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Airy pulse shaping using time-dependent power-law potentials
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We investigate the temporal and spectral evolutions of finite-energy Airy pulses in the presence of power-law
optical potentials. The potentials are generated by the time-dependent pumped light, which propagates together
with the Airy pulses in a highly nonlinear optical fiber. We show that the intrinsic acceleration of Airy pulses
can be modified by an external force that stems from a linear potential, and hence unidirectional frequency shift
can be realized. When a triangle potential is employed, the pulse will exhibit self-splitting both in temporal and
spectral domains. Additionally, as a parabolic potential is utilized, both the temporal waveform and frequency
spectrum of the Airy pulse will exchange alternately between the Airy and Gaussian profiles. By using higher-order
power-law potentials, we also realize both revival and antirevival effects for the Airy pulses. The study may find
wide applications in pulse reshaping and spectral-temporal imaging for both optical communication and signal
processing.
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I. INTRODUCTION

In 1979, Berry and Balazs [1] found that the nonspreading
Airy wave packet could be a solution of the free particle
Schrödinger equation, which has the form of the Airy function.
The most prominent feature of the Airy wave packet is the
self-accelerating behavior without external force. However,
this wave packet contains infinite energy and cannot be realized
physically. Siviloglou and Christodoulides and co-workers
firstly proposed theoretically [2] and experimentally demon-
strated [3] the concept of the finite-energy Airy beams (FEABs)
with limited beam width. The FEABs have attracted consid-
erable interest due to the intriguing characteristics including
transverse self-accelerating [4], diffraction-free propagating
[5], and self-healing [2,6]. These features have found wide ap-
plications in particle trapping [7,8], light bullets [9,10], curved
surface plasma [11,12], and nonlinear optical effects [13–19].
Additionally, the propagation of FEABs can be controlled
through external optical potentials, realized by tailoring the
transverse refractive index distribution of the medium [20–25].

Recently, inspired by the time-space duality [26], the
temporal finite-energy Airy pulses (FEAPs) have also been
proposed by exploiting the analogy between spatial paraxial
diffraction and temporal narrow-band dispersion. The FEAPs
can be obtained as a Gaussian pulse propagates through a
third-order dispersion fiber [27] or by imparting cubic phase
modulation onto a Gaussian pulse [28]. Analogously, FEAPs
manifest the characteristics of dispersion-free propagating
[29], self-accelerating, and self-healing, which have been
used in supercontinuum generation [30] and signal frequency
shifting [31–33]. Recently, it has been reported that the prop-
agation of FEAPs can be controlled by dispersion modulation
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[34,35], initial frequency chirping [36], and Kerr nonlinearities
[37,38]. In fact, a temporal potential generated by the nonlinear
interaction between weak signal and strong pump lasers can
be used for either temporal or spectral signal manipulation
[39–42]. In quantum systems, the power-law potentials have
been intensively investigated since the linear potential could
arouse acceleration of particles and the parabolic potential is
often associated with harmonic oscillation. Additionally, the
higher-order potentials usually lead to nonlinear light-matter
interaction. It has been reported that a time-dependent wave
packet may exhibit revival behavior in a one-dimensional
power-law potential [43].

In this work, we shall study the temporal-spectral dynamics
of FEAPs in time-varying optical potentials including linear,
parabolic, and higher-order power-law potentials. We show
that within a linear potential, the Airy pulse acceleration can
be enhanced or reduced, and the frequency spectrum unidi-
rectional shift can be realized accordingly. When a triangle
potential is utilized, the pulse will experience self-splitting both
in temporal and spectral domains. Interestingly, as a parabolic
potential is employed, the temporal profile and spectrum
envelope of the Airy pulse will both alternately change between
the Airy and Gaussian shapes. We also analyze the pulse
center and widths variation during propagation. In addition, the
revival and antirevival behaviors of the Airy pulse are observed
for higher-order potentials. The revival distance decreases as
the order increases. The study provides a promising approach
to shape the temporal and spectral envelopes of an Airy pulse.

