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Abstract
We investigate the exceptional points (EPs) in plasmonic waveguide arrays, including 
metallic waveguide arrays (MWAs) and graphene sheet arrays (GSAs). The EPs emerge 
at the boundary of strong and weak coupling ranges in both systems. The cross conversion 
of Bloch modes and variation of geometric phase can be observed by encircling an EP 
in the parametric space. We also show the Bloch modes exhibit strong absorption in the 
vicinity of EPs in GSAs, which originates from the enhanced longitude electric field along 
the propagation direction. The abnormal absorption and field enhancement also arise in 
ultrathin MWAs and disappear when the thickness of metal film increases. Our results may 
find applications in optical switches and sensors at the nanoscale.
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1 Introduction

Surface plasmon polaritons (SPPs), supported at the interface of metal and dielectric, have 
attracted enormous interest on nanophotonics due to their subwavelength characteristic 
and extremely optical field confinement (Orlova et al. 2014; Sun et al. 2016; Wang et al. 
2017a, 2018; Chen et al. 2018; Qin et al. 2016; Kou et al. 2013). Metallic waveguide arrays 
(MWAs) are extensively utilized to modulate the flow of SPPs due to their capability to 
engineer the dispersion relation (Orlova et al. 2014; Kou et al. 2013; Qin et al. 2018). With 
the emergence of new plasmonic materials, graphene has arisen as a promising candidate 
from terahertz to mid-infrared frequencies (Bao and Loh 2012; Wang et al. 2017b, c; Deng 
et  al. 2015a, 2016; Zhao et  al. 2017; Zhang et  al. 2014). The SPPs in graphene manifest 
stronger field confinement when comparing with metals. The surface conductivity of gra-
phene can be flexibly tuned via electrostatic and chemical doping (Bao and Loh 2012). The 
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high carrier mobility in graphene makes it suitable for high speed light detection (Ni et al. 
2016; He et al. 2018a, b; Li et al. 2018; Peng et al. 2017). Graphene sheets arrays (GSAs) 
are also proposed to manipulate the propagation of SPPs (Ge et al. 2015; Wang et al. 2017b).

One important issue to design plasmonic circuits is to carefully deal with optical loss, 
which may hamper the practical application. The optical gain by extra optical pumping or 
quantum dots are used to compensate or even reverse the propagation loss (De Leon and 
Berini 2010; Hong et al. 2018; Li et al. 2012; Hong et al. 2017; Xie et al. 2018; Lin et al. 
2016). The system associated with gain or loss is non-Hermitian, which has been utilized 
to introduce novel functionalities to a variety of photonic devices (Lin et al. 2016; Ke et al. 
2018). The gain and loss present in the system may greatly alter the optical response of sys-
tems, especially at the non-Hermitian singularities known as exceptional points (EPs) (Lee 
2010; Ke et al. 2016). The eigenvalues and eigenstates of the system coalesce at EPs. In 
contrast, the degenerate points such as Dirac points (DPs) in Hermitian systems have same 
eigenvalues but different eigenstates (Deng et  al. 2016b), (Ge et  al. 2017). Many unus-
able phenomena are found associated with the EPs, such as loss induced transparency (Guo 
et al. 2009), unidirectional reflection (Feng et al. 2014; Huang et al. 2015), state exchange 
(Ke et  al. 2016, 2017), and non-trivial geometric phase (Lee 2010). The EPs have been 
investigated in dielectric waveguides (Guo et al. 2009; Liu et al. 2016), multiple plasmonic 
waveguides (Alaeian and Dionne 2014), and ring resonators (Hodaei et al. 2017).

In this work, we investigate the EPs in MWAs and GSAs. The EPs appear at the bound-
ary of strong and weak coupling ranges in both systems. The influence of loss on the 
SPP dispersion relations and Bloch modes is usually neglected as the imaginary part of 
the permittivity of metal is fairly small when compared to its real part. Here, we show 
the influences are prominent near the EPs. We compare the optical property of GSAs and 
MWAs and show that they are consistent with each other when the thickness of metal film 
is extremely small. The Bloch modes are of strong propagation loss near the EPs in GSAs 
or in ultrathin MWAs. The study may benefit to understanding the relation between MWAs 
and GSAs.

2  EPs in metallic waveguide array

We start to investigate the Bloch modes in MWAs. Figure 1a show the geometric diagram 
of MWAs. The metal films (Au) are spatially separated and embedded in the host dielectric 
medium with the relative permittivity denoted by εd. For simplicity, we consider the dielec-
tric is air with εd = 1. The thickness of metal film and dielectric is represented as tm and td, 
respectively. The period of array is d = tm + td. The incident wavelength is fixed at λ = 0.8 
μm. The relative permittivity of metal is figured out as εm = –8.67 + 0.96i [CRC].

