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Laser-induced core-polarization effects in high-order harmonic generation from solids
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Under intense laser fields, atoms undergo core polarization, i.e., redistribution of the electron density around
the nucleus. We systematically investigate the effect of core polarization on high-order harmonic generation
(HHG) from solids using time-dependent density-functional theory in a laser-driven linear chain of atoms. It is
shown that the presence of core polarization induces substantial variations in HHG compared with the results
with a frozen core. Our study further provides insight into these phenomena by combining an approach that
distinguishes the effects of core polarization from different shells and compares the contributions of inner and
outer shells. Ultimately, we propose and demonstrate a two-color pump-probe scheme to effectively control the
core-polarization effects, specifically by activating inner-shell electrons. This work highlights the significance
of multielectron effects for solids and demonstrates the feasibility of manipulating the physical properties of
materials through core polarization.
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I. INTRODUCTION

High-order harmonic generation (HHG) is one of the non-
linear optical phenomena in intense laser-matter interactions
[1,2]. The HHG in the gas phase laid the foundation for
attosecond science [3,4]. Recently, the strong-field response
in solids, in particular, HHG from solids, has captured consid-
erable interest [5–9]. The HHG in solids not only presents a
promising avenue for generating extreme ultraviolet radiation
sources but also paves the way for groundbreaking advance-
ments in the field of ultrafast optics [10–13]. Moreover, HHG
serves as a powerful tool for elucidating the intrinsic electric
structure of crystals and investigating the underlying dynam-
ics of their internal electrons [14–21].

Currently, most studies of HHG from solids are rooted
in the single-active-electron (SAE) approximation, which as-
sumes that the active electron experiences a constant effective
potential or moves within an energy band structure obtained
in the absence of an external field. Correspondingly, the
single-electron time-dependent Schrödinger equation (TDSE)
and the semiconductor Bloch equations based on the SAE
model are widely employed in contemporary works explor-
ing the interaction between intense lasers and solid materials
[14,22–28]. Based on the aforementioned models, many stud-
ies have explained various characteristics of HHG from solids,
such as the multiplateau structure and cutoff dependence.
In order to pursue going beyond the SAE models, first-
principles numerical methods such as the time-dependent
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density-functional theory (TDDFT) and the time-dependent
Hartree-Fock theory have also been utilized [29–34]. More
recently, there has been related work on the semiconducting
Bloch equations imposing a Hartree-Fock level of theory [35].
These methods take multielectron dynamics into account.

However, the multielectron effects, which have garnered
significant attention in the study of atomic and molecu-
lar systems [36–46], still require further investigation in
solids. Some studies found that the SAE approximation, uti-
lized in many models, proves reasonable for bulk crystals
or materials featuring model potentials [29,47]. Meanwhile,
electron-electron interactions have been found to play a sig-
nificant role in scenarios involving edges or defects breaking
the translational symmetry [30,32,48–51]. These interactions
often lead to suppression of the generated harmonics, a phe-
nomenon explicable through the perspective of local-field
effects in solid-state physics. Notably, Li et al. discovered
core-polarization effects in HHG from MgO, without any
limitations imposed by boundaries or symmetry breaking in
their study [52]. This study was based on a four-step model
for solid-state HHG, introducing scattering terms phenomeno-
logically to simulate core-polarization effects. They focused
on using a theoretical model to explain the experimental ob-
servations, i.e., anisotropic HHG structures in MgO, revealing
the core polarization in the two-dimensional (2D) field.

In this study we adopt the definition from Ref. [52], where
the atomic nucleus and all bound electrons were considered
as a unified entity referred to as the core. When exposed to an
intense laser, the electrons within the core exhibit a response
by redistributing the charge density in the vicinity of the
atom, known as core polarization. The core polarization con-
sequently leads to changes in the effective potential, thereby
influencing the dynamic behavior of the excited electrons
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and ultimately regulating the radiation properties. The con-
cept of core polarization mentioned in this work encompasses
the effects arising from Coulomb interactions and exchange-
correlation effects among bound electrons, which occur in a
wide range of scenarios closely related to several types of mul-
tielectron phenomena mentioned earlier. However, systematic
studies on this effect are relatively scarce in current research,
indicating the need for further comprehensive investigations.