II. THEORERICAL MODEL

We consider a signal light of an Airy pulse propagating
in a highly nonlinear optical fiber. In the presence of cross-
phase modulation (XPM) between the weak signal light and
a copropagating strong pump light, the pulse envelope can be
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described by the modified nonlinear Schrödinger equation,

∂As

∂z
+ β1

∂As

∂t
+ iβ2

2

∂2As

∂t2
= i2γ |Ap|2As, (1)

where As is the slowly varying amplitude of the signal light.
Ap is the amplitude of the pump light, which is assumed to
be constant during propagation. β1 = 1/vg is the group delay
with vg being the pulse group velocity. β2 is the second-order
dispersion (GVD) coefficient and γ is the Kerr nonlinear
coefficient for the fiber. Note that the higher-order dispersion
and the self-phase modulation (SPM) effect are neglected here.
It has been revealed that the third-order dispersion can realize
inversion propagation and tight focusing for the Airy pulse
[34]. Since we consider a long-duration Airy pulse, the effect
of third-order dispersion is negligible with respect to that of
GVD. For the SPM effect, it can lead to the soliton shedding
effect for the Airy pulse [37,38]. However, due to the weak
intensity of the signal light compared to the pumped light, the
influence of SPM is much weaker than that of XPM and can
be neglected. Additionally, the required optical potentials for
the Airy pulse are created through XPM [39] by controlling
the intensity profiles of the pumped light. Generally, Eq. (1)
can be rewritten in the normalized form,

i
∂U

∂Z
+

[
1

2
s

∂2

∂T 2
+N2V (T )

]
U = 0, (2)

where U = As/A0; V (T ) = |Ap|2/A2
0 denotes the normalized

amplitudes of the signal and pump light with A0 being the
pulse peak amplitude. T = (t − z/vg)/T0 is the normalized
time in the frame of reference moving at a group velocity
of vg . T0 is an arbitrary time scale, which is usually chosen
as the main lobe width of the Airy pulse. For T > 0, the
Airy pulse is accelerating; otherwise, it is decelerating. Z =
z/LD2 represents the normalized propagation distance, which
is measured in units of the dispersion length LD2 = T 2

0 /|β2|.
s = 1 (or s = −1) denotes the anomalous or normal group
velocity dispersion, respectively. Here we choose s = 1. N2 =
2LD2/LNL; LNL = 1/(γA2

0) is the nonlinear length. In this
work, we assume N = 1 with appropriate choices of LD2 and
LNL.

The envelope of the FEAPs can be de-
scribed by U (T ) = Ai(T )exp(aT ), where Ai(T ) =∫ ∞
−∞ exp(−i8π3v3/3 − 2πivT )dv is the Airy function with

a(0 < a < 1) being the truncation coefficient. In the absence
of external potential, the Airy pulse exhibits self-acceleration
in the T -Z plane along a parabolic temporal trajectory
[35], as shown in Fig. 1(a). As the time-varying potential
V (T ) interacts with the Airy pulse shown in Fig. 1(b), the
propagation dynamics of the Airy pulse can be engineered.
Due to the enormous degrees of freedom in choosing the
format of the time-varying potentials, the Airy pulse can
be tailored to exhibit various propagation properties. In this
work, we investigate a family of power-law potentials, which
are generally described by [43]

Vn(T ) = V0|T |n, (3)

where V0 is the effective potential depth. Specifically, the
potential is linear for n = 1 and parabolic for n = 2. For

FIG. 1. (a) Schematic of self-acceleration of a finite-energy Airy
pulse in normalized coordinates. (b) Schematic of the cross-phase
interaction between the Airy pulse (red solid line) and the optical
potential (blue dashed line) in a highly nonlinear fiber (HNLF). The
potential is generated by a time-varying light field.

sufficiently large n, it will approach a potential well of infinite
depth.

