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Abstract: The double-slit interference in single-photon ionization of the diatomic molecular
ion H2

+ is theoretically studied beyond the dipole approximation. Via simulating and comparing
the interactions of the prealigned H2

+ and the hydrogen atom with the xuv pulses propagating in
different directions, we illustrate two kinds of effects that are encoded in the interference patterns
of the photoelectrons from H2

+: the single-atom nondipole effect and the two-center-interference
one, both associated with the finite speed of light. While the two effects could modify the
maxima of the interference fringes, we show that the former one hardly affects the interference
minima. Our results and analysis show that the interference minima rule out the influences of the
photon-momentum transfer and, potentially, the multielectron effect, thus performing a better
role in decoding the zeptosecond time delay for the pulse hitting one and the other atomic centers
of the molecule.

© 2021 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

The development of few-cycle infrared laser pulses, attosecond pulses, and free-electron lasers
in the past two decades has enabled scientists to detect and control the ultrafast electronic and
nuclear dynamics on the attosecond time scale (see [1] and the references therein). While our
understanding of the dynamic mechanisms of single atoms and molecules driven by strong fields
is getting deeper and deeper, researchers have already been seeking new challenges in strong-field
physics. On one hand, for instance, efforts have been made in studying the high harmonic
generation in chiral molecules [2], liquids [3], and solids [4] as well as the photoemission process
in condensed matter [5] and nano-particles [6], bringing us unprecedented insights into the
strong-field phenomena in complex systems. On the other hand, scientists have been exploring
the ever-faster responses of atoms and molecules below one attosecond [7].

Recently, the zeptosecond (10−21 s) time delay between the ionization bursts from two centers
of a diatomic molecule was measured [8]. In the experiment, the 800-eV xuv laser pulse was
applied to trigger the single-photon ionization of the hydrogen molecule. Due to the finite speed
of light, it takes time for the pulse to hit one and the other nuclei of the molecule, leading to a
phase difference between the ionizing wave packets from two centers and eventually resulting
in the distorted interference patterns in the photoelectron momentum distributions (PMDs).
In principle, the information of the time delay could be extracted from the tilted angle of the
double-slit interference maximum (theoretical details will be discussed in the discussion section).
Yet, a noticeable deviation was found between the measurement and the theoretical prediction for
the time delay [8]. The deviation, as well as the cutting-edge experimental research itself, has
immediately attracted broad interest and discussion [9–11].
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The nondipole effect in molecular strong-field ionization has been previously studied in theory
[12–14], mainly focusing on the photoelectron momentum offset in the light propagation direction.
Such momentum-transfer effect takes place in atomic ionization as well, and it will be referred
to as the single-atom nondipole effect in the following discussion. In this paper, we revisit
the double-slit interference in the single-photon ionization of the diatomic molecules [15] by
numerically solving the three-dimensional time-dependent Schrödinger equations beyond the
dipole approximation. We focus on the two-center-interference nondipole effect induced by
the time delay for the pulse hitting one and the other nuclei. By comparing the PMDs for the
hydrogen atom and the hydrogen molecular ion, we illustrate how the photon recoil affects the
interference patterns when the pulse is travelling at different directions. In particular, our results
and analysis show that the interference minima are associated with the time delay for the pulse
travelling from one to the other nuclei, but they would be hardly affected by the single-atom
nondipole effect. We demonstrate that applying the two neighboring minima of the zeroth-order
interference maxima is more accurate for extracting the zeptosecond time delay between the
ionization bursts from two atomic centers of the molecule.

2. Numerical method

We solve numerically the nondipole three-dimensional (3D) time-dependent Schrödinger equations
(TDSEs) in Cartesian coordinate system for the H+2 prealigned along the x axis as well as for the
hydrogen atom. The xuv laser pulse is linearly polarized in the y direction and propagates in the
direction of ek = cos βex + sin βez, where β is the angle between the propagation direction and
the x axis, as shown in the sub-diagram in Fig. 1. The TDSE is given by (in atomic units) [16]

i
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where V0(r) is the Coulomb potential of the chosen system. The vector potential of the xuv laser
pulse is given by
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for 0 ≤ η ≤ ωNT and otherwise A(η) = 0, with η = ω[t − (x cos β + z sin β)/c], where c is
the speed of light in vacuum. Here, ω, T = 2π/ω, E, and N indicate the laser frequency, the
optical cycle, the electric field amplitude, and the number of the optical cycles of the full pulse,
respectively. In the present simulations, the laser parameters are chosen as ω = 29.40 a.u.
(corresponding to the photon energy of 800 eV), E = 3 a.u., and N = 50.

