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By using a fiber loop with a phase modulator, we simulate
the refraction and reflection effects of optical pulses at the
heterointerface in the time domain, which is formed by
abruptly varying the modulation depth or frequency.
When the variation is periodically imposed on the optical
pulse, the heterointerface is vertical and may lead to total
internal reflection. The temporal refraction can be con-
trolled by setting different Bloch wave vectors at incidence.
As the variation occurs at a specific moment during the
pulse propagation, a horizontal interface appears, and
the negative refraction and pulse splitting in the time
domain could be observed. We also show that the combi-
nation between the straight and tilted lattice could provide
another way to control the temporal refraction. The study
may find great applications in signals processing and optical
communication. © 2019 Optical Society of America
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Refraction and reflection are well-known phenomena that are
observed when a light beam encounters an interface between
two mediums with different refractive indices. As the refraction
and reflection take place, the tangential momentum along the
interface of the two mediums has to be conserved. Recent stud-
ies have generalized the refraction and reflection from continu-
ous optical systems to discrete ones, including metamaterials
[1,2], photonic crystals [3], and coupled waveguide arrays
[4,5]. Compared to their continuous counterparts, discrete
refraction and reflection manifest distinct features, such as neg-
ative refraction and refraction transparency [6,7]. The effects
have provided new capabilities to control the flow of light
on the subwavelength scale.

Considering the space—time duality and the analogy be-
tween spatial paraxial diffraction and temporal narrowband
dispersion, the diffraction in real space can readily find counter-
parts in the time domain, such as time imaging and temporal
Talbot effect [8]. Accordingly, the refraction and reflection have
also been demonstrated in the time domain by creating an ar-
tificially temporal interface [9—11]. The refraction of the optical
pulse tends to be accompanied by the wavelength conversion,
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which can be used to control the temporal waveform and
bandwidth of optical signals. Additionally, the temporal dis-
crete lattices have been proposed and employed to realize
Bloch oscillation and discrete solitons in nonlinear optical fiber
systems [12-15].

In this work, we will study the discrete refraction and reflec-
tion at a heterointerface between two distinct temporal lattices.
By engineering the band structures on both sides of the inter-
face, the refraction and reflection of the optical pulses can be
artificially manipulated. The interfaces composed of temporal
lattice heterostructures provide not only a flexible approach to
control the propagation of the pulses by band engineering [16],
but also a promising platform to demonstrate the well-known
spatial behaviors of light propagation.

The proposed setup for creating the temporal lattice is
shown in Fig. 1(a). The incident continuous waves convert
to Gaussian pulses by using a Mach-Zehnder modulator
(MZM). The temporal width of the pulses is 600 ps. A linear
temporal phase variation is added upon each pulse by using the
phase modulator (PM1). Then each pulse is associated with a
phase factor of exp(ikroz). With the aid of the load switch, a
single pulse is selected and enters the fiber loop via a 50/50
coupler. The optical delay line (ODL) is used to adjust the cir-
culation time of the pulse in the loop. The frequency spectrum
of the pulse is modulated by the phase modulator (PM2),
which is driven by a radio frequency (RF) signal. The phase
modulation provides a time-periodic potential [14,15,17]. The
pulse also passes a dispersion-compensating fiber (DCF) with a
group velocity dispersion coefficient f, = 60 x 10/ s?/m
and a length L = 1.5 km. The effect of phase modulation
and dispersion can change the temporal waveform of the pulse
as the circulation times are increased. For simplicity, the dis-
persion of other components and higher-order dispersion are
neglected. After each circulation, half of the energy of the wave
packet remains in the fiber loop, and the other goes into the
digital communication analyzer (DCA). The propagation loss
and link power loss can be compensated by the erbium-doped
fiber amplifier (EDFA) with a gain of 21 dB. The isolator is
utilized to ensure unidirectional operation. The circulation
times are controlled by the unload switch.
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Fig. 1. (a) Schematic diagram of the fiber loop used to construct the
temporal lattice. The periodic temporal potential is provided by PM2
in the fiber loop. (b) Temporal waveform of the modulation signal
used to generate the vertical interface where the abrupt change occurs
att = T, in each circulation period. ¢; ; and f'| , denote the modu-
lation depth and frequency. Each circulation time is chosen as 77.
(c) and (d) Schematic of the modulation signal used to realize the hori-
zontal interface. Here, ¢, and f, change only once during the
whole process. The modulation signal has a time delay dr in each
circulation in (d).