III. RESULTS AND DISCUSSION

A. Airy pulse propagation in linear potential

Firstly, we consider the linear temporal potential, which is
given by

V (T ) = βT , (4)

where β is the gradient of the linear potential, which is equiv-
alent to a constant force applied along the time coordinate.
By performing Fourier transformation [44], we can obtain the
evolution of the FEAPs:

U (T ,Z)

= Ai

[(
T − Z2

4
+ βZ2

2

)
+ iaZ

]

× exp

(
aT − a

2
Z2 + i

a2

2
Z + i

T

2
Z − i

12
Z3

)

× exp

(
a

2
βZ2 + i

4
βZ3 + iV0Z − iβT Z − i

6
β2Z3

)
. (5)
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FIG. 2. (a)–(d) Temporal evolutions of a finite-energy Airy pulse in a linear potential with different gradient β: (a) β = 0. (b) β = −2.
(c) β = 1

2 . (d) β = 2. (e)–(h) The corresponding spectral evolutions for the Airy pulse in (a)–(d). Other parameters are a = 0.05 and T0 = 100 ps.

It shows that the Airy pulse propagates along a parabolic
trajectory T (Z) = ( 1

4 − β/2)Z2 in the T -Z plane. The cor-
responding “velocity” and “acceleration” are v = dT /dZ =
( 1

2 − β)Z and a = d2T/dZ2 = 1
2 − β. Here 1

2 is the intrinsic
acceleration and −β is the external acceleration imposed
by the applied linear potential. For β < 0, the Airy pulse
will be accelerated even faster. On the contrary, for β > 0,
the acceleration will decrease. Specifically for β = 1

2 , the
acceleration can be completely canceled. For β > 1

2 , the Airy
pulse can be even accelerated in the opposite direction.

To confirm the above analysis, we simulate the Airy pulse
propagation in linear potential by using the split-step Fourier
method [26]. The simulation results are shown in Fig. 2.
Figure 2(a) shows the temporal evolution of the Airy pulse
without external potential, which exhibits the characteristic
parabolic trajectory. For β = −2 shown in Fig. 2(b), the Airy
pulse is accelerated even faster with larger deflection in the time
dimension. Specifically for β = 1

2 as shown in Fig. 2(c), the
additional acceleration provided by the external potential can
cancel the intrinsic acceleration. On the contrary, β = 2 will
lead to the displacement of the Airy pulse in the opposite time
dimension, as depicted in Fig. 2(d). The enhanced or reduced
acceleration of the Airy pulse is valuable for many applications
[4,12].

Next we investigate the influence of the linear potential on
the spectral evolution of the Airy pulse. From Eq. (5), the
instantaneous phase shift of �ϕ(T ,Z) = −βT Z corresponds
to the instantaneous frequency shift and chirp:

δω(Z) = ∂�ϕ(T ,Z)

∂T
= −βZ,

c(Z) = 1

2π

∂2�ϕ(T ,Z)

∂T 2
= 0. (6)

Therefore the linear potential can induce a linear spectral
shift for the Airy pulse. Also note that the chirp vanishes, and

the spectrum can maintain its shape during the propagation pro-
cess. The simulated spectral evolutions for β = 0,−2, 1

2 , and
2 are shown in Figs. 2(e)–2(h), which exhibit no spectral shift,
linear blueshift, and linear redshift, respectively. Meanwhile,
the spectral bandwidth can stay unchanged during propagation.