The nondipole TDSE is numerically solved using the split-operator spectral method [17] with
modifications, in order to deal with the space-dependent vector potential. The details of the
procedure are following. The analytic solution of Eq. (1) is given by a Dyson’s time ordering
operator P as (in the Coulomb gauge)
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Fig. 1. Illustration of the coordinates in our simulation. The molecule is prealigned along
the x axis. The xuv laser pulse is linearly polarized in the y direction and propagates in the
direction given by the angle β. The angular distributions of the photoelectrons are calculated
as a function of θ (0 ≤ θ ≤ π) and ϕ (0 ≤ ϕ<2π) indicated in the figure.

with the momentum operator p̂ = −i∇ = (p̂x, p̂y, p̂z). The approximate evaluation of the
exponential with time ordering in Eq. (3) can be written as [18]
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with t′ = t+δt/2. In Eq. (4), the first exponential operation on the wave function can be calculated
directly and one can obtain a temporary wave function. Then, the y dimension of the temporary
wave function is Fourier transformed to the momentum space as Ψ(x, y, z) → Ψ(x, py, z),
so that the second operation can be calculated by direct multiplication. In the next step,
the other two dimensions of the wave function are transformed to the momentum space as
Ψ(x, py, z) → Ψ(px, py, pz), for the calculation of the third operation. Finally, the rest of the
operations can be analogously evaluated via transforming the temporary wave function back to
the position space step by step. By repeating the processes above, one can obtain the evolution of
the wave function numerically.

The initial stationary wave functions are obtained by the imaginary-time propagation method.
The real-time propagation includes two parts: the interaction and the free propagation afterwards.
For the interaction part, the evolution starts when the xuv pulse enters the box of the 3D grid and
ends when the tail of the pulse lefts the box. We have chosen a 3D grid large enough to contain
the majority of the ionizing wave packets until the interaction process ends. This is guaranteed
and has been verified in our calculations. After the interaction, we continue the evolution of
the wave function without external fields and apply the absorbing potential to split the outgoing
wave packets. In this case, one can solve the TDSE and obtain the photoelectron momentum
distributions in the conventional way [19,20]. Regarding the simulation parameters, there are
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2496 × 2496 × 520 grid points of the box. The spacing steps are ∆x = ∆y = 1/6 a.u. for R = 2
and 10 a.u., ∆x = ∆y = 0.14 a.u. for R = 1.4 a.u., and ∆z = 0.25 a.u. The spacing steps are
chosen differently for the given internuclear distances R, so that the nuclei are placed in the
middle of two grid points in the x axis to avoid the singularity of the Coulomb potential [20].
The time step for the evolution of the wave function is chosen as δt = 0.005 a.u.

3. Results and discussion

We have calculated the 3D photoelectron momentum distributions Y3D for the hydrogen atom
and H+2 interacting with the xuv pulses. We show in Fig. 2 the results of three chosen cases: (a)
for the atom and β = 0, (b) for H+2 and β = 0, and (c) for H+2 and β = 90◦, with R = 1.4 a.u. The
colored spheres in the figures indicate the angular distributions

Yang(θ, ϕ) =
∫

Y3D(p, θ, ϕ)p2dp (5)

of the photoelectrons (see Fig. 1 for the definition of θ and ϕ). We also show in the figures the
corresponding 2D distributions, Yxy(px, py) on the bottom, Yyz(py, pz) on the left-hand site, and
Yxz(px, pz) on the right-hand site, which are integrated over the third dimensions of Y3D(px, py, pz),
respectively. As shown in Fig. 2(a), the peak of the distribution Yxz drifted towards the light
propagation direction, due to the momentum transfer from the photon to the photoelectron. For
the cases of H+2 shown in Figs. 2(b) and 2(c), the double-slit interference patterns appear. The
interference fringes shown by Yxz are perpendicular to the molecular axis for both cases, but the
distributions of the fringes seem different.

Fig. 2. The momentum and angular distributions of the photoelectrons for the interactions
of the atom (a) and the molecule (R = 1.4 a.u.) [(b) and (c)] with the xuv pulses. The
oscillating curves illustrate the electric components of the laser pulses and the arrows indicate
the laser propagation directions. The distributions are normalized to the corresponding
maximal values and the color scale is linear.

