
Nanotechnology

LETTER

Improved photoemission and stability of 2D
organic-inorganic lead iodide perovskite films by
polymer passivation
To cite this article: Mostafa M Abdelhamied et al 2020 Nanotechnology 31 42LT01

 

View the article online for updates and enhancements.

Recent citations
Synthesis and Optical Properties of
PVA/PANI/Ag Nanocomposite films
M. M. Abdelhamied et al

-

This content was downloaded from IP address 115.156.156.124 on 14/01/2021 at 07:43

https://doi.org/10.1088/1361-6528/aba140
http://dx.doi.org/10.1007/s10854-020-04774-w
http://dx.doi.org/10.1007/s10854-020-04774-w
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjsv0N4RVJbTX17l0YmjiSTV9bPF75zvHKS0cnf84uZV-eQbCB6IeC1axMYRFSObfhciIT3N1uwxtMOGEfQ3Gx2CQ6wjjqnCR8OA7hCyD7KHm_GmxlH-zG2d4050hiwQcoWW6yeFoThzmnYjix2VQc2MYaa4DRvNjXPKhoIky4WWT_qfOsDi-_zRK1EMbk1fDzhBendNGvZ44x3Zeea97shL3GKqzujtRnBaJ6mHkE0ITp782Csq1wRbsbzZ4JLkEbqhIsF7b2MOxEVTBiuBVJvG2&sig=Cg0ArKJSzI1JxU2B1rux&adurl=http://iopscience.org/books


Nanotechnology

Nanotechnology 31 (2020) 42LT01 (8pp) https://doi.org/10.1088/1361-6528/aba140

Letter

Improved photoemission and stability of
2D organic-inorganic lead iodide
perovskite films by polymer passivation

Mostafa M Abdelhamied1,2,4, Yiling Song1,4, Weiwei Liu1, Xiaohong Li1, Hua Long1,
Kai Wang1, Bing Wang1 and Peixiang Lu1,3

1 Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science
and Technology, Wuhan 430074, People’s Republic of China
2 Radiation Physics Department, National Center for Radiation Research and Technology (NCRRT),
Atomic Energy Authority (AEA), Cairo, Egypt
3 Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology,
Wuhan 430205, People’s Republic of China

E-mail: lwhust@hust.edu.cn

Received 11 May 2020, revised 25 June 2020
Accepted for publication 30 June 2020
Published 24 July 2020

Abstract
2D organic-inorganic lead iodide perovskites hold great promise for functional optoelectronic
devices. However, their performances have been seriously limited by poor long-term stability in
ambient environment. Here, we perform a systematic study for the stability improvement of a
typical 2D organic-inorganic lead iodide perovskite (PEA)2PbI4. The degradation of the
(PEA)2PbI4 films can be attributed to the interaction with the humidity in environment, which
leads to decomposition of the perovskite components. Then, we demonstrate that polymer
passivation provides an effective approach for improving the crystal quality and stability of the
(PEA)2PbI4 films. Correspondingly, the photoemission of the polymer-passivated (PEA)2PbI4
films has been enhanced due to the decreased trap states. More importantly, a hydrophobic
polymer (Poly(4-Vinylpyridine), PVP) will protect the (PEA)2PbI4 films from humidity in
ambient environment, which can greatly improve the physical and chemical stability of the 2D
perovskite films. As a result, the PVP-passivated (PEA)2PbI4 films can produce a bright
emission even after long-term (>15 d) exposure to ambient environment (25 ◦C, 80% RH) and
continuous UV illumination. This work provides a convenient and effective approach for
improving the long-term stability of 2D organic-inorganic lead iodide perovskites, which shows
great promise for fabricating large-area and versatile optoelectronic devices.

Supplementary material for this article is available online
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1. Introduction

Recently, organic-inorganic hybrid perovskites have shown
great promise for functional optoelectronic devices including
solar cells, light-emitting devices (LEDs), and optoelectronic
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detectors [1–7]. Organic-inorganic perovskites have a high
band-edge absorption, a low defect density and a long car-
rier diffusion length [8–10]. The extraordinary optoelectronic
characteristics and solution processability make it suitable for
fabricating large-area and high-performance devices [11–13].
In particular, 2D organic-inorganic hybrid perovskites with
a layered multi-quantum-well structure, have been demon-
strated to possess a stronger quantum confinement [14–16]
and a greater tenability [17–19]. Due to the more promising
advantages compared to their 3D counterparts, 2D organic-
inorganic hybrid perovskites have become a great candidate
for next-generation optoelectronic devices [20–2627].