By combining two linear potentials, we can construct a
symmetric triangle potential V (T ) = β|T |. The solution of
Eq. (2) can be written as

U (T ,Z) = Ai

[(
T − Z2

4
∓ βZ2

2

)
+ iaZ

]

× exp
[
a
(
T ∓ a

2
βZ2

)
− a

2
Z2

]

× exp

[
i

2

(
a2+T ∓ a

2
βZ2

)
Z

+ i(±βT Z) − i

6
β2Z3 − i

12
Z3

]
, (7)

where we choose “+(−)” for T > 0 or T < 0. The correspond-
ing temporal trajectory is thus given by

T = Z2

4
± βZ2

2
. (8)

The “acceleration” is thus 1
2 + β for T < 0 and 1

2 − β

for T > 0. If β < − 1
2 , the Airy pulse at T < 0 and T > 0

accelerates along the negative and positive directions, giving
rise to the phenomenon of pulse self-splitting. In the case of
− 1

2 < β < 1
2 , the whole pulse accelerates along the positive

direction but with different accelerations at T < 0 and T > 0,
respectively. The case of β > 1

2 is opposite to that of β < − 1
2 .

The corresponding frequency shift is thus given by

δω(Z) = ±βZ. (9)

Therefore the spectrum will also exhibit the self-splitting
effect with two slopes of ±β/(2π ), respectively. In addition,
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FIG. 3. Temporal evolutions of a finite-energy Airy pulse in a
triangle potential with different relative time delay �T between
the Airy pulse and optical potential with β = −2,a = 0.05, and
T0 = 100 ps. (a) �T = 0 and (b) �T = 1. (c), (d) The corresponding
spectral evolutions in (a), (b), respectively.

the power distribution ratio can be controlled by changing the
relative time delay �T between the pulse and the potential in
both the temporal and spectral domains.

In Fig. 3, we display the numerical simulations of Airy
pulse evolution in the triangle potential with β = −2. As
shown in Fig. 3(a), the pulse is divided into two parts, each
of which accelerates along a parabolic trajectory but in the
opposite directions. By introducing a relative time delay of
�T = 1 as shown in Fig. 3(b), we can increase the power that
accelerates along the positive direction. The corresponding
spectral evolutions are shown in Figs. 3(c) and 3(d), both
of which exhibit the effects of self-splitting. The effects
of self-splitting in both temporal and spectral domains can
provide opportunities to control the propagation of the Airy
pulse, with potential applications in pulse reshaping and signal
manipulation.

B. Airy pulse propagation in parabolic potential

In this section, we consider the situation of a parabolic
potential,

V (T ) = 1
2α2T 2, (10)

where α measures the depth of the potential. Such parabolic
potential is originally studied in the context of harmonic
oscillators both in classical and quantum regimes. In optics,
a Gaussian pulse propagating in a parabolic index distribution
medium is analogous to the motion of a harmonic oscillator,
which oscillates back and forth and follows a cosine trajectory
[25,43], and the Gaussian envelope can be maintained during
propagation. For an Airy pulse propagating in a temporal

parabolic potential [45], the envelope evolution is given by

U (T ,Z) = f (T ,Z)
∫ +∞

−∞

[
A(t,0) exp

(
ibt2)] exp (−iWt)dt,

(11)

where

W = αT csc (αZ), b = α cot (αZ)/2,

f (T ,Z) =
√

−iW/2πT exp(ibT 2). (12)

By using Fourier transformation, we can obtain

U (T ,Z) = f (T ,Z)

√
i
π

b
exp

(
a3

3

)
Ai

(
W

2b
− 1

16b2
+ i

a

2b

)

× exp

[
−i

W 2

4b
− 1

3

(
a + i

4b

)3
]

× exp

[(
a + i

4b

)(
W

2b
− 1

16b2
+ i

a

2b

)]
. (13)

From Eq. (13), we find that the Airy pulse follows a periodic
oscillating trajectory,

T = 1

4α2

sin2(αZ)

cos (αZ)
, (14)

with the oscillation period given by

D = 2π

|α| . (15)

Therefore the oscillation period is inversely propor-
tional to the depth of the parabolic potential. At Z =
mD(m = 1,2, . . .), the Airy pulse can be restored to its initial
profile with U (T ,Z) = U (T ,0). At Z = (2m + 1)D/2, we
have U (T ,Z) = U (−T ,0); the pulse envelope is inverted and
accelerates in the opposite direction. In particular, for b = 0 at
Z = (2m + 1)D/4, we have