To quantitatively compare the distributions of the interference patterns, we calculated the
photoelectron angular distributions (PADs) given by

Y+θ (θ) =
∫ π

0
Yang(θ, ϕ)dϕ (6)

Y−
θ (θ) =

∫ 2π

π
Yang(θ, ϕ)dϕ (7)

for the atom and H+2 (R = 1.4 a.u.) in the cases of β = 0, 45◦, and 90◦, respectively. The results
after normalization to the maximum of Y+θ are shown in Figs. 3(a)–3(c). We can see that PADs
for the interference patterns are enveloped by those PADs for the hydrogen atom. It indicates
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that, when the xuv pulse hits each center of the molecule, the ionizing wave packet burst is
approximately equivalent to that from a single atom and two wave packets coherently interfere
with each other in the continuum. Thus, the distorted PAD from each atomic center will be
encoded in the interference patterns, modifying the locations and yields of the fringe maxima.
This can be seen in both Fig. 2 and Fig. 3.

Fig. 3. The photoelectron angular distributions given by Y±
θ for the atom (dashed curves)

and the molecule (R = 1.4 a.u.) (solid curves) interacting with the pulses propagating in three
directions (indicated by the arrows). α0 and α± indicate the angles where the interference
maximum and its two neighboring minima are observed, respectively.

When the pulse travels at β = 90◦ (i.e., perpendicular to the molecular axis), the photon-
momentum transfer leads to more photoelectron yield for pz>0 than that for pz<0. The global
maxima of Y+θ and Y−

θ are no longer equal, although they both appear at θ = 90◦ for the atom and
the molecule, as shown in Fig. 3(c). In this particular case, the pulse interacts with two atomic
centers at the same time. The situation becomes complicated when the pulse no longer travels
perpendicular to the molecular axis. As shown in Figs. 3(a) and 3(b), the PADs for the atom are
tilted towards the light direction and they peak at the angle (referred to as θA) far from θ = 90◦.
For the molecule, the interference maximum is also tilted but peaks at the angle (referred to as
α0) slightly smaller than 90◦. At a first glance, the tilted interference maximum is affected by
the photon-momentum transfer during the interaction. This is true, but it was shown that the
finite speed of light plays a more important role in modifying the interference patterns [8]. In
details, beyond the dipole approximation, there is a time delay for the pulse interacting with one
and the other atomic centers of the molecule due to the finite speed of light, resulting in a phase
difference between the ionizing wave packets generated from two centers. Such phase difference
eventually modifies the double-slit interference pattern of the photoelectrons.

It was proposed that by finding the interference maxima, one can obtain the interacting time
delay that is as small as hundreds of zeptoseconds [8]. However, as illustrated in Fig. 3 and also
shown by previous works [9], the photon-momentum transfer has impact on the interference
maxima. Moreover, in multielectron systems, the multielectron dynamics would potentially
affect the interference patterns, as discussed in [10]. These factors might limit the accuracy of
extracting the time delay from the interference maximum. In the following, we will show that
adopting the interference minima instead of the maxima will rule out the side effects and provides
us with a better way to decode the interacting time delay.

We start with the wave function of the photoelectron ionizing from the atom, which is written
as

ΨA(p) = A(p) exp[i(p · r − Ekt)], (8)
where A(p) describes the amplitude of the yield distribution and Ek = p2/2 indicates the final
kinetic energy of the photoelectron. In Eq. (8), we have made two assumptions: (A1) the
electronic wave packet originates from the origin and (A2) the Coulomb effect on the spreading
wave packet is neglectable. By further assuming that the ionizing wave packet generated from
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each center of the molecule is equivalent to that from a single atom (referred to as the assumption
A3), we can write the wave function for the photoelectron emitted from the left and right atomic
centers, respectively, as

ΨL(p) = A(p) exp{i[p · r1 − (Ekt + ωtd)]}, (9)

ΨR(p) = A(p) exp[i(p · r2 − Ekt)], (10)

with r1,2 = r ± R/2 and R = (R, 0, 0). In Eq. (9), td indicates the interacting time delay. The
term ωtd is the extra phase difference between the wave packets generated from the left and right
atomic centers due to the time delay. This phase difference can be understood as following. We
assume that the xuv pulse interacts with the atom on the left side earlier. Then, by absorbing the
photon energy, the total energy of the wave packet about to be ionized from the left core is lifted
by ω, while that on the right side remains unchanged. When a duration of td passes, an initial
phase difference of ωtd between two sides arises. After the interaction, the ionizing wave packets
from both sides experience the same process: carrying the same energy, escaping from the parent
core, and ending up with the same kinetic energy, which will accumulate the same phase for both
wave packets. Thus, the overall phase difference (regarding the energy part) between ΨL and ΨR
is ωtd.