Although they have shown outstanding optical properties,
organic-inorganic hybrid perovskites still suffer from poor sta-
bility caused by moisture, oxygen, interface defects and light
illumination [28–33]. The instability will lead to a degrada-
tion of the perovskite in ambient environment, which has ser-
iously limited the lifetime and performance of the optoelec-
tronic devices based on perovskites. To overcome the shortage
caused by the instability, great efforts have been made using
surface passivation. For example, the stability of the 3D hybrid
perovskite films could be enhanced by modifying the surface
with crosslink groups [34, 35] and the surface defects can be
passivated by using organic halide salt [36, 37]. More recently,
potassium halide layers were demonstrated to be effective
for passivating the perovskite interfaces and achieving high-
stable photoluminescence (PL) emission [38]. However, for
2D organic-inorganic hybrid perovskites, the concerns about
the stability still remains to be investigated in detail, which has
great importance for fabricating high-performance functional
devices.

In this work, we perform a systematic study on the degrad-
ation and stability improvement of a typical 2D organic-
inorganic lead iodide perovskite (PEA)2PbI4. The degradation
of the (PEA)2PbI4 films can be attributed to a decomposition
of the perovskite components, especially by interacting with
the humidity and oxygen in the environment. Through surface
passivation with a hydrophobic polymer, the surface traps of
the (PEA)2PbI4 films can be decreased. More importantly, the
hydrophobic polymer will protect the hybrid perovskite from
humidity in the environment and greatly improve the stability
of the (PEA)2PbI4 films. As a result, the polymer-passivated
perovskite films can produce a bright emission even after long-
term (>15 d) exposure to ambient environment and continuous
UV illumination, which shows great promise for functional
optoelectronic devices such as optoelectronic displays.

2. Result and discussion

(PEA)2PbI4 films were prepared using a one-step spin-coating
method (supporting information) [14]. After that, the films
were systematically characterized by optical and morpholo-
gic measurement. Figures 1(a) and (b) show the PL image
and SEM image of the prepared (PEA)2PbI4 film respectively.
The PL image displays a bright and homogenous green emis-
sion, implying the good quality of the (PEA)2PbI4 film. The
SEM image shows that the 2D perovskite film consists of

well-defined grains characterized as large crystals with aver-
age sizes between 5 ~ 15 µm. The XRD pattern in figure 1(c)
displays well-defined diffraction patterns corresponding to the
(00 l) series planes, and the narrow and sharp peaks imply a
high quality of the perovskite film. Furthermore, figure 1(d)
shows the absorption spectrum of an as-prepared (PEA)2PbI4
film, which agrees well with the reported results [39, 40]. The
absorption spectrum displays a narrow absorption peak loc-
ated at ~ 517 nm, which corresponds to the intrinsic exciton
absorption of (PEA)2PbI4 [18].

To investigate the degradation of the (PEA)2PbI4 films, the
PL emission was monitored over time, as shown in figure 2(a).
The samples were placed in ambient environment (25 ◦C, 80%
RH), under continuous UV-light illumination. At first, the as-
prepared (PEA)2PbI4 film shows a bright green light, which is
due to the exciton recombination of the 2D perovskite excited
by high-energy photons. However, the green light becomes
weaker over time and is completely quenched after about 4 d.
To quantitatively characterize the degradation process, the PL
intensity was extracted and plotted as a function of time, as
shown in figure 2(b). We can observe that the PL intensity will
decrease to 50% of the initial intensity after ~ 2 d, which shows
direct evidence of the serious degradation of the 2D perovskite
film.

When exposed to ambient atmospheric conditions such
as humidity, air and light illumination, the organic-inorganic
hybrid perovskite will be degraded due to a series of reactions.
To reveal the degradation mechanism of the (PEA)2PbI4 films,
the absorption spectrum of the film was measured over time.
Figure 2(c) shows that the intensity of the exciton absorption
peak largely decreases as time increases, and the absorption
peak nearly disappears after 9 d (figure 2(d)), which is consist-
ent with the PL measurement result. It is worth noting that, a
new absorption peak located at ~ 410 nm appears in the absorp-
tion spectra, with the intensity growing gradually over time.
The appearance of this absorption peak provides a strong evid-
ence for the presence of PbI42- in the film during degradation
[41]. The generation of PbI2 in the organic-inorganic lead iod-
ide perovskite films can be attributed to the following process
[30]

