of the molecule. For this one-
dimensional molecule, we calculate the center of charge hxiðtÞ to obtain vcm, to quantify the migration
speed and how it depends on the orientation angle. The findings also uncover how the electron dynamics
at the first few tens to hundreds of attoseconds depends on molecular structure. The method can be
extended to other molecules where the HHS technique can be employed.
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1 Introduction
Ultrafast electron dynamics are of crucial importance for
understanding and steering complex chemical and biological
reactions. When subjected to an intense laser field, a pure
electron-driven dynamic can be initiated by strong field ioniza-
tion of the molecule. Theoretically, this dynamic manifests itself
as a migration of the initially created hole density through the
molecular backbone and was dubbed charge migration (CM) in
1999.1 In the last decade, CM has been extensively studied theo-
retically using time-dependent quantum chemistry packages.2–13

Topics of interest include the dependence of CM on molecular
species and structures,9–13 as well as the role of nuclear dynamics
and decoherence in CM.14–16 In these numerical studies, calcu-
lations were made to follow the time evolution of the density of

the wave packet under the field-free condition. However, these
results cannot be tested against experiments directly. In a real
experiment, to know the field-free wave packet (or CM), a probe
pulse is needed, which will inevitably affect the evolution of the
wave packet. Thus, retrieving the field-free CM from the mea-
surement is a monumental task and rarely possible.

Since it is a fascinating goal of ultrafast science to follow
electron and/or nuclear dynamics, in spite of the difficulty, it
is still desirable to perform pump–probe experiments to extract
some partial information. For CM in molecules, it occurs at a
timescale of a few tens of attoseconds. Then one would like to
have pump and probe pulses shorter than a few femtoseconds.
Such pulses, however, would have a bandwidth of a few tens of
electron volts, and the created wave packet would be very
complicated for studying valence electrons in a molecule.
Additionally, the currently available attosecond pulses are still
not intense enough for such applications. To date, most electron
dynamics studies have used attosecond pump and intense IR
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probe pulses, or vice versa.17–21 Among the experiments that
studied electron dynamics or CM, most of them are unable
to obtain electron wave packets or the dynamics of CM for indi-
vidual molecules directly.

From strong-field physics, it has long been suggested that
one can use high-harmonic spectroscopy (HHS) to study atto-
second electron dynamics using intense infrared lasers (see the
reviews22,23). The principle of HHS is based on the three-step
process of high-order harmonic generation (HHG),24,25 where
an electron is first ionized near the peak of the laser field,
the released electron then drifts in the laser field, and some por-
tion will be driven back to recombine with the ion and emit har-
monic radiation. At the time of recombination, the information
of the electron wave packet of the cation is encoded in both the
amplitude and phase of each generated harmonic. The intrinsic
time-to-frequency mapping underlying HHG allows a temporal
measurement of the electron dynamics with a resolution of tens
to a hundred attoseconds.26–32 Up to now, HHS has been well
used for ultrafast molecular detection including static molecular
orbital tomography33–35 and also dynamic imaging of nuclear
and electron motions.26–32

Although the HHS principle is easy to understand, imple-
menting it for extracting accurate CM for each single molecule
is not so straightforward, since the experimentally measured
harmonic spectra are due to the coherent summation of the indi-
vidual radiation weighted by the angular distribution of the mol-
ecules. In the first experiment of using HHS to extract the CM
by Kraus et al.,26 the measured angularly integrated harmonic
spectra were directly taken as the single-molecule results. In
doing so, large errors are introduced into the reconstructed dy-
namics. In our recent paper,36 we developed a machine-learning
(ML) algorithm to retrieve the single-molecule harmonics from
the angularly integrated harmonic spectra, opening an avenue
for accurate measurement of CM on the single-molecule level.