Since we have Ek = ω − Ip in single-photon ionization, with Ip being the ionization potential,
we define E0 = Ek + Ip ≡ ω as the initial kinetic energy of the photoelectron. Then, the wave
function of the photoelectron from the diatomic molecules is written as

ΨM(p) ≈ ΨL(p) + ΨR(p) =A(p) exp[i(p · r − Ekt)]

× exp
(︃
−ip ·

R
2

)︃
× {1 + exp[i(p · R − E0td)]}.

(11)

On the righthand site of Eq. (11), the first line equals to ΨA(p), i.e. the photoelectron wave
function from a single atom. The second one simply introduces an extra global phase to the
wave function. The last one is the interference term which modulates the PADs. In principle,
the interacting time delay can be decoded from the interference pattern as td appears in the
interference term. However, it could be tricky for measurements. Let us look into the conditions
for the extrema of the interference. The interference term leads to its maxima when the following
condition is satisfied:

exp[i(p · R − E0td)] = 1. (12)

For the given photoelectron momentum p =
√︁

2(ω − Ip), the interference maxima can be found
at the angles θn satisfying

pR cos θn − E0td = n · (2π). (13)

In particular, for the zeroth-order interference maximum (i.e., n = 0), we define the tilt
parameter as

TTheo ≡ cos θ0 =
E0td
pR
=

E0
pc

cos β (14)

by assuming td = (R cos β)/c. Note that the conditions shown above only guarantee the maxima
of the interference term in Eq. (11). The global maximum of the PAD relies on the envelope A(p)
as well. In general cases, A(p) peaks beyond θ0, unless the pulse travels perpendicular to the
molecular axis, as already shown in Fig. 3. Therefore, the angle α0 extracted from the maximum
of the observed interference fringe is expected to differ from θ0. To verify our expectation, we
compare the values of TTheo and cosα0 (extracted from the simulated PADs) at three internuclear
distances in the case of β = 0. The results are shown in Fig. 4. It is noticeable that cosα0 tends to
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deviate from TTheo more significantly as the internuclear distance becomes smaller. This can be
intuitively understood from Fig. 5, where we show the PADs obtained from numerical solutions
of the TDSEs for R = 1.4 and 10 a.u. and β = 0. For larger R, the frequency of the modulation
of the interference fringes becomes higher. In this case, the interference fringes are so narrow
that the tilted envelope hardly modifies the interference maxima. For R = 1.4 a.u., however, the
broad distribution of the interference fringes would be affected more significantly, leading to the
deviation of cosα0 from TTheo.

Fig. 4. The tilt parameter as a function of the molecular internuclear distance in the case of
β = 0. The locations of the maxima and the minima are obtained with the spline interpolation
of the photoelectron angular distributions.

Fig. 5. The photoelectron angular distributions for the atom and the molecules of R = 1.4
and 10 a.u. in the case of β = 0.

To rule out the effect of the envelope A(p), we turn to the interference minima. According to
Eq. (11), the condition for the interference minima is given by

exp[i(p · R − E0td)] = −1. (15)

The two neighboring minima of the zeroth-order maxima are located at the angles θ± given by

pR cos θ±−E0td = ±π. (16)

Then, we can obtain the relation between θ± and θ0 as following:
1
2
(cos θ++ cos θ−) =

E0td
pR
=

E0
pc

cos β = cos θ0 ≡ TTheo. (17)
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Theoretically, the interference term in Eq. (11) equals to zero at θ±, so the effect of the envelope
A(p) on the interference minima should be vanishing. For demonstration, we extract the angles
α± for the neighboring minima of the zeroth-order maxima from the PADs and show the tilt
parameter given by (cosα+ + cosα−)/2 in Fig. 4. One can see that the theoretical prediction
is generally in agreement with the observation given by (cosα+ + cosα−)/2. In particular, the
deviation for small internuclear distances is reduced remarkably.