(PEA)2PbI4 → PbI2 + 2
[
PEA+ + I−

]
→ (PbI2)solid+ 2PEAgas+ 2HIgas (1)

Moreover, tri- and tetra-iodoplumbate complexes will be
produced due to the reaction between PbI2 and I-, which can
be expressed as

PbI2 + I− → PbI3 (2)

PbI3 + I− → PbI4
2 (3)

To further confirm the degradation process, XRD of the
(PEA)2PbI4 film was measured at various times, as shown in
figure 2(e). After 5 d, the XRD peaks corresponding to the
pristine (PEA)2PbI4 shift slightly to larger diffraction angles,
indicating that the perovskite grains have started to degrade
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Figure 1. (a) PL image, (b) Top-view SEM image, (c) XRD pattern and (d) absorption spectrum of a pristine (PEA)2PbI4 film.

 

Figure 2. (a) Monitored PL images of a pristine (PEA)2PbI4 film over time. (b) Plot of corresponding PL intensities extracted from the PL
images. (c) Monitored absorption spectrum of a pristine (PEA)2PbI4 film over time. (d) Plot of the exciton absorption peak intensity as a
function of time. (e) XRD pattern of a pristine (PEA)2PbI4 film measured over time.

3



Nanotechnology 31 (2020) 42LT01

Figure 3. (a) PL images (top panel) and SEM images (bottom panel) of (PEA)2PbI4/PVP and (PEA)2PbI4/PEO films, respectively. (b)
XRD patterns and (c) absorption spectra of the as-prepared (PEA)2PbI4/PVP and (PEA)2PbI4/PEO films respectively. (d) Measured PL
spectra and (e) corresponding TRPL traces for the (PEA)2PbI4, (PEA)2PbI4/PVP and (PEA)2PbI4/PEO films respectively.

[30, 42]. Moreover, after 10-day exposure under UV light, a
peak located at 12.72◦ increased significantly, with appear-
ance of more new peaks located at 25.55◦, 38.7◦, 44.3◦and
52.34◦ (labelled by #). Previous reports demonstrate that the
new peaks can be attributed to the production of PbI2 in the
perovskite film [43–45], which further confirm the degradation
process expressed by equation (1). In particular, after 15 d, all
of the XRD peaks corresponding to the pristine (PEA)2PbI4
disappear, suggesting complete degradation of the 2D per-
ovskite film.

Surface passivation and encapsulation have shown great
promise for effectively suppressing the degradation of the
organic-inorganic perovskite in ambient environment [46–48].
To improve the stability of the (PEA)2PbI4 film, Poly(4-
Vinylpyridine) (PVP) and Poly(ethylene oxide) (PEO) were
used for encapsulation and surface passivation. The poly-
mer solution was respectively coated on the perovskite films,
forming the (PEA)2PbI4/PVP and (PEA)2PbI4/PEO compos-
ites. Figure 3(a) presents the PL images (top panel) and
SEM images (bottom panel) of the (PEA)2PbI4/PVP and
(PEA)2PbI4/PEO films respectively. The PL emission of the
polymer encapsulated films has been increased compared with
the intrinsic (PEA)2PbI4 film. After polymer deposition, the
surface morphology of the films becomes smooth and exhibit
no pinholes on the surface, especially by utilizing PVP layer,
indicating a modification of the film quality. Moreover, poly-
mer encapsulation can heal the defect states on the surface of
the hybrid perovskite films, thus leading to a suppressed non-
radiative recombination and an enhanced PL emission com-
pared with the pristine perovskite film [12, 36, 49]. Figures
3(b) and (c) display the XRD patterns and absorption spectra
of the (PEA)2PbI4/PVP and (PEA)2PbI4/PEO films respect-
ively. The consistence of the XRD patterns and absorption
spectra of the pristine (PEA)2PbI4 film and the polymer-coated
ones suggests that the polymer passivation will not affect the
crystal structure and bandgap of the (PEA)2PbI4 film.

Table 1. Fitted parameters for the PL decay traces of pristine
(PEA)2PbI4 film, (PEA)2PbI4/PVP film and (PEA)2PbI4/PEO film.
The average lifetime is calculated as τave = (A1τ1

2 + A2τ2
2)/

(A1τ1 + A2τ2).