U

(
T ,Z = 2m + 1

4
D

)
=

√
−i

sα

2b
exp(−aα2T 2)

× exp

[
a3

3
+ i

s

3
(α2T 2 − 3a2αT )

]
,

(16)

where s = 1 as m is even and s = −1 as m is odd. Differing
from a Gaussian pulse which maintains its shape in the
entire propagation process, the Airy pulse will experience a
phase transition from an Airy profile to the Gaussian shape
at the positions of Z = (2m + 1)D/4. From the periodic
trajectory, we can also obtain the periodic velocity and ac-
celeration of v = [tan(αZ)sec(αZ) + sin(αZ)]/(4α) and a =
[sec3(αZ) + sec(αZ)tan2(αZ) + cos(αZ)]/4, both of which
reach infinity at these phase transition points.

In Fig. 4(a), we perform numerical simulations of the Airy
pulse propagation in parabolic potential with α = 0.5. The
pulse exhibits a periodic oscillation during propagation with
the period of D = 4π . The instantaneous pulse profiles at
Z = 0,D/4,D/2,3D/4, and D are shown in Fig. 4(b). The
numerical results can agree well with the theoretical analysis.
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FIG. 4. (a) Temporal evolutions of a finite-energy Airy pulse in parabolic potential with α = 0.5,a = 0.1, and T0 = 100 ps. (b) The
normalized temporal amplitude profiles at Z = 0,D/4,D/2,3D/4, and D, as marked by the white dashed lines in (a). (c) The spectral dynamics
of the Airy pulse corresponding to (a). (d) The normalized amplitude spectra at distances of Z = 0,D/4,D/2,3D/4, and D. The black dashed
and red solid lines in (b), (d) represent the numerical and theoretical results, respectively.

It clearly shows that at Z = D/4 and 3D/4, the Airy envelope
transforms into a Gaussian profile, which also validates the
above analysis.

Figure 4(c) shows the spectral dynamics of an Airy pulse,
which is obtained by performing Fourier transformation of the
temporal evolution in Fig. 4(a). Of particular interest is that the
Gaussian spectrum of the Airy pulse also follows a periodic
variation during propagation. The theoretical and numerical
spectra features at Z = 0,D/4,D/2,3D/4, and D are shown
in Fig. 4(d), which also agree well with each other. At the phase
transition points of Z = D/4 and 3D/4, the Gaussian spectrum
will transform into an Airy profile, which exhibits a process
opposite to that of the temporal evolution.

Now we discuss the influence of potential depth α on the
Airy pulse evolution. The pulse center ТC and duration W are
defined by the first- and second-order moments of the pulse
temporal waveform, respectively [46]:

TC =
∫ +∞
−∞ T |U |2dT∫ +∞
−∞ |U |2dT

, (17a)

W =
√√√√2

∫ +∞
−∞ (T − TC)|U |2dT∫ +∞

−∞ |U |2dT
. (17b)

Analogously, the spectral center and bandwidth can be
defined by

ωC =
∫ +∞
−∞ ω

∣∣Ũ ∣∣2
dω∫ +∞

−∞
∣∣Ũ ∣∣2

dω
, (18a)

�ω =
√√√√2

∫ +∞
−∞ (ω − ωC)

∣∣Ũ ∣∣2
dω∫ +∞

−∞
∣∣Ũ ∣∣2

dω
. (18b)