Our study proposes a subshell polarization approach to
investigate the core-polarization effects. This approach al-
lows us to focus separately on the effects caused by the
polarization of a given shell. We demonstrate that core po-
larization induces a certain degree of harmonics suppression
in a broad region across the first plateau. Additionally, core
polarization causes a peak in a narrow spectral region in the
HHG. The narrow region precisely corresponds to the energy
gap between the highest valence band and the inner valence
band. Combined with analyses including spatial-frequency
analysis, time-frequency analysis, and channel analysis, we
examine the characteristics and radiative properties of these
two phenomena. Ultimately, based on the results of the sub-
shell analyses, we propose a two-color pump-probe scheme to
control the core polarization.

II. THEORETICAL MODEL

We consider a 1D atomic chain model based on TDDFT
[47–51,53–55] in this work. This concise system can not only
describe the interaction between lasers and solids at a level
that encompasses multielectron effects but also allow for a
clearer understanding of the underlying mechanisms. Specif-
ically, we arrange N ions of charge Z in a linear fashion at
positions

xi = [i − (N + 1)/2]a0 (i = 1, . . . , N ), (1)

where a0 is the lattice constant. The Kohn-Sham (KS) orbitals
ϕi,σ (x, t ) satisfy the time-dependent KS equation

i
∂

∂t
ϕi,σ (x, t ) =

(
−1

2

∂2

∂x2
+ vKS[{ρσ }](x, t )

−iA(t )
∂

∂x
+ 1

2
A2(t )

)
ϕi,σ (x, t ), (2)

where vKS[{ρσ }](x, t ) is the KS potential and A(t ) is the vector
potential of the laser. The KS potential is composed of three
components:

vKS[{ρσ }](x, t ) = vion(x) + u[ρ](x, t ) + vxc[{ρσ }](x, t ). (3)

Here vion(x) is the ionic potential, u[n](x, t ) is the Hartree
potential, and vxc[{ρσ }](x, t ) is the exchange-correlation po-
tential in a local-spin-density approximation

vion(x) = −
N∑

i=1

Z√
(x − xi )2 + ε

,

u[ρ](x, t ) =
∫

ρ(x′, t )dx′√
(x − x′)2 + ε

,

vxc[{ρσ }](x, t ) � −
(

6

π
ρσ (x, t )

)1/3

. (4)

FIG. 1. Energy bands obtained from (a) the imaginary-time evo-
lution in real space and (b) the Fourier transform of the ground-state
KS orbitals in reciprocal space. The initially occupied bands are la-
beled VBi (i = 1, 2), while the initially unoccupied bands are labeled
CB j ( j = 1, 2, 3).

Here ρσ (x, t ) and ρ(x, t ) are the spin densities and the total
density, respectively, written as

ρσ (x, t ) =
Nσ∑
i=1

|ϕσ,i(x, t )|2, ρ(x, t ) =
∑

σ=↑,↓
ρσ (x, t ), (5)

where Nσ represents the number of electrons with spin σ =
{↑,↓} and Ne = Z × N = N↑ + N↓ is the total number of
electrons. In the upcoming simulations, we consider a
spin-neutral system (N↑ = N↓ = Ne/2) with the following
parameters: the number of ions N = 80, the lattice constant
a0 = 7 a.u., the smoothing parameter ε = 2.25, and the ion
charge Z = 4. As discussed in Ref. [47], setting 40 ions in the
laser polarization direction can already yield the converged
bulk HHG spectrum. In addition, we also examine the results
by increasing N to 220 and prove that the result of N = 80
converges. For brevity, we use the spin-restricted scheme and
drop the spin index in the following formulation [53].

In order to obtain the ground-state KS orbitals of the sys-
tem, we propagate the free-field KS equation in imaginary
time. Based on the ground-state information, we analyze the
band structures, as depicted in Fig. 1(a). By taking the Fourier
transform of these eigenstates and combining the correspond-
ing energy eigenvalues, we obtain the energy band structures
in momentum space, as illustrated in Fig. 1(b). The five bands
shown are labeled VB1, VB2, CB1, CB2, and CB3. Orbitals
1–80 corresponding to VB1 and orbitals 81–160 correspond-
ing to VB2 are the initially occupied KS orbitals within our
system.