The evolution of the pulse can be described by the modified
Schrédinger equation [18]:
{ 0o B,

oz 2 o

where z represents the propagation direction along the fiber
loop and 7 is the time deviation relative to the peak of the op-
tical pulse at z = 0. The slowly varying envelope approxima-
tion s satisfied since the temporal width of the pulses is as large
as 600 ps. The amplitude of the temporal potential is given by

= ¢p/L, where ¢ is phase modulation depth. The modu-
lation frequency is denoted by f = 1/7, with T'; being the
time period. a is the drift velocity of the potential along the
time dimension, which indicates that the constructed temporal
lattice is tilted to the # axis. The wave packet takes the form of a
Bloch wave y(z,z) = u(z) exp(ikt) exp(ifz), where u(z) is
the lattice periodic function. The propagation constant f
along the z direction is the eigenvalue of Eq. (1). by €
[/ Ty, m/T,) is the Bloch wave vector along the time axis.
The lattice band structure is thus given by f = f(k7), which
can be solved numerically with the plane wave expansion
method [19].

We first consider the case of vertical interface as @ = 0. The
situation can be realized as the optical length of fiber loop
Ly = v(nT), where 7 is an integer, and v = ¢/ng is the pulse
propagation velocity in the fiber. The interface is constructed by
employing a temporal modulation, as shown in Fig. 1(b). Within
each circulation, the modulation signal experiences an abrupt
change at = 7', in the modulation frequency and depth such
that /= f1, ¢p=¢, fort <7, and f = f,, ¢ = ¢, for
t > T,. Then, an interface vertical to the time axis can be
formed, as shown in the insets of Figs. 2(a) and 2(b).

The pulse evolution in the loop is depicted in Figs. 2(a) and
2(b), which is obtained numerically by using a spit-step algo-
rithm [14,18]. The incident pulse possesses a linear phase
factor of exp(ikrgt), which is imposed by PMI. As
f1=/>=20GHz, ¢,=0.2, ¢ = 0.3, and k7o = 10 2GHz,
the pulse experiences a deviation along the -z direction at
first and then splits into two pulses deviating in opposite direc-

tions in time when encountering the interface at # = T, as

+ Vo cos2z f(z - (xz)]}l//(t z)=0, (1)
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Fig. 2. (a) Evolution of the optical pulse at the vertical 1nterface for
fi1=/,=20GHz, ¢, =02, ¢, =03, and kT—kTO
10 #GHz. (b) Evolution of the pulse at the interface for f, =
20 GHz, f, =40 GHz, ¢; = ¢, =0.2, and /eT = k7o =20 7GHz.
;g), _y) , and 2 9 denote the group velocities of the incident, re-
flected, and refracted pulses in the #-z plane. Insets show the temporal
lattice structures. (c) and (d) Band structures of the lattice on the right
(red curve) and left (blue curve) sides of the interface, corresponding to
the insets in (a) and (b). # is the band index. (e) and (f) Ratio for
k(Tt) / k(;) (blue curve) and /6(7{) / k(Ti) (red curve) versus initial Bloch wave
vector. The solid curves and circles represent the analytical and the
numerical results. The gray regions indicate the bandgaps.

illustrated in Fig. 2(a). The process is very alike to reflection
and refraction in real space. On the other hand, as ¢, =
¢, =0.2, f, =20 GHz, f, =40 GHz, and k7, = 20 7GHz,
only the reflection is observed, as shown in Fig. 2(b). The
phenomena can be explained by using the band structure
P (k7). The lattice band structures on both sides of the interface
are plotted in Figs. 2(c) and 2(d). Considering the translation
symmetry along the interface, the tangential wave vector along
the z direction is conserved, that is,

Br(ED) = BPRD) = kD). )