We investigate the transverse magnetic (TM) polarized collective SPP modes propagat-
ing along z direction, which are referred as Bloch modes in the periodic configuration. The 
dispersion relation of MWAs is given by (Kou et al. 2013)

where φ is the Bloch momentum, k1 = (k2 z − εdk2 0)1/2 and k2 = (k2 z – εmk2 0)1/2 with 
kz denoting the propagation constant of SPPs. Figure 1b shows kz as a function of Bloch 
momentum and period. The loss of metal is neglected and thus the system is Hermitian. 

(1)cos� = cos(k1td) cos(k2tm) −
�mk

2
1
+ �dk

2
2

2�m�dk1k2
sin(k1td) sin(k2tm),
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The thickness of metal is chosen as t = 20 nm. There are two bands supported in MWAs, 
which coalesce at the DP. The DP is a degenerate point as the mode profiles of Bloch 
modes are different. The DP locates at center of Brillouin zone when the averaged permit-
tivity is vanished (Kou et al. 2013; Deng et al. 2015a, 2016a, b), that is,

The location of DP is denoted as (φDP, dDP), which is (0, 477.4 nm) for the param-
eter we choose. To clearly see the DP, we plot the curves kz(d) at φ = 0 in Fig. 1c and 
kz(φ) at d = 0 in Fig. 1d. The magnetic fields of Bloch modes are symmetric or anti-
symmetric as φ = 0. The band gap closes at DP and opens for other parameters, indi-
cating the band inversion and topological phase transition (Deng et  al. 2016b; Wang 
et  al. 2018). Moreover, one can find the dispersion relation is linear in the vicinity 
of DP, which can lead the diffraction-free and self-splitting beam propagation (Deng 
et al. 2015b). Previous studies have reported the existence of DPs in MWAs (Kou et al. 
2013; Deng et  al. 2016b). However, they neglect the influence of the loss of metal. 
Actually, a single DP will split into two EPs when the intrinsic loss of metal is taken 
into account. The dispersion relation would be greatly altered in this range as well.

Figure 2 shows the dispersion relation of MWAs at d = dDP as the loss of metal is 
considered. The dispersion relation is greatly changed when compared with Fig.  1d. 
The system now becomes non-Hermitian and the propagation constants are complex-
valued. The real and imaginary part of propagation constants coalesce at the same 
time for φ = φEP = ± 0.02π, which indicates the appearance of EPs. The EPs separate 
the dispersion relation into two regions: inside two EPs (φ < |φEP|), Re(kz) are flat and 
degenerate. Outside two EPs (φ > |φEP|), Im(kz) are flat and degenerate. The feature is 
familiar with the variation of a square root of multi-value function in complex analysis 
(Zhen et al. 2015).

(2)�mtm + �dtd = 0

Fig. 1  Dirac point in MWAs without considering the loss. a Schematic of MWAs. b The dispersion relation 
kz(φ) as a function of period d. c The propagation contestants for varying d at φ = φDP. d The dispersion 
relation at d = dDP
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3  General property of EPs

There are two sets of eigenfunctions in non-Herimitian systems, including the left 〈ψn| and 
right |ψn〉 eigenfunctions. The two Bloch modes are no longer orthogonal in the non-
Hermitian systems. Instead, they are biorthogonal in the sense of an unconjugated “inner 
product” between left and right eigenstates, 〈ψm|ψn〉 = δmn where m and n represent mode 
number (Lee 2010). The biorthogonality holds generally, but breaks down at EPs. When 
the system operates away from EP, the inner product is zero for two different modes (m · n) 
and is unity for the same mode (m = n). When approaching EP, the relation 〈ψm|ψn〉 = δmn 
does not hold. At the EPs, the two eigenstates coalesce and become self-orthogonal. As 
a result, the inner product is vanished. Such a property is usually qualified by the phase 
rigidity, which is defined based on inner product and given as rm = 〈ψm|ψm〉 (Lee 2010; 
Ding et al. 2015). The absolute value of phase rigidity is unity when the system operates 
away from EPs and it is vanished when approaching EPs. In the calculation, the magnetic 
fields (Hy) serve as right eigenstates and the left eigenstates is defined as 〈ψ| = Hy*(ε*). 
Then, the phase rigidity is r = ∫Hy*(ε*)Hy(ε)dx, where the integration is limited in one 
period (− d/2 < x<d/2). Figure 3 shows the phase rigidity of two Bloch modes as a function 
of Bloch momentum at d = dDP. The blue and red lines represent two different modes. The 
phase rigidity tends to be zero at EPs and unity when away from the EPs.