(PEA)2PbI4 (PEA)2PbI4/PVP (PEA)2PbI4/PEO

A1 4019.5 3650.2 2688.3
τ1 /ns 0.674 0.735 0.788
A2 429.5 483.6 678.1
τ2 /ns 2.767 3.12 3.63
τave /ns 1.31 1.56 2.32

To quantitatively characterize the photoemission perform-
ances of the (PEA)2PbI4 films encapsulated by PVP and
PEO, PL spectra and lifetime were measured using a µ-PL
system. The samples were pumped with a femtosecond-
pulsed Ti:sapphire laser (800 nm, ~ 8 fs, 80 MHz), the
infrared photons from which are beneficial for protect-
ing the perovskite films from damage [18, 50–53]. Figure
3(d) displays the measured PL spectra of the (PEA)2PbI4
films, under a pumping power of 2 mW (~2.6 kW/cm2).
As the photon energy of the femtosecond laser is smal-
ler than the bandgap of (PEA)2PbI4, the emission can
be attributed to a two-photon absorption induced PL
(figure S1, supporting information, available online at
stacks.iop.org/NANO/31/42LT01/mmedia). Notably, the PL
intensity of the polymer-passivated (PEA)2PbI4 films is
stronger than that of the pristine (PEA)2PbI4 film, which
agrees well with the optical images in figure 3(a). Figure 3(e)
presents the PL decay traces for the pristine (PEA)2PbI4 film,
(PEA)2PbI4/PVP film, and (PEA)2PbI4/PEO film respectively.
As reported, the PL emission of the 2D hybrid perovskites can
originate from both the intrinsic exciton recombination and the
trap states recombination. To reveal the two processes, all the
decay traces can be fitted to a biexponential decay function
I(t) = A1exp(−t/τ1) + A2exp(−t/τ2). The fitted parameters
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Figure 4. (a) Monitored PL images of the (PEA)2PbI4/PVP and (PEA)2PbI4/PEO films over time. (b) Plot of the extracted PL intensity of
the (PEA)2PbI4/PVP and (PEA)2PbI4/PEO films as a function of time. (c) Plot of the extracted PL intensity of the (PEA)2PbI4,
(PEA)2PbI4/PVP and (PEA)2PbI4/PEO films in ambient and in N2, as a function of time.

are presented in table 1. In particular, the average lifetimes
of the 2D perovskite films increase from 1.31 ns to 1.56 ns
and 2.32 ns for (PEA)2PbI4/PVP film and (PEA)2PbI4/PEO
film respectively. The increased PL lifetimes indicate that
the nonradiative recombination is decreased in the polymer-
encapsulated perovskite films, which is consistent with the PL
enhancement and further demonstrates a suppression of the
surface trap states [54, 55].

To investigate the effect of different polymer passivation on
the stability of the (PEA)2PbI4 films, the samples were kept in
ambient environment and exposed to continuous UV-light illu-
mination. Figure 4(a) presents the PL images of the polymer-
encapsulated films over time. One can observe that the PL
emission of the (PEA)2PbI4/PEO film quickly decreases,
while the emission of the (PEA)2PbI4/PVP film remains stable
as time increases. To quantitatively characterize the PL vari-
ation, the intensity was extracted and plotted as a function
of time, as shown in figure 4(b). For the (PEA)2PbI4/PEO
film, the PL intensity has been decreased to less than half
of the initial intensity after 3 d, and it becomes completely
quenched after 4 d, indicating that the samples have been dam-
aged under UV light-irradiation. In contrast, the PL intens-
ity of the (PEA)2PbI4/PVP film has only decreased by 20%
even after 17-days. Though the (PEA)2PbI4/PEO film is isol-
ated from air in the ambient environment, the degradation

property is the same as the intrinsic (PEA)2PbI4 film, demon-
strating that humidity is the dominant factor which leads to
the degradation of the organic-inorganic hybrid perovskites,
especially exposed to continuous light illumination. In addi-
tion, we also monitored the degradation of the (PEA)2PbI4
films placed in a bag filled with dry N2 (figure 4(c) and figure
S2, supporting information). The degradation of the pristine
(PEA)2PbI4 film and (PEA)2PbI4/PEO film has been greatly
slowed down, demonstrating that the degradation can be dom-
inantly attributed to the humidity in the ambient environ-
ment. As PEO is a hydrophilic polymer, it can absorb the
water in the environment, further aggravating the degrada-
tion of the (PEA)2PbI4 film in humidity. In contrast, PVP is
a hydrophobic polymer, which will prevent the (PEA)2PbI4
film from damage by the air and humidity from the environ-
ment. As a result, the PL emission from the (PEA)2PbI4/PVP
film remains nearly unchanged over time, and it is still quite
bright even after a long time of 17 d. This result implies a
great improvement of the stability of the 2D perovskite film for
light illumination and air/humidity exposure by PVP polymer
passivation.