In spite of that, the sensitive dependence of CM on molecular
orbitals and orientations still makes the CM dynamics complex
and difficult to trace. There are still some open questions about
CM that remain unclear; for example, how fast does the charge
migrate in molecules? Very recently, by creating a localized wave
packet, the hole has been predicted to migrate along the molecular
backbone in a particle-like manner at a speed of a few Å/fs.10

However, in most reactions involving valence electrons, delocal-
ized wave packets are created. In addition, the electron wave
packet cannot be measured directly. They have to be reconstructed
from other experimental data. In this work, we focus on a linear
carbon chain molecule, butadiyne (C4H2), where the movement of
the hole is expected to be along the carbon backbone.9 Using an
ML algorithm to analyze the harmonic spectra measured from
aligned C4H2 in a two-color driving field, we successfully re-
trieved the hole wave packet of the cation in C4H2. From the
center of charge (COC) at each time, the CM speed was measured
for the first time. Our approach allows us to extract how migration
speed depends on the alignment angle of the molecule, whether
the charge density is localized10–12 or delocalized.

2 Results and Discussion
Figure 1 sketches the multichannel mechanism of HHG from
the C4H2 molecule. Exposed to an intense external laser field,
the ground X̃2Πg (X̃) and the first excited Ã

2Πu (Ã) states of the
C4H

þ
2 ion, which correspond to the removal of an electron from

the highest and second-highest occupied molecular orbitals
HOMO and HOMO-1, respectively, can be simultaneously

populated by the strong-field ionization due to their close ver-
tical ionization potentials (ΔE ¼ 2.4 eV). The coherent super-
position of multiple electronic states of the molecular ion creates
a many-electron wave packet, which evolves in time, leading to
the time-dependent variation of the charge density, i.e., the CM
in the molecular ion. In the HHG process, these ionic states act
as the intermediate that connects the same initial and final state
of the system. The presence of different ionic states between the
ionization and recombination provides different channels for the
harmonic radiation.37–39 For C4H2, it includes two diagonal
channels XX, AA, and two off-diagonal channels XA and
AX, as shown in Fig. 1(a). The off-diagonal channels reflect
the laser-induced coupling between the two ionic states during
the HHG process. Eventual harmonic radiation is a coherent
superposition of each channel,37–39 i.e.,

Dðω; θÞ ¼
X

i;j¼X;A

CijðθÞdijðω; θÞ; (1)

where Dðω; θÞ is the total dipole moment for HHG, and
dijðω; θÞ is the dipole related to each channel, which in our
reconstruction is calculated by the quantitative rescattering
theory.40–43 CijðθÞ is a complex mixing coefficient related to
the laser-induced transitions between the two ionic states during
the harmonic generation process. Equation (1) suggests that the
electron dynamics is naturally recorded in the harmonic spec-
trum and can be deciphered by disentangling the multichannel
contributions from the total dipole moment.

In this work, we have carried out HHG experiment of C4H2

using a commercial Ti:sapphire laser system (Astrella-USP-1K,
Coherent, Inc.), which delivers 35 fs, 800 nm laser pulses at a

(a)

(b)

(c)

Fig. 1 Probing CM in C4H2 with HHS. (a) Schematic layout of the
multichannel HHG in C4H2 molecule that involves the ground
X̃2Πg (X̃) and first excited states Ã2Πu (Ã) of the molecular
ion. In C4H2, there are four channels labeled as XX, AA, XA,
and AX, respectively, contributing to HHG. Here the first and sec-
ond letters label the ionic state after ionization and before recom-
bination, respectively. (b), (c) Experimentally retrieved population
amplitude (jPX j) of the X̃ state (b) and the relative phase (ΔϕXA)
between the wave functions of X̃ and Ã states (c) for the parallel
(0 deg, green squares) and perpendicular (90 deg, red circles)
alignment of the C4H2 molecule. The solid lines show the
TDDFT results for comparison. Error bars in panels (b) and (c) re-
present the SDs of the reconstructions, which are estimated from
the experimental errors of the HHG signals with the bootstrap
method.
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repetition rate of 1 kHz. The output laser is split into two beams.
One, with moderate intensity (aligning pulse) is used to create
nonadiabatic alignment of C4H2 molecule. The other intense
one (probe pulse) is used to generate high-order harmonics.
The aligning and probe pulses are parallel in the polarization
(for more experimental details, see Supplementary Material).
In our experiment, we first measured the HHG from C4H2 mol-
ecule with a one-color driving scheme. The measured HHG
signals at different time delays between the probe and aligning
pulses were used to determine the alignment distribution in our
experiment with the method reported in Ref. 44. With molecular
alignment distribution determined, the ML algorithm developed
in Ref. 36 then was used to analyze the delay-dependent
HHG data to disentangle the coherent angular average of high
harmonics originating from the imperfect molecular alignment
in experiment, since this angular average could compromise the
measurement from the real single-molecule response.45–47 This is
especially important for a low degree of molecular alignment in
our experiment, which has hcos2 θi ≈ 0.5 (see Fig. S2 in the
Supplementary Material).