Then we employ the Crank-Nicolson method to numeri-
cally solve the time-dependent KS equations [56]. For the
calculation, a grid spanning from −840 to 840 a.u. is em-
ployed, with the grid length being three times the chain length.
The space step is set to �x = 0.1 a.u. and the time step size
is set to �t = 0.1 a.u. After obtaining the time-dependent KS
wave functions, we can obtain the total current generated by
all the initially occupied orbitals

J (t ) =
∑

i

Ji(t ), (6)
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FIG. 2. Total HHG spectrum from all electrons. The area graphs
represent the original data of the harmonic spectra, while the line
plots illustrate the harmonic intensity after integrating the harmonics
of each order.

where Ji(t ) = 〈ϕi(x, t )| − i∂x |ϕi(x, t )〉 is the single-orbital
current generated by an initially occupied KS orbital. The
total HHG spectral intensity is then calculated as the modulus
square of the Fourier-transformed total current

S(ω) ∝ |J (ω)|2 =
∣∣∣∣
∫

dt J (t )e−iωt

∣∣∣∣
2

. (7)

The laser field used in all ensuing calculations is described by
the vector potential unless otherwise stated,

A(t ) = A0 f (t )sin(ω0t ), (8)

where A0 = 0.26 a.u. is the amplitude and ω0 = 0.023 a.u.
is the frequency, approximately one-tenth of the band-gap
energy of our studied system. The optical field has a duration
of τ = 7T0 (T0 is the optical cycle of the driving laser) and
is enveloped by a trapezoidal shape f (t ), with both the rising
and falling edges each lasting 2T0.

During dynamic time-dependent evolution, the KS po-
tential vKS[{ρ}](x, t ) is dynamically updated based on the
redistributed dynamics of the electron density ρ(t ) at each
step. We simulate the polarization of the core in the laser
field using this approach, which we refer to as “Dynamic”
in the subsequent discussion. As a comparative benchmark
to the dynamic core model, the KS potential is held fixed in
the simulation, constraining electrons to evolve independently
within the static potential of the ground state

vKS[{ρ}](x, t ) � vKS[{ρ}](x, 0) = vGS
KS . (9)

This modeling strategy effectively simulates a frozen core
scenario, referred to as the “Frozen” simulation. The disparity
in the level of describing the electron dynamics encompassed
by these two calculation methods allows us to get insight into
the impact of core-polarization effects.

III. RESULTS AND DISCUSSION

During our investigation, we focus on examining the im-
pact of core polarization on the total HHG. In Fig. 2 we
present the total harmonic spectrum generated by all elec-
trons, revealing notable differences between “Dynamic” and
“Frozen” scenarios. The area graphs represent the raw data

of the harmonic spectra, while the line plots depict the har-
monic intensity within each odd-order harmonic. Each point
on the dotted line is calculated by integrating the intensity
of all harmonics within half an order before and after that
order. This representation more accurately captures the trends
in harmonic intensity between adjacent orders and provides
a clearer comparison of the same-order harmonics between
“Frozen” and “Dynamic” simulations. Comparing the results
between the “Dynamic” and “Frozen” simulations, the har-
monic intensity in the first plateau region is several times
higher in the “Frozen” simulation. The result is the same in
the simulation of N = 220.

A. Subshell polarization approach: Distinguishing the effects
of polarization from different shells

In the calculations of Fig. 2, the description of the core
polarization encompasses the whole core, as has been the case
in previous work. However, as mentioned in Sec. II, our model
encompasses 160 orbitals, with orbitals 1–80 corresponding to
VB1 and orbitals 81–160 corresponding to VB2. Thus, we can
consider the density of the core as consisting of two distinct
parts: ρ1(x, t ) for electrons in VB1 (inner-shell electrons) and
ρ2(x, t ) for electrons in VB2 (outer-shell electrons). These can
be mathematically represented as

ρ1(x, t ) = 2
i=80∑
i=1

|ϕi(x, t )|2, ρ2(x, t ) = 2
i=160∑
i=81

|ϕi(x, t )|2,

(10)

where the factor 2 accounts for the spin degeneracy. The
total density can be expressed as the sum of the two, i.e.,
ρ(x, t ) = ρ1(x, t ) + ρ2(x, t ). For convenience, we omit the
spatial variable x in the subsequent discussion involving the
density, denoting the densities by ρ(t ), ρ1(t ), and ρ2(t ),
respectively.