In Fig. 4, we notice that TTheo is slightly higher than the tilt parameter given by (cosα+ +
cosα−)/2. One of the possible reasons is that we assumed a constant initial kinetic energy equal
to the photon energy in Eqs. (9) and (17). In fact, the photoelectron would not appear in the
infinite distance from the core instantly or reach the kinetic energy of Ek = ω − Ip instantly after
the interaction. Instead, its kinetic energy will decline from E0 to Ek when it tries to escape from
the Coulomb potential. The energy decline would become more pronounced under the stronger
Coulomb attraction. As a result, the theoretical TTheo has been overestimated by adopting E0 = ω
in Eq. (14), especially for smaller internuclear distances. Besides, the assumptions A1–A3
mentioned in the previous discussion are also the potential reasons leading to the deviation
between the theoretical prediction and the numerical calculations. Nevertheless, the assumptions
A1–A3 are fairly justified as the deviation is less than 1.6%.

Furthermore, the theoretical model given by Eq. (14) indicates that the tilt parameter is linearly
proportional to cos β. In Fig. 6, we show the dependence of the tilt parameter on the direction of
the light propagation. We can see that the tilt parameters obtained from the interference minima
of the PADs agree with the theoretical results very well for all three internuclear distances.

Fig. 6. The tilt parameter as a function of cos β at three internuclear distances.

So far, the present work based on the single-active-electron system does not reproduce
the results measured in the experiment [8], even if we look at the tilt parameters given by the
interference maxima (see Fig. 6). On the bright side, however, we have shown that the interference
minima of the observable PADs perform a better role in extracting the information regarding the
interacting time delay, as they mathematically rule out the influence from the photon-momentum
transfer. The remaining question is whether the multielectron effect could be ruled out as well
at the interference minima. To answer this question, let us revisit the theoretical model given
by Eq. (11). On one hand, the photon-momentum transfer relies on the Coulomb interaction
of the photoelectron with the ion, as shown by previous studies [12]. If we further consider
an additional active bound electron remaining in the ion, then the electron-electron Coulomb
interplay would most likely modify the momentum transfer process. This may lead to the further
modification of the overall angular distribution of the photoelectron given by A(p). This would
potentially affect the tilt parameters corresponding to the interference maxima. However, as
shown in our previous discussion, it can be safely ruled out if we adopt the minima to calculate



Research Article Vol. 29, No. 23 / 8 Nov 2021 / Optics Express 38766

the tilt parameters. On the other hand, the active electron remaining in the ion would change
the deceleration of the photoelectron and thus might affect the interference term in Eq. (11). To
estimate the impact, we may compare it to the case where an additional nucleus is present or
not. For instance, the Coulomb attraction on the electron escaping from the first core at the
beginning of the ionization for R = 1.4 a.u. is almost twice stronger than that for R = 10 a.u. Yet,
in both cases the deviation of the tilt parameters between the theoretical model and the numerical
simulations (for the minima) is rather small, as shown in Fig. 4. Therefore, by qualitatively
analyzing the electron-electron Coulomb interaction, we expect that the multielectron effect
would have hardly impact on the locations of the interference minima.

4. Conclusion and outlook

In summary, we have shown how two kinds of nondipole effects modify the double-slit interference
in single-photon ionization of H+2 when the xuv pulse travels in different directions. The single-
atom nondipole effect leads to a tilted envelope of the overall interference pattern, whereas the
interacting delay between the pulse and two nuclear centers further modifies the locations of
the interference maxima and minima. Our results show that the locations of the interference
minima are hardly changed by the single-atom nondipole effect. Further analysis indicates that
the multielectron dynamics is likely to have insignificant effect on the interference minima as well.
By adopting the two neighboring minima of the zeroth-order interference maxima to calculate the
tilt parameters, we found good agreement between theoretical model and numerical simulations
regarding the time delay between the pulse interacting with two centers of the molecule.

Yet, the present work, as well as the previous theoretical study having included the multielectron
dynamics [10], fails to reproduce the experimental results in [8]. In the framework of Schrödinger
equation, the laser field is treated classically and we can investigate how the given laser field
induces the electronic dynamics. However, how would the electronic motion impact the imposing
photon during the interaction? From another perspective, there is electron cloud between two
nuclei of a molecule, so is the phase velocity of the external field still the speed of c inside the
molecule? The answers to these questions are unknown yet. Further study is in progress as these
questions might be the key to the gap between the measurement and the simple theoretical model
regarding the zeptosecond time delay.
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