Second, to extract the CM dynamics, multiple experimental
observables are required to decompose the multichannel
contributions, since in the one-color laser field, only one set
of Dðω; θÞ can be obtained for each harmonic order, which
is insufficient for the decomposition. Here we introduce a
two-color driving scheme, where the laser field is synthesized
by an intense 800 nm fundamental field and a weak second-
harmonic (SH) field that has the same polarization direction as
the fundamental one (for experimental details, see Supplementary
Material) to generate high-order harmonics. In our experiment,
the SH field used is weak (∼2 × 10−3 of the fundamental field),
which barely alters the electron dynamics of the molecular ion
(see Supplementary Material), but could affect the harmonic
radiation of each channel. The measurements at different rela-
tive phases of the two-color fields thus can replenish the data
set required for the reconstruction. By applying the ML-based
reconstruction procedure36 to the measurements at different
two-color relative phases, we are able to obtain the complex
mixing coefficients of the multiple orbitals of the molecular
cation, for each fixed-in-space angle, at the instant of recombi-
nation when each harmonic order occurs. To ensure the one-to-
one mapping between the instant time and harmonic order, the
short electron trajectory has been selected by phase matching in
the experiment.

Figure 1(b) shows the time-dependent population amplitudes
of the ground state X̃ (jPXj) of C4H

þ
2 ion extracted from the

experimental data of H11 to H17 (including both even and
odd orders) for the molecules aligned at 0 deg (squares) and
at 90 deg (circles) to the polarization of the driving field, respec-
tively. Figure 1(c) displays the corresponding relative phases be-
tween the population coefficients of the X̃ and Ã states (ΔϕXA).
In our reconstruction, the uncertainties of the retrieved param-
eters [error bars in Figs. 1(b) and 1(c)] were estimated from the
experimental errors of the HHG signals with the bootstrap
method.48 For comparison, we have simulated the above param-
eters based on the time-dependent density functional theory
(TDDFT). In the TDDFT framework, the molecular system
is described by a series of one-particle Kohn–Sham (KS) orbi-
tals, in which the evolution can be obtained by solving the time-
dependent Kohn–Sham (TDKS) equations. 49,50 The inclusion of
laser-induced coupling between different orbitals in the TDKS
equations allows us to simulate the evolution of different

orbitals during the driving laser field. In our calculations, the
TDKS equations are solved using the Octopus package51 with
an local-density approximation (LDA) exchange-correlation
functional52 and an average-density self-interaction correction.53

In our calculations, the molecule is assumed to align along the x
direction. The driving laser field is polarized in the x–y plane and
propagates along the z direction. The TDKS equations are solved
on a Cartesian grid with the size of −58.9⩽x; y; z⩽58.9 a.u. The
time step in the simulations is fixed at 0.05 a.u., and the spatial
spacing is 0.38 a.u. To eliminate artificial reflections from boun-
daries, the wave function has been multiplied by a sin1∕6-mask-
ing function at each time step. With the time-dependent TDKS
orbitals obtained, the transition amplitude Cij can be calculated
by Cij ¼ hΨjðr; 0ÞjΨiðr; tÞi, where Ψjðr; 0Þ is the initial KS
orbital and the subscript denotes the X̃ and Ã states involved
in the CM dynamics. As shown in Figs. 1(b) and 1(c), the
TDDFT results (solid lines) agree well with the experimental re-
constructions.