Therefore, it is necessary to study the polarization ef-
fects of different shells on the results and the mechanism
of their influence, respectively. To distinguish the effects of
polarization from different shells, we propose a subshell po-
larization approach. First, we perform a complete TDDFT
calculation to obtain the time evolution of the total elec-
tronic density ρ(t ), which is then partitioned into ρ1(t ) and
ρ2(t ) according to Eq. (10). Here ρ1(t ) and ρ2(t ) contain
the dynamic information of electrons in the two valence
bands under the applied laser field. Consequently, we can
construct two types of total density: One is ρ1(t ) + ρ2(0),
which combines the time-dependent density of inner-shell
electrons evolving during the TDDFT simulation and the
static density of outer-shell electrons in the ground states; the
other is ρ1(0) + ρ2(t ), combining the time-dependent density
of outer-shell electrons evolving during the TDDFT simu-
lation and the static density of inner-shell electrons in the
ground states. Based on Eqs. (3) and (4), we encapsulate the
core-polarization effects involving contributions from differ-
ent valence shells into time-dependent effective KS potentials,
denoted by vKS[ρ1(t ) + ρ2(0)] and vKS[ρ1(0) + ρ2(t )]. Sub-
sequently, we recalculate the wave functions ϕi(t ) under the
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above two potentials, respectively, by solving the TDSE as

i∂tϕi(t ) =
(

−1

2

∂2

∂x2
+ vKS[ρ1(t ) + ρ2(0)] + HI (t )

)
ϕi(t ),

i∂tϕi(t ) =
(

−1

2

∂2

∂x2
+ vKS[ρ1(0) + ρ2(t )] + HI (t )

)
ϕi(t ),

(11)

where the time-dependent HI (t ) = −iA(t ) ∂
∂x + 1

2 A2(t ) de-
scribes the effect of the external laser field. Finally, by
including Eq. (6), we can obtain the total current.

It is worth noting that, by using the subshell polariza-
tion approach above, we can selectively exclude the direct
core-polarization effects of one specific shell on HHG. In
this scenario, the electron dynamics in one shell still has an
effect on the electrons in the other shell during the evolution,
because of the time-dependent potential vKS(t ). For instance,
in the case of vKS[ρ1(0) + ρ2(t )], although the influence of the
inner-shell core polarization is eliminated by replacing ρ1(t )
with ρ1(0), the dynamics of these electrons might be widely
different because of the dynamic interaction from the outer
electrons. As this work concerns direct core-polarization ef-
fects on HHG rather than the multielectron interaction effects,
the subshell polarization approach offers a precisely suited
method for the current discussion.

Similarly, when both the inner- and outer-shell electrons
are eliminated, we have ρ1(0) + ρ2(0) = ρ(0), and when both
are taken into account, we have ρ1(t ) + ρ2(t ) = ρ(t ). The
corresponding potentials are vKS[ρ(0)] and vKS[ρ(t )], respec-
tively. It has been verified that the results from the “Dynamic”
and “Frozen” simulations based on TDDFT are identical to
those obtained using the TDSE with the effective potentials
vKS[ρ(t )] and vKS[ρ(0)], respectively. This consistency serves
as a crucial justification for the validity of this separation
approach. In Secs. III B and III C we apply this method for
deeper analysis.

B. Characterization of harmonic suppression
induced by core polarization

The harmonic suppression of the “Dynamic” scenario
compared to the “Frozen” corroborates previous findings in-
dicating that the SAE approximation tends to overestimate
the electric field acting on electrons, thereby leading to less
precise predictions of harmonic spectra. This observation
is generally elucidated through the lens of local-field ef-
fects in solid-state physics. When subjected to an external
electric field, electrons undergo core polarization, resulting
in localized fluctuations in electron density. These fluctua-
tions induce an electric field that partially counteracts the
applied laser field, effectively reducing the total electric
field experienced by the electrons responsible for harmonic
generation.

Previous works have often overlooked a detailed analysis
of the suppression characteristics. In this section we inves-
tigate the impact of polarization of different shells on this
phenomenon with the subshell polarization approach.