The pulse center shifts during propagation for different α

are illustrated in Fig. 5(a), which can be precisely described by
Eq. (15). Here the potential depth only changes the oscillation
period but has no effect on the maximum shift of the pulse
center. The corresponding duration variations for α = 0.3,0.5,
and 1 are shown in Fig. 5(b). As α is small [inset in Fig. 5(b)],
the potential is very weak and the pulse width experiences
considerable expansion during propagation, which is close to
the situation of potential-free propagation. For α = 0.3, the
pulse width reaches the maximum at phase transition points
and the minimum at integer multiples of the half oscillation
period, while for sufficiently large depth such as α = 1, the
pulse is squeezed firstly and then broadened, and oscillates
with the period of D/2.
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FIG. 5. (a) The center and (b) duration variations of a finite energy
Airy pulse during propagation for different depths α. The inset in
(b) represents the pulse-width variation as α = 0.01. (c), (d) The
corresponding spectral center and bandwidth evolutions versus the
propagation distance.

Next we turn to the spectral evolution of an Airy pulse
in a parabolic potential. Figure 5(c) shows the shifts of
the spectral center ωc as α = 0.3,0.5, and 1, all of which
exhibit periodic behaviors; it returns to its initial value at half
integer multiples of the oscillation period. The corresponding
spectral bandwidth variations �ω are plotted in Fig. 5(d);
the bandwidth is also squeezed and broadened periodically.
Note that here the pulse width and spectral bandwidth vary

oppositely, which is basically governed by the uncertainly
principle.

C. Airy pulse propagation in higher-order power-law potentials

In this section, we investigate the Airy pulse propagation in
higher-order power-law potentials with n > 2. The situation
is analogous to the propagation of a localized quantum wave
packet in an infinite well, which can exhibit periodic revival
and antirevival behaviors [43]. Such revival properties can be
described by the normalized autocorrelation and anticorrela-
tion functions, which are defined by

A(Z) =
∫ +∞

−∞
U ∗(T ,Z)U (T ,0)dT

=
∫ +∞

−∞
Ũ ∗(ω,Z)Ũ (ω,0)dω,

Ã(Z) =
∫ +∞

−∞
U ∗(−T ,Z)U (T ,0)dT

=
∫ +∞

−∞
Ũ ∗(−ω,Z)Ũ (ω,0)dω, (19)

where U (T , Z) and U (T , 0) are the instantaneous and
initial temporal wave functions with Ũ (ω,Z) and Ũ (ω,0)
being the corresponding amplitude spectra, respectively. A(Z)
varies periodically with Z and reaches |A(Z)| = 1 at Z =
mZT (m = 1,2, . . .), where ZT is the revival period for the
wave packet. At the revival positions, both the temporal and
spectral wave packets satisfy |U (T ,mZT )| = |U (T ,0)| and
|Ũ (ω,mZT )| = |Ũ (ω,0)|. On the contrary, |Ã(Z)| = 1 at the
positions of Z = (m + 1

2 )ZT (m = 0,1, . . .); both the temporal

FIG. 6. (a) Normalized autocorrelation (dotted solid red curves) and anticorrelation (dashed blue curves) functions of Airy pulse versus
propagation distance in the case of n = 1,2,3,4, and 5. (b) Temporal evolutions for the Airy pulse by choosing n = 4. (c) The spectral dynamics
corresponding to (b). Other parameters are chosen as a = 0.1,T0 = 100 ps, and V0 = 0.1.
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FIG. 7. The revival period of a finite-energy Airy pulse for
different potential orders n and depths V0. In all cases, we choose
a = 0.1 and T0 = 100 ps.

waveform and frequency spectrum exhibit mirror symme-
tries with the initial ones, which satisfy |U (T ,(m + 1