With the retrieved parameters in Figs. 1(b) and 1(c), we can
reconstruct the hole wave packet of the C4H

þ
2 ion. We first

examine the results for the 90 deg alignment of the molecules.
In this case, by symmetry, the two states are not coupled by
the laser, such that populations of the X̃ and Ã states do not
change with time; see the red line in Fig. 1(b). In this situa-
tion, the reconstructed charge density does change with time,
as can be seen in Fig. 2(a), which displays the reconstructed
hole densities in C4H

þ
2 ion at the recombination times of H12

to H17. These figures also show substantial hole migration
along the molecular backbone (x axis). Moreover, the hole
densities are always symmetric about the y ¼ 0 plane because
of the symmetries of the HOMO and HOMO-1 orbitals of
C4H2. Note that these results are similar to the field-free
CM defined by Cederbaum and Zobeley.1

To provide simpler information from the charge density
distribution, we extracted the reduced hole density ρxðtÞ by
integrating the hole density over the y direction. As shown in
Fig. 2(b), the hole created by ionization is initially localized
at the left C1 ≡ C2 triple bond, then spreads over the molecule,
and finally is distributed around the right C3 ≡ C4 triple bond
after about 500 as. To quantify the CM dynamics, we further
define the expectation value of the abscissa x (carbon chain)
as the COC position. As shown in Fig. 2(c), the extracted
COC position (blue circles) increases almost linearly with time,
indicating a unidirectional migration of the hole from the −x
side to the þx side. By a linear fitting of hxiðtÞ [the dashed-
dotted line in Fig. 2(c)], we can then evaluate the CM speed
from the slope, which is about 2.94 Å∕fs. This result is close
to the theoretical predictions in halogenated hydrocarbon
chains.10 We have also calculated the standard deviation (SD)
of the abscissa x to quantify the degree of localization of the
hole during the evolution. As shown in Fig. 2(c), the SD of
x (green squares) increases in the first 200 as and turns to de-
crease in the last 300 as, which reflects a delocalization-to-
localization behavior of the created hole wave packet. The de-
crease is due to the wave packet beginning to bounce back from
the right C ≡ C bond. At a longer time, the hole was predicted to
travel back and forth between the C ≡ C triple bonds on both
sides.9,10 Such a periodic behavior cannot be fully visualized
from the reconstructions in Figs. 2(b) and 2(c) due to the limited
temporal window in our measurement. With the retrieved
CM speed, we can estimate the CM-mode period or frequency
that is critical for describing the periodic dynamics, by
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Tcm ¼ 2π∕ωcm ¼ 2dcm∕vcm, where dcm ¼ 4.88 a.u. is the dis-
tance between the centers of the two C ≡ C triple bonds in C4H2,
which is approximately the CM distance in C4H

þ
2 . For the quasi-

field-free CM, the CM-mode period and frequency are estimated
to be 1.76 fs and 2.35 eV, which are close to the results 1.72 fs
and 2.4 eV defined by the energy difference between the two
ionic states of C4H

þ
2 .