First, we present in Fig. 3 the harmonic spectra from
four simulations. From Fig. 3(a) it is evident that the re-
sult from J[ρ1(0) + ρ2(t )] is more similar to the “Dynamic”

FIG. 3. Harmonics generated from all electrons in the first
plateau region. Results are compared from (a) J[ρ(t )] and J[ρ1(0) +
ρ2(t )] and (b) J[ρ(0)] and J[ρ1(t ) + ρ2(0)].

simulation result J[ρ(t )]. From Fig. 3(b) we see that the
harmonic spectrum from J[ρ1(t ) + ρ2(0)] matches better with
the “Frozen” result J[ρ(0)]. This suggests that the dynamic
evolution of ρ2(t ) plays an important role in the screening,
while ρ1(t ) also contributes but to a lesser extent.

To shed light on the results above, we present the polariza-
tion of the two shells in Fig. 4. In Fig. 4(a) we illustrate the
difference between the electron density at a certain moment
[denoted by the purple dashed lines in Figs. 4(b) and 4(c)]
and the ground-state electron density. Specifically, �ρ1(t ) =
ρ1(t ) − ρ1(0), �ρ2(t ) = ρ2(t ) − ρ2(0), and �ρ(t ) = ρ(t ) −
ρ(0). Notably, �ρ2(t ) exhibits an order of magnitude larger
variation than �ρ1(t ), thereby exerting a dominant influence
on the variations of �ρ(t ). Figures 4(b) and 4(c) display the
electron density fluctuations of ρ1 and ρ2, respectively, within
one unit cell over the third to the fourth optical cycles. It
is noticeable that �ρ1 exhibits clear high-frequency compo-
nents, which can also be seen in �ρ2. This is due to the
nonadiabatic laser-induced electron dynamics. It is also shown
that the fluctuation of ρ2 is larger than ρ1. This can be under-
stood by the fact that ρ2(t ), corresponding to the more active
outer valence electrons, is more sensitive to external fields.

FIG. 4. (a) Difference between the electron density at a certain
moment [denoted by the purple dashed lines in (b) and (c)] and the
ground-state electron density in a cell. (b) Density fluctuations of the
inner-shell electrons �ρ1(t ) in the dynamic simulation as a function
of time and space. (c) Density fluctuations of the outer-shell electrons
�ρ2(t ) in the dynamic simulation. The black solid line indicates the
position of the nucleus.
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FIG. 5. Spatial-frequency spectrogram of harmonics generated
from all electrons, with results calculated from (a) J[ρ(t )],
(b) J[ρ(0)], (c) J[ρ1(0) + ρ2(t )], and (d) J[ρ1(t ) + ρ2(0)]. The red
lines indicate the boundaries of the linear chain of atoms.

Meanwhile, ρ1(t ), corresponding to electrons in the inner
valence band, experiences tighter confinement and undergoes
lesser excitation under the laser field. Thus, the polarization of
ρ2 has a more significant impact on the harmonics, as shown
in Fig. 3(a).

Next we aim to examine the spatial distribution of har-
monics from the 14th to the 24th order from different shell
polarization. Specifically, we employ

J (xi, ω) = F

⎛
⎝∫

x

∑
j

[−iϕ∗
j (x, t )∂xϕ j (x, t )]W (x, xi, σ

2)dx

⎞
⎠,

(12)

where F denotes the Fourier transform and W (x, xi, σ
2) is

a normalized Gaussian function with expected value xi and
variance σ 2 = ( 40

3 a0)2. By applying Eq. (12), we can ob-
tain a 2D spectrogram of the harmonic intensity S(xi, ω) =
|J (xi, ω)|2 as a function of the radiation position and har-
monic order and then achieve the purpose of analyzing
the spatial distribution of harmonics. The results are shown
in Fig. 5. It can be seen that the primary contributions
of harmonics are concentrated in the central region of the
model chain. From Figs. 5(a) and 5(b) we see that the peak
intensity of the spatial distribution of J[ρ(0)] is approxi-
mately twice as high as that of J[ρ(t )], consistent with the
results in the total harmonic spectra. Meanwhile, the sup-
pression in the “Dynamic” simulation is uniform across the
spatial distribution. From Figs. 5(c) and 5(d) we see that
the effects of ρ1(t ) and ρ2(t ) on the harmonic radiation
in the first plateau region are also spatially homogeneous,
suggesting that the two have a mechanistically consistent
but magnitudinally different influence on the suppression
phenomenon.