2 )ZT )| =
|U (−T ,0)| and |Ũ (ω,(m + 1

2 )ZT )| = |Ũ (−ω,0)|.
In Fig. 6(a), we plot the autocorrelation and anticorrelation

functions for n = 1,2,3,4, and 5. A(Z) and Ã(Z) manifest
periodic variations and reach the maximum values of 1 at
even and odd integer multiples of the half revival period,
respectively. Specifically for a linear potential with n = 1 as

discussed in Figs. 2 and 3, both A(Z) and Ã(Z) decrease with
Z and ultimately approach 0. The Airy pulse is accelerating
all the way without exhibiting either revival or antirevival
behaviors. For n = 2, both periodic revival and antirevival
behaviors of the Airy pulse have been displayed in Fig. 4,
which agrees well with the theoretical analysis. Figures 6(b)
and 6(c) show the temporal and spectral evolutions of the Airy
pulse in the power-law potentials where we choose n = 4 as
an example. The pulse can be sufficiently localized in the
potential well, which experiences periodic oscillations in both
the temporal and spectral domains. In Fig. 7, we extract the
revival period from the autofunctions of Fig. 6(a) by choosing
different potential orders and depths. For a fixed potential
depth V0, the revival period decreases as n increases, which
approaches that of an infinite-depth potential well, while for a
fixed potential order n, the revival period can be squeezed by
choosing a deeper potential well.

To quantitatively analyze the Airy pulse evolution in a
higher-order power-law potential, we examine the variations
of the wave-packet center and width for different orders both in
time and frequency domains, as defined in Eqs. (17) and (18).
Figure 8(a) illustrates the averaged maximum and minimum
delay of the pulse center for varying n within the propagation
distance Z = 40, both of which decrease as n increases,
indicating that the wave packet can be better localized. The
pulse center distributions for n = 4 and 6 are plotted as the inset

FIG. 8. (a), (b) Averaged maxima and minima of pulse center and duration for different orders n within the propagation distance of Z = 40.
(c), (d) The corresponding averaged maxima and minima of spectral center and bandwidth versus n. The insets in (a), (b) represent the pulse
center and width evolutions with (c), (d) denoting the spectral center and bandwidth evolutions, respectively. Here we choose the orders n = 4
and 6. The other parameters are a = 0.1,T0 = 100 ps, and V0 = 0.1.
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in Fig. 8(a); they oscillate nearly periodically and reach the
maximal lateral shifts at antirevival positions. The correspond-
ing pulse-width evolution is shown in Fig. 8(b); it becomes
broader as n increases. In addition, the pulse width also varies
periodically with the period being half of the pulse center
evolution [see the inset in Fig. 8(b)]. It is worth noting that over
a longer propagation distance, the pulse will be significantly
broadened due to the dispersion; thus |A(Z)| and |Ã(Z)| will
decrease with the periodicity becoming weakened gradually.

Next, we display the spectral center and bandwidth of an
Airy pulse during propagation for varying orders n. Figure 8(c)
shows the averaged frequency shift ωc for different orders n.
The variations of ωc as n = 4 and 6 are also plotted [see the
inset in Fig. 8(c)], both of which exhibit periodic behaviors and
return to the initial value at half integer multiples of the revival
period. Figure 8(d) shows the spectral bandwidth evolution
�ω for different order potentials; it is squeezed as n increases.
Since the temporal and spectral wave packets are related to
each other through Fourier transformation, their widths vary
in opposite ways, accordingly.

IV. CONCLUSIONS

In conclusion, we have investigated the temporal-spectral
dynamics of the finite-energy Airy pulse in an optical fiber with

external potentials including linear, parabolic, and higher-order
power-law potentials. We find that the acceleration of the Airy
pulse can be controlled by changing the gradient of the linear
potential, and the corresponding frequency unidirectional shift
can be realized. When the linear potential is symmetric, the
self-splitting will appear in both temporal and spectral domains
during propagation, and power distribution can be controlled
by changing the relative delay between the Airy pulse and
potential. While in the parabolic potential, the Airy pulse
undergoes periodic inversion in both temporal and spectral
domains. The pulse also exhibits phase transition points at
which an Airy envelope transforms into the Gaussian profile.
In addition, the revival and antirevival behaviors are also
discussed in higher-order power-law potentials. We find that
the revival period decreases as the potential order increases.
Our investigation may lead to potential applications in pulse
reshaping, temporal-spectral imaging, and signal processing
systems.
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