Rigorously, single-hole dynamics are to be obtained with
quantum mechanics. From the retrieved complex wave packet,
real values of probability density ρe and current density J can be
obtained, and they have been found to satisfy the equation of
continuity, ∂ρe∂t þ ∇ · J ¼ 0. In Fig. 2(d), we show the time-
dependent total flux crossing the x ¼ 0 plane calculated from
the retrieved complex hole wave packet. One can see that the
total flux is always negative over the 500 as duration, indicating
continuous migration of the charge from −x side to the þx side.
A near-zero flux near 1.5 fs also reflects that the hole has moved
to the right terminal C ≡ C bond. These results are consistent
with the analysis in Fig. 2(c). On the other hand, the flux
changes rapidly with time, indicating that the constant speed
in Fig. 2(c) is valid only for the speed of the COC. From the

other viewpoint, this would imply that vcm itself, or the hole
density alone, would not provide adequate information on elec-
tron dynamics except from the retrieved wave packet. Like
electrons and holes in solids, vcm could provide a first-order in-
terpretation of carrier dynamics, even though the carriers are not
localized. This is how the speed of CM is to be understood. It is
a measure of how the average position moves.

Proceeding further, next, we consider in Fig. 3 the recon-
structed results for the parallel alignment of the molecule. In
this case, the ground X̃ and first excited Ã states of C4H

þ
2

are strongly coupled by the laser field due to the large transition
dipole moment between these two states along this direction.
The resulting CM is controlled by the laser field. Comparing
Fig. 2 with Fig. 3, we can see that laser coupling would drive
the hole density to þx side faster [Fig. 3(a)], as well as for the
reduced hole density [Fig. 3(b)]. The COC position also rises
faster, from which the CM speed has increased to 4.5 Å∕fs, even
though the SD remains roughly the same, except the feature
changes at earlier times [Fig. 3(c)]. Note that here the CM speed
is obtained by fitting the COC position hxiðtÞ before 1.34 fs,
where hxiðtÞ increases almost linearly. Afterward, the hole
reaches and localizes at the right terminal C ≡ C bond. In
Fig. 3(d), the flux also shows faster changes with time, indicat-
ing that laser coupling has substantially changed the hole
density distribution.

To evaluate the reconstructed hole dynamics, we have further
performed TDDFT simulations. Figures 4(a) and 4(b) show the
time-dependent hole density ρxðtÞ and the COC position hxiðtÞ
simulated in the same temporal range as in the experiment
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Fig. 3 Reconstruction of CM in C4H
þ
2 for parallel alignment.

(a)–(d) The same as Fig. 2(a)–2(d), but for the case of parallel
alignment of the C4H2 molecule.
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Fig. 2 Reconstruction of CM in C4H
þ
2 for perpendicular align-

ment. (a) Snapshots of the reconstructed hole densities for the
alignment angle of 90 deg. (b) Time-dependent hole densities
along the molecular backbone obtained by integration over the
y direction. For clarity, the molecular backbone has been plotted
on the top of panel (b). (c) Time-dependent COC position hxiðtÞ
(dashed line with circles) retrieved from the hole densities in (b).
Here the dashed-dotted line is a linear fitting of hxiðtÞ to evaluate
the CM speed, and the green squares represent the SD of the
x coordinate. (d) Flux of charge density crossing the x ¼ 0 plane.
Negative value means CM from −x side to þx side.
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(i.e., 1.04 to 1.51 fs) for 90 deg alignment of the molecule. One
can see that the TDDFT results in Figs. 4(a) and 4(b) agree well
with the experimental reconstructions presented in Figs. 2(b)
and 2(c). The laser-controlled CM in the parallel aligned mol-
ecules has also been simulated. As shown in Figs. 4(c) and 4(d),
under the influence of the laser field, the simulated CM dynam-
ics are far different from the field-free result in Figs. 4(a) and
4(b). The simulated hxiðtÞ increases almost linearly before
1.34 fs and turns to decrease afterward. These results are also
in reasonable agreement with the experimental reconstructions
in Figs. 3(b) and 3(c).