Previous studies have suggested that significant local-
field effects occur when the defected solids are driven by
lasers [32]. This phenomenon also arises when the materials’
surfaces are driven by out-of-plane external fields [30,57].
However, strong local-field effects are not observed in crystals
like Si, MgO, and h-BN [29,32,58]. While our study aims
to simulate electrons driven in the polarization direction of
a linearly polarized laser in bulk crystals, the model is still a
finite-length chain rather than a strictly periodic system.

FIG. 6. The harmonic yield of different occupied KS orbitals for
different regions is plotted with a logarithmic color scale: (a) and
(b) the first plateau outside the peak region and (c) and (d) the peak
region. The open circles indicate the harmonic intensity |Jcumsum

j (ω)|2
from the coherent superposition of contributions by orbitals with
higher orbital index, namely, higher energies, than the corresponding
horizontal value. (e) Time-frequency spectrogram for the contri-
bution of orbital 160 with a logarithmic color scale calculated by
dynamic simulation. The purple solid curve and the blue dashed
curve correspond to the energy differences �E1(t ) and �E2(t ), re-
spectively. (f) Harmonics generated from orbital 160.

C. Analysis of the harmonic peak in dynamic simulations

In addition to the harmonic suppression, examining the
result from the “Dynamic” simulation, we can notice a peak
around the 25th order, which corresponds to the energy
gap between VB1 and VB2. In contrast, the result from the
“Frozen” simulation shows a flat first plateau with no peaks in
this region at all. To understand this phenomenon, we plot the
harmonic yield contributed by different KS orbitals (orbitals
1–80 correspond to VB1, while orbitals 81–160 correspond
to VB2) to the harmonic yield |Ji(ω)|2 for different regions
in Figs. 6(a)–6(d). Figures 6(a) and 6(b) and Figs. 6(c) and
6(d) correspond to spectral ranges in the first plateau outside
and in the peak region, respectively, and Figs. 6(a) and 6(c)
and Figs. 6(b) and 6(d) correspond to the “Dynamic” and
“Frozen” results, respectively. We acknowledge that splitting
the physical observable total spectrum into contributions from
each single orbital falls beyond the assurance of DFT, and the
single-electron results are not observable quantities. However,
the remarkable distinct feature shown in Fig. 6(c) suggests that
this analysis method may serve as a tool to inspire a possible
intuitive physical picture behind the phenomenon.

Specifically, Figs. 6(a) and 6(b) show that the dominant
contribution to the first plateau of the harmonic spectrum orig-
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inates from electrons initially located in the highest valence
band VB2, which is consistent with previous studies. The
electrons in the inner valence band VB1 have lower energies
and therefore make less significant contributions to the first
plateau. On the other hand, within the peak region shown in
Figs. 6(c) and 6(d), three distinct horizontal lines are evident
in Fig. 6(c), signifying that in “Dynamic” calculations, the
harmonics generated by each initially occupied KS orbital are
enhanced around the corresponding 25th to 30th orders. How-
ever, the “Frozen” results in Fig. 6(d) are mainly contributed
by VB2. To examine in more detail the unique results shown
in Fig. 6(c), we take one specific slice (orbital index i = 160)
for further discussion.

Figure 6(e) displays the time-frequency spectrogram for
the contribution of orbital 160 calculated by the “Dynamic”
simulation using the Gabor transform of Ji(t ) [59]. The spec-
trogram includes a channel corresponding to the instantaneous
energy differences of VB2 and CB1, according to the ac-
celeration theorem �E1(t ) = ECB1 [A(t )] − EVB2 [A(t )], where
the initial KS orbital 160 is located around k0 = 0 in mo-
mentum space. This HHG channel results from the interband
transition between CB1 and VB2 [47]. More importantly, the
“Dynamic” simulation exhibits an additional channel, which
is almost completely disallowed in the “Frozen” simulations.
The additional channel corresponds to the instantaneous en-
ergy differences of two valence bands �E2(t ) = EVB2 [A(t )] −
EVB1 [A(t )]. This implies that the peak in the harmonic spec-
trum, present in the “Dynamic” simulation, is associated with
the coupling between valence bands, and core polarization
may profoundly alter the electron dynamics within these
bands.