We further explore the topological nature of EPs, which can be studied by encircling the 
EP in the parameter space. Two parameters should be turned at the least. Here, the parameters 
are chosen as period d and Bloch momentum φ. A loop (A · B · C · D · A) is created in the 
parameter space as shown in Fig. 4a, which encloses an EP (φEP = 0.02π,dEP = 477.4 nm). For 
each point along the loop, the waveguide arrays have certain period and Bloch momentum. 
Then, we can numerically calculate the two eigenvalues of Bloch modes according to Eq. (1). 
Figure 4b presents the evolution of eigenvalues along the loop. The blue and red dots denote 
the initial values of two eigenvalues at starting point A (d = 490 nm, φ = 0). Following the 

Fig. 2  Exceptional points in MWAS. a The real and b imaginary parts of propagation constants in the 
vicinity of Brillouin zone at d = 477.4 nm

Fig. 3  Phase rigidity in the vicin-
ity of EPs. The period of MWAs 
is d = dDP
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loop, the two complex eigenvalues switch their positions when the system returns to its initial 
parameters. In contrast, two eigenvalues come back to themselves at the end of the loop if the 
EP is not enclosed in the loop. The mode exchange is caused by the topological structure of 
complex eigenvalues near the EP as it exhibits the same geometric property as that of branch 
point of complex multi-value function. Furthermore, such unique property can be used for 
mode switching (Lee 2010; Ke et al. 2016).

During the encircling progress, the corresponding eigenmodes should also exchange their 
identity. After two cycle loops encircling an EP with same orientation, both modes return to 
themselves. Moreover, each mode picks up a phase change, which is referred as geometric 
phase (Lee 2010; Ke et al. 2016). Usually, one can’t directly extract geometric phase from the 
eigenmodes as they possess arbitrary phase obtained from Maxwell equations. The arbitrary 
phase is dismissed by a continuous phase-plot of eigenstates (Lee 2010), which requires the 
inner product Im(〈ψ* n|ψn〉) = 0. Then, the geometric phase can be extracted from phase dif-
ference between the initial |ψn〉I and final states |ψn〉F at start and end of the loop. The geo-
metric phase is an integer multiple of π, which is independent of position. We trace the phase 
of magnetic field (Hy) of one Bloch mode at position x = 0. The result is illustrated in Fig. 4c. 
The non-trivial geometric phase can be observed by encircling an EP twice, which is − π for 
clockwise loops and π for anticlockwise loops.

4  EPs in graphene waveguide arrays

We now consider the EPs in GSAs. A diagram of GSAs is displayed in Fig. 5a. The mon-
olayer graphene sheets are spatially separated with period d and embedded in the host dielec-
tric medium with the relative permittivity denoted by εd. Here we consider the dielectric is air 
with εd = 1 for simplicity. The surface conductivity of graphene σg can be modeled using Kubo 
formula (Huang et al. 2017; Wang et al. 2012), which relates to the frequency ω, chemical 
potential μc, momentum relaxation time τ and temperature T. In this work, the chemical poten-
tial is fixed at μc = 0.15 eV and the momentum relaxation time is chosen as τ = 0.5 ps at room 
temperature (T = 300 K). The incident wavelength is assumed to be λ = 10 μm. The dispersion 
relation of SPPs under TM polarization is given by (Wang et al. 2012)

(3)cos(�) = cosh(�d) −
��

2
sinh(�d),

Fig. 4  Topological property of EPs. a The parametric loop that encloses an EP. b The evolution of eigenval-
ues along the loop. The different colors represent different modes. c Phase evolution of eigenmodes (Hy) at 
x = 0. The blue line is for the parameters changing along clockwise loop, while the red one for anticlockwise 
loop. (Color figure online)



 S. Ke et al.

1 3

 318  Page 6 of 14

where φ represents the Bloch momentum, ξ = η0σg/(iεdk0) characterizes the effective mode 
width of SPPs in a single-layer graphene sheet with η0 denoting the impedance and k0 the 
wave vector of air, and κ = (kz