Using our retrieval method, we are able to obtain CM for all
alignment angles at the same time. The CMs for other alignment
angles of the fixed-in-space molecules have also been recon-
structed (see Figs. S6 and S7 in the Supplementary Material).
The CM speed retrieved as a function of the alignment angles is
shown in Fig. 5 (squares). For comparison, the TDDFT results
are also presented (solid line). The CM is demonstrated to de-
pend sensitively on the alignment angles. Moreover, the speed
of the laser-controlled CM (the cases of non-perpendicular
alignments) is faster than the field-free result at 90 deg. The in-
crease of the CM speed mainly arises from the laser-induced
coupling between these two cation states. For the 90 deg align-
ment (field-free case), the timescale of the charge oscillations is
determined by the intrinsic energy gap between the two cationic
states. While for the 0 deg alignment (and other angles), laser-
induced coupling between these two cation states gives rise to
a much faster increase in the relative phase between these two
states (see Fig. S9 in the Supplementary Material), which is

equivalent to a larger energy gap between the two cationic
states, thus yielding a much faster charge oscillation. This is
similar to the well-known fact that the field-free two-level os-
cillation is slower than the Rabi oscillation when the two levels
are driven by an intense laser pulse. In addition, it has been re-
ported that the deviation of the experimentally extracted optimal
two-color relative phases φmax, where the HHG intensity
reaches a maximum with respect to the single-active electron
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Fig. 4 TDDFT simulations of the CM dynamics in C4H
þ
2 . (a), (b) TDDFT calculations of the re-

duced hole density ρx ðtÞ and COC position hxiðtÞ in the experimental temporal range for the
90 deg alignment of the C4H2 molecule. (c), (d) Same as panels (a) and (b), but for the parallel
alignment (the alignment angle of 0 deg) of the C4H2 molecule.

Fig. 5 Reconstruction of the CM speed in C4H
þ
2 . Dashed line

with squares shows the CM speed retrieved as a function of
the alignment angles. The solid line plots the TDDFT result for
comparison.
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response will be a key indicator for the multichannel (CM) dy-
namics in the molecules.54 We have examined our two-color
measurements and compared them to the single XX channel
calculations. The results obtained at the alignment and anti-
alignment of C4H2 molecule are shown in Fig. S10 in the
Supplementary Material. One can see a clear difference in
the deviations of φmax in the two cases, which provides direct
experimental evidence of the different CM dynamics along
these two orientations. The alignment dependence of the CM
dynamics proves that one should not obtain the corresponding
single-molecule dynamics directly from the experiment without
angular deconvolution. On the other hand, it also provides a
potential way to control the CM speed and even ultimately to
manipulate the rate of a chemical reaction.

Finally, it is worth mentioning that in our study of C4H2,
there are only two cationic states involved in the CM dynamics.
For other molecules, such as CO2 molecules,27,28 more cationic
states will participate in the electronic wave packet. In such
cases, one can anticipate more complex migration dynamics
in the molecule. Due to the different symmetries of the cationic
states, the resulting movement of the hole may no longer be
solely along the molecular backbone. Instead, the hole could
traverse across the molecular backbone or exhibit swirling mo-
tion around the constituent atoms.27,28 In such scenarios, a ver-
tical component of the CM speed (along the y direction) should
be defined to comprehensively describe the complex migration
dynamics in space.

3 Conclusions
In summary, CM in a carbon-chain molecule C4H2 was mea-
sured using an ML-based two-color HHS method. The CM
dynamics are reconstructed at the most fundamental level for
each single fixed-in-space molecule. By analyzing the time-
dependent hole densities, the speed of CM was extracted for
the first time for each alignment angle of the molecule. The
retrieval results demonstrate that the laser-controlled CM is
much faster than the field-free one. These results are consistent
with the TDDFT simulations. Our result provides a simple and
intuitive way to understand and quantify the complex CM in
molecules. Looking ahead, the method presented here may
be extended to driving lasers with much longer wavelengths,
in which the whole periodic hole migration may be directly
observed from the measurement. On the other hand, oriented
halogen-functionalized carbon-chain molecules are also ideal
candidates for CM studies in experiments, where the influence
of the hole localization on the CM speed may be examined.
Moreover, the halogen functionalization can provide another
degree of freedom to control the CM.

Data and Materials Availability
All the data that support the findings of this study are available
from the corresponding authors upon reasonable request.
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