Here, /e(Ti), /e(;), and k(;) represent the Bloch wave vectors of the
incident, refracted, and reflected pulses, respectively. f; and
denote the propagation constants of the incident and transmit-
ting lattices, and 7 is the band index. For the case of Fig. 2(a),
the band structures of the lattices on the left and right sides of
the interface are depicted by blue and red curves. The pulse is
incident from the right lattice. For a definite initial Bloch wave

vector /e(Ti) = kyo = 10 7GHz, the value f for all modes
should be identical. In order to feature the deviation direction
of the pulse, we introduce an effective group velocity ;g, which

indicates the direction of the pulse evolution in the #-z plane.
By using the dispersion relation f(%7), it is readily to figure out
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that arg(;g) = atan(—dky/dp). Consequently, the group
velocity is perpendicular to the band curves. Figure 2(c) shows
the directions of ?g for the reflection and refraction, which co-
incides with the numerical simulations in Fig. 2(a). As the in-
cident wave vector locates in the gray region, the bandgap of the
transmitting lattice, there should not be a refracted pulse since
one cannot find the same /3 value in the blue curve. Thus, total
internal reflection (TIR) occurs, as shown in Figs. 2(b) and 2
(d). The refraction can be observed either in the first band or

higher bands above the gray region. The simulated k(;) / /e(;;)

and /e(Tr) / k(T’) are plotted by the blue and red circles in
Figs. 2(e) and 2(f), which agree with the analytical results de-
noted by solid lines. The shadowed region represents the sit-
uation of TIR, which refers to bandgaps in Figs. 2(c) and 2(d).

To quantitatively characterize the refraction in time, we can
define the temporal relative refraction index,

n, = o) /o0, (3)
where o) = ~dp,(K)/dkY and oY) = -dp; (kD) /dkS,

referring to the group velocities of the incident and refracted
pulses along the time axis [16]. For the cases in Figs. 2(a)
and 2(b), the relative refraction index versus the incident Bloch
wave vector is shown in Figs. 3(a) and 3(b). The TIR can be
realized when the initial Bloch wave vector is chosen in the gray
regions, which is determined by the bandgap and the band
curve of the lattice on the incident side.

Next we investigate the horizontal interface, which is real-
ized by changing the modulation depth and frequency only
once in the entire transmitting process of the optical pulse,
as shown in Fig. 1(c). The parameters of the potential are
changed abruptly from ¢, f| to ¢,, f,, such that an interface
in the propagation direction can be formed. The interface
is horizontal to the time axis, as shown in the insets of Figs. 4(a)
and 4(b). In Fig. 4(a), as ¢, = ¢, = 0.2, [, =20 GHz,
f, =40 GHz, and 47y = 20 #GHz, the peak of the pulse
keeps constant in the lower lattice and then splits into two
symmetric pulses in the upper lattice. As f; = 40 GHz,
f5 =20 GHz, and k7, = 32 7GHz, the pulse experiences
a deviation to the -# direction in the lower lattice and then
splits into three pulses with distinct amplitudes, as depicted
in Fig. 4(b). It should be mentioned that the reflection of the
pulse cannot be found in the horizontal case since the pulse
always move forward in the z axis.

The pulse splitting can also be explained by the band
structures, as shown in Figs. 4(c) and 4(d). For all the bands,
the horizontal Bloch wave vector should be conserved in both
lattices, namely /e(;) = /eTl, which is analogous to the Floquet
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Fig. 3. (a) and (b) Relative refractive index 7, versus the incident
Bloch wave vector for the situations in Figs. 2(a) and 2(b). The solid
curves and circles represent the analytical and numerical results. The
gray regions indicate the regimes where TIR occurs.
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Fig. 4. Dulse splitting at the horizontal interface for (a) ¢, = ¢, =
0.2, f,=20GHz, f,=40GHz, k} —kTO—ZOﬂGHz
(b) ¢ =¢, =02, f, =40 GHz, f,=20GHz, and £ =
k7o = 32 nGHz. v é) and v ;) refer to the group velocities of the in-
cident and refracted pulses, denoted by the black and blue arrows.
Insets represent the lattice structures. (c) and (d) Band structures of
the lower (red curves) and upper (blue curves) lattices with 7 being
the band index. (e) and (f) Relative refraction index versus initial
Bloch wave vector for different bands. The gray regions indicate where
the negative refraction occurs.