By inserting the complete orthogonal set consisting
of static KS orbitals into the calculation for Ji, we
have Ji(t ) = ∑

m,n 〈ϕi(t )〉ϕGS
m 〈ϕGS

m | − i∂x |ϕGS
n 〉 〈ϕGS

n 〉 ϕi(t ) =∑
m,n c∗

m(t )cn(t )Tmn, where m (n) represents the mth (nth)
ground-state KS orbital, cm(t ) = 〈ϕGS

m 〉 ϕi(t ) are the time-
dependent projections of |ϕi(t )〉 on |ϕGS

m 〉, and Tmn = 〈ϕGS
m | −

i∂x |ϕGS
n 〉 are the transition matrix elements. Based on the

result of time-frequency analysis, we consider the current
contribution from the coupling of VB1 and VB2,

JVB1VB2 (t ) =
∑

m,n∈VB1,VB2

c∗
m(t )cn(t )Tmn

= JVB1VB2 + JVB2VB1 + JVB1VB1 + JVB2VB2 , (13)

where JVBaVBb = ∑
m∈VBa,n∈VBb

c∗
m(t )cn(t )Tmn.

Combined with the subshell polarization approach in
Sec. III A, we calculate the corresponding HHG in “Dynamic”
simulations, as shown in Fig. 6(f). Comparing the single-
electron HHG (area plot) with the harmonic calculated from
the separated JVB2VB1 channel (pink solid line), we can see that
the interband current JVB2VB1 primarily accounts for the peak.
Meanwhile, in Fig. 6(f) the three line plots demonstrate the
effect of different degrees of core polarization to this channel.
It is evident that the results of JVB2VB1 [ρ1(0) + ρ2(t )] and
JVB2VB1 [ρ(t )] exhibit remarkable consistency. However, the
harmonic yield of JVB2VB1 [ρ1(t ) + ρ2(0)] is relatively weak
compared to JVB2VB1 [ρ1(0) + ρ2(t )], and the additional peak
in the harmonic spectrum disappears. It is more similar to the
“Frozen” simulation result. This suggests that the polarization

of electrons from the outer shell mainly contributes to the
peak, consistent with the discussion in Fig. 4.

However, what is actually observable is the total harmonic
spectrum, the accumulation of individual orbital contribu-
tions. Therefore, we go further to use Fig. 6(c) as a backdrop,
overlaid with the harmonic intensity (represented by the
circles) |Jcumsum

j (ω)|2 = |∫ dt
∑160

i= j Ji(t )e−iωt |2, which is the
coherent sum of contributions from different orbitals from
the number of KS orbitals j (corresponding to the horizontal
axis) to 160. Here we consider the result of the 29th har-
monic as representative of the harmonics in the peak region.
As a comparison, we also display the results for the 13th
to 19th orders in Fig. 6(a). From the green open circles in
Fig. 6(a), it is evident that the total harmonic yield in the first
plateau region increases significantly when the contributions
from orbitals 81–160 are cumulated. Naturally, it remains
relatively constant when cumulating the contribution from or-
bitals 1–80. This contrasts significantly with the interference
phenomenon observed at the 29th harmonic, as depicted in
Fig. 6(c). Despite the considerable contribution from electrons
in VB1 to the 29th harmonic, the contributions from VB1 and
VB2 symmetrically cancel during the interference process.

This result is due to the inherent feature of the 1D model
we use. In the completely filled valence bands, roughly one-
half of the KS electrons with positive band curvature move
oppositely to the other half with negative band curvature. The
contributions of KS orbitals undergo destructive interference
and cancellation due to the opposite curvature [47,48]. Mean-
while, it is worth noting that the signal of VB2-CB1 coupling
[still present in Fig. 6(d)] also contributes to the peak region
in the spectrum. Therefore, the total harmonic spectrum is
also influenced by the interference between VB2-CB1 and
VB1-VB2 channels, which cannot be simply understood based
on the coupling of valence bands. These interference effects
between many orbitals ultimately diminish the peaks of har-
monics in the “Dynamic” simulation, making the peaks in the
observable total HHG less prominent. Nevertheless, the above
analysis suggests a possible physical picture that the peak
is related to the additional contributing VB1-VB2 channel in
the present of core polarization. However, this analysis is not
rigorous enough to draw a definitive conclusion, and further
research is required.