To further demonstrate the stability improvement by PVP
passivation, the absorption spectra of the pristine and polymer-
encapsulated (PEA)2PbI4 films were measured over time, as
shown in figures 5(a) and (b). The intensity at the exciton
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Figure 5. Absorption spectra of the (a) (PEA)2PbI4/PVP film and (b) (PEA)2PbI4/PEO film, measured as a function of time. (c) Plot of the
exciton absorption peak intensity of the (PEA)2PbI4/PVP and (PEA)2PbI4/PEO films. Measured XRD patterns of (d) (PEA)2PbI4/PVP film
and (e) (PEA)2PbI4/PEO film, as a function of time.

absorption peak was extracted and plotted in figure 5(c). Sim-
ilar to the fluorescence result, the absorption spectrum of the
(PEA)2PbI4/PVP film remains stable and the exciton absorp-
tion peak decreases to 80% of the initial intensity after 15 d.
However, the absorption spectrum of the (PEA)2PbI4/PEO
film exhibit a large decrease over a wide range, especially
for the exciton absorption peak located at ~ 516.5 nm, which
provides evidence for the degradation of the perovskite grains.
In particular, the exciton absorption peak of the perovskite
films disappear after 9 d, indicating that the perovskite has
been completely damaged in the ambient environment. The
stability of the (PEA)2PbI4/PVP film and (PEA)2PbI4/PEO
film can be also revealed by the XRD measurement results,
as shown in figures 5(d) and (e), respectively. Furthermore, a
decreased PVP concentration exhibits a similar effect on the
perovskite passivation, indicating an excellent performance of
the PVP passivation layer (figure S3, supporting information).

Organic-inorganic lead iodide perovskite films are con-
venient for fabricating into large-area structures and patterns,
which make them excellent candidates for practical applic-
ations in optoelectronic displays. To demonstrate the great
promise of the polymer-passivated 2D perovskite films for
functional applications, the (PEA)2PbI4 solution was written

into a pattern spelling ‘HUST’, and then coated with polymer
films. The PL emission from the films were monitored under
continuous UV illumination, as shown in figure 6. One can
observe that the pattern passivated by PVP can produce a
clear and bright emission for a much longer time (>15 d)
than the pristine and PEO-passivated (PEA)2PbI4 films, indic-
ating their great potential for light displays. Moreover, the
(PEA)2PbI4 film can be well protected by the PVP passiva-
tion layer, which is effective for increasing the physical and
chemical stability of the perovskite films. Although some other
materials such as 2D materials have also been proposed to
suppress the degradation of hybrid perovskites due to their
excellent stability [30, 56, 57], it is still difficult to effi-
ciently cover the atomic-thin layers of the perovskite films.
Therefore, the PVP-passivated 2D hybrid perovskite films
shows great promise for large-area and versatile optoelectronic
devices.

3. Conclusion

The stability issue of (PEA)2PbI4 films was investigated by
PL emission, absorption spectrum and XRD in ambient envir-
onment. The degradation mechanism of the (PEA)2PbI4 films
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Figure 6. Monitored PL images of ‘HUST’ patterns, composed of
pristine (PEA)2PbI4 film, (PEA)2PbI4/PVP film and
(PEA)2PbI4/PEO film respectively.

was revealed to be the interaction with humidity, which leads
to decomposition of the perovskite components. More import-
antly, a hydrophobic polymer (PVP) encapsulation provides
an effective approach for passivating surface traps and isol-
ating the water from the environment. As a result, the PVP-
passivated 2D organic-inorganic hybrid perovskite films can
produce a bright emission even after long-term (>15 d) expos-
ure to ambient environment and continuous UV illumination.
This work provides a convenient and effective approach for
improving the long-term stability of 2D organic-inorganic lead
iodide perovskites, which shows great promise for fabricating
large-area and versatile optoelectronic devices.
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