condition in spatial lattices. In Fig. 4(c), we consider only the
bands of #» = 1, which are isolated from higher-order bands in
the two lattices. Since f, = 2/, the Brillouin zone of the
lower lattice is repeated twice with respect to that of the upper
lattice. An arbitrary Bloch wave vector from the lower lattice
corresponds to two matched Bloch wave vectors in the upper
one. Moreover, the time dimension group velocities for the
matched wave vectors have opposite signs. Thus, the splitting
occurs at the interface. As shown in Fig. 4(d), the higher-order
bands of » = 2 and 3 of the upper lattice locate between the
n =1 and n = 2 bands of the lower lattice. An initial Bloch
wave vector from the » = 1 band of lower lattice matches the
Bloch wave vectors of # = 1, 2, and 3 bands in the upper lat-
tice, giving rise to the splitting with three different refracted
pulses. According to the band structures and Eq. (3), the rel-
ative refraction index versus the incident Bloch wave vector is
shown in Figs. 4(e) and 4(f). The red, blue, and green lines in
Fig. 4(f) correspond to # = 1, 2, 3 bands of the upper lattice,
respectively. The predicted direction of the group velocity for
each refracted pulse coincides well with the numerical simula-
tion. It should be mentioned that the interface can also be
created by abruptly changing the modulation phase. Even if
the band structures are same on both sides of the interface,
the reflection and refraction are observable due to the lattice
defect formed by the abrupt phase change.

We turn to the situation of tilted lattice with a # 0.
According to Eq. (1), the tilted lattice comes from the moving
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Fig. 5. (a) Positive and (b) negative refraction for the initial Bloch
wave vectors k7o = -/ + 14 #GHz. Z? and 2% denote the group
velocities of the incident and refracted pulses, which are denoted by
the black and blue arrows. (c) Band structures of the vertical (red
curve) and tilted (blue curve) lattices. (d) Relative refraction index ver-
sus the initial Bloch wave vector. The gray region indicates where the

negative refraction occurs.

potential V(¢ - az), which indicates that the center of the po-
tential drifts along the ¢ direction with a constant group velocity
of 1/a [6]. As illustrated in Fig. 1(d), the drift potential can be
realized by tuning the optical length of the loop using the
ODL, with a time delay 6z = aLy added to the RF signal
in each circulation. The switching speed of the ODL should
be less than the circulation time of the pulse in fiber loop,
which is about 5 ps. Then, a horizontal interface can be created
by cascading a perpendicular and a tilted lattice, as depicted
in the inset in Fig. 5(a). The pulse is incident from the
perpendicular lattice. We choose ¢ = 0.2, f =20 GHz,
and 6r = 2 ps. In Fig. 5(a), the optical pulse with £y =
-14 nGHz experiences a larger deviation to the ¢ direction
in the upper lattice. On the contrary, as kyq = 14 7GHz,
the directions of the deviation are opposite before and after
the interface, as shown in Fig. 5(b). The refraction can be ex-
plained by the band structures of the vertical and tilted lattices.
According to Galilean transformation [20] and tight-binding
approximation [21], in the moving reference frame of
T =r-azand Z = z, Eq. (1) reads

Brii = k(T + T, 2) + (T - To, Z)] + V(T)y

- l.aaTl[;, (4)

where 7 = y(t,2) exp[-i(2aT + a*2)/(2f,)]. The band
structure is

ﬂT = -2k COS(/@T TO) + akr, (5)

where k = f3,/(27T7%) is the effective coupling coefficient.

The group velocity along the time axis is thus v,, = -dfr/

dky = -2xT sin(k;Ty) - a. So, the contribution of « is

an additional constant group velocity superimposed onto the

original sinusoidal group velocity. The band structures of the
straight and tilted temporal lattices are shown in Fig. 5(c).

As 6t = 2 ps, the group velocity always satisfies vgz > 0. The
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relative refraction index is plotted in Fig. 5(d). As the initial
Bloch wave vector is chosen within the gray region such as
k7o = 14 7GHz, we have n, < 0, which indicates the negative
refraction at the interface. On the contrary, as the initial
Bloch wave vector is chosen outside the gray region, i.e.,
k7o = -14 7GHz, we obtain 7, > 0, giving rise to the positive
refraction. So, we can achieve the positive and negative
refractions in the same lattice heterostructure by varying the
incident Bloch wave vector.

In conclusion, we have investigated the evolution of the
optical pulse in an optical fiber loop with a copropagating po-
tential. By using the abrupt change of the potential amplitude
or frequency, a temporal interface appears, which is vertical or
horizontal to the time axis. Additionally, the horizontal inter-
face also can be achieved by adding a time delay to the modu-
lation signal. By varying the incident Bloch wave vector, the
TIR and negative refraction are realized at the vertical and hori-
zontal interface, respectively. The study provides a flexible plat-
form to manipulate the optical pulse in time by using band
structures and may find great applications in signals processing
and optical communication.
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