D. Controlling core-polarization effects
through the two-color pump-probe scheme

As discussed in the preceding section, the local-field effect
is an effect accompanying core polarization, primarily con-
tributed by the outer-shell electrons. However, this does not
imply that considering only the dynamics of outer valence
electrons applies universally. It was mentioned in Ref. [49]
that neglecting electrons in the inner valence may affect
the results. Given that the polarization of the inner elec-
trons is relatively weak, one effective way to enhance core
polarization is to promote the polarization of inner-shell elec-
trons. Consequently, we employ a two-color pump-probe
scheme [49,60,61], where a UV preexcitation pumps electrons
from VB1 to CB1 followed by a midinfrared (MIR) pulse
to drive the core polarization. It has been shown that this
method can trigger significant laser-induced correlations. As a
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FIG. 7. Schematic of the UV excitation in the (a) real-space and
(b) momentum-space band structure, with the purple arrows indicat-
ing the excitation of electrons from VB1 to CB1 by the UV pulse.
(c) Electric field of the two-color pump-probe scheme in units of the
period T0 of the MIR field, with each pulse individually normalized.

demonstration, we consider a UV laser pulse with the fre-
quency corresponding to the energy difference between VB1

and CB1, as shown in Fig. 7(a). Correspondingly, we also
depict the schematic of the UV preexcitation in the k space
in Fig. 7(b), with the purple arrows indicating the UV pulse
exciting electrons from VB1 to CB1 at k ≈ 0.22. Specifically,
the combined vector potential field is

A(t ) = AUV(t ) + AMIR(t ), (14)

with the explicit forms

AUV(t ) = AUVsin2

(
πt

tUV

)
sin(ωUVt ), 0 < t < tUV

AMIR(t ) = AMIR f (t − τ − tUV)sin[ωUV(t − τ − tUV)],

tUV + τ < t < tUV + τ + tMIR. (15)

Here ωUV = 1.0164 a.u. is the frequency of the UV pulse,
AUV = 0.026 a.u. is the UV pulse amplitude, and the dura-
tion time of the UV pulse is set as tUV = 14.8 fs. For the
MIR driving pulse, the frequency ωMIR = ω0, the amplitude
AMIR = 0.26 a.u., and the duration time is set as tMIR =
45.9 fs. Furthermore, τ is the time delay between the two
pulses. The corresponding two-color pump-probe pulse se-
quence is illustrated in Fig. 7(c).

Based on the aforementioned two-color pump-probe
scheme, we calculate the corresponding total harmonic spec-
tra combined with the subshell polarization approach, as
shown in Fig. 8. It is evident from the results that both
J[ρ1(t ) + ρ2(0)] and J[ρ1(0) + ρ2(t )] exhibit significant de-
viations from the dynamic result J[ρ(t )]. This discrepancy is
clearer in the integrated point-line plots. With the excitation of
inner-shell electrons by the UV pulse, the dynamic evolution
of ρ1(t ) becomes notably enhanced and cannot be neglected.
Laser-induced polarization manifests prominently in both

FIG. 8. Total HHG spectrum from all electrons with the two-
color pump-probe scheme. The area graphs represent the original
data of the harmonic spectra, while the line plots illustrate the har-
monic intensity after integrating the harmonics of each order.

electron shells, indicating that considering solely the dynam-
ics of outer-shell electrons is insufficient to fully describe
the system’s dynamics under the laser field. By employing
this approach, we successfully manipulate and modulate the
core-polarization effects.

IV. CONCLUSION

Our study has systematically investigated the core-
polarization effects in HHG. Through TDDFT simulations,
we found that core polarization induces a suppression of HHG
in the first plateau region. To delve into the roles of different
shells, we proposed a subshell polarization approach to dis-
tinguish the effects of core polarization from a specific shell.
Using this approach, we provided detailed analysis of the sup-
pression characteristics, confirming that the core polarization
of the outer shell has a dominant contribution. Meanwhile,
we analyzed the harmonic peaks around the 25th order in the
“Dynamic” simulation and proposed a possible physical ex-
planation that core polarization alters electron dynamics and
facilitates the coupling between the valence bands. Moreover,
based on the aforementioned study, we proposed to control
core polarization through a two-color pump-probe scheme by
facilitating the core polarization of the inner shell.

Overall, our study provides comprehensive insights into the
mechanisms underlying core-polarization effects in HHG and
enhances our understanding of the intricate electron dynam-
ics in solids. The core-polarization effect occurs within the
timescale of the external driving field. This implies a new
freedom of manipulating the optical response of materials
using strong laser fields.
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