2 − εdk0
2)1/2 with kz being the propagating constant of Bloch 

mode.
Figure  5b illustrates the propagation constants for varying the array period at the 

center of Brillouin zone (φ = 0). The loss is not considered in the calculation. There 
are two modes supported in the system. However, the symmetric mode that supported 
in MWAs now becomes a trivial one with the propagation constants being kz = k0. This 
is due to the two-dimensional property of graphene. The result is similar to the case of 
MWAs. A DP arises at dDP = ξ as the two modes possess the same propagation constant. 
The location of DP is exactly at the position when the period is equal to plasmonic mode 
width (Wang et al. 2012). In general, the strong and weak couplings are distinguished 
according the mode width. Here, the location of DP exactly locates at the boundary of 
two regions. The same phenomenon also appears in MWAs if the thickness of metal 
films approaches to zero. To understand the distinction of strong and weak coupling is 
important in design of plasmonic waveguides. The coupled mode theory can be used in 
weak coupling region (Ke et  al. 2018), while the effective index theory is introduced 
in the strong coupling one (Zhang et al. 2014). The location of DP in GSAs is accom-
modated with Eq. 2 when treating graphene as ultrathin metal films. The thickness of 
graphene is denoted as Δ and a relative equivalent permittivity of graphene is given by 
εg = 1 + iσgη0/(k0Δ) (Wang et al. 2012). Then, the critical condition for the emergence of 
DP is derived as

Figures 5c, d plot the real and imaginary parts of dispersion relation at d = dDP. The 
loss of graphene now is taken into account. Since the complex band structures of the 
system possess mirror symmetry, the EPs always appear in pairs. The two modes coa-
lesce at φ = φEP = ± 0.0086π. The shape of curve kz(φ) is different from that in Fig. 2. 
The real and imaginary parts of propagation constants are not degenerate at both inside 

(4)(dDP − Δ)�d + Δ�g = 0.

Fig. 5  The EPs in GSAs. a The schematic of GSAs. b The propagation constants as a function of period d 
at φ = 0 without considering the graphene loss. c, d The real and imaginary part of dispersion relation at 
d = 46 nm when the loss of graphene is taken into account
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and outside the EPs. The similar phenomenon appears in MWAs with ultrathin thick-
ness, indicating that the influence of loss becomes more significant.

We now try to figure out the location of EPs (dEP, φEP) in GSAs. The value of period is 
approximately as dEP= Re(ξ) as EP originates from DP with account of the loss. We further 
use perturbation method to solve Eq.  (3) and find out the Bloch momentum φEP. At the 
center of Brillouin zone (φ = 0), the dispersion relation is simplified to

Equation (5) have two solutions, the first one is trivial solution κ10 = 0. The second solu-
tion is figured out by using Padé approximation, which is

Then, the second solution reads as �20 ≈
√
12(d − �)∕(d2�) . In the vicinity of Brillouin 

center φ = Δφ ≪ 1, the solution of Eq. (3) can be calculated by using perturbation method, 
which are

Now, we try to figure out the location of exceptional point (dEP, φEP). The period should 
be dEP = Re(ξ) as EPs appear in the vicinity of DPs. When d = dEP, we have sinh(κ20dEP) 
≈ κ20dEP + (κ20dEP)3/6 and cosh(κ20dEP) ≈ 1 + (κ20dEP)2/2 as the term κ20dEP ≪ 1. Then, the 
second equation of Eq. (7) becomes

where a =
√
−6Im(�)Re(�)∕Re(�)2 . For the parameter we choose, one can find 

Im(ξ) ≪ Re(ξ). Therefore, the term adEP =
√
−6Im(𝜉)∕Re(𝜉) ≪ 1 and the high order term 

can be ignored as a3d3
EP

≪ adEP . Then, Eq. (8) is simplified to

At EP, two eigenvalues should be of equal values, that is, κ1
2 = κ2

2, which leads to
Δφ = ± bIm(ξ)/Re(ξ) and b =

4
√
288 . Recalling the relation ξ = − iη0σg/(εdk0), we arrive 

at

Equation  (10) states that φEP only relates to the property of graphene, which is pro-
portional to the ratio of real part and imaginary part of surface conductivity. The constant 
before Eq. (10) does not coincide well with the numerical results calculated by Eq. (1). We 
redefine the constant b by the data fitting, which is determined as b = 5.44. Then, the results 
indicated by Eq. (10) agree well with the numerical results as shown in Fig. 6. Therefore, 
the location of EPs can be flexibly tuned.

(5)e−�d = (2 − ��)∕(2 + ��).

(6)e−�d ≈

(

1 −
d�

2
+

d2�2

12

)/(

1 +
d�

2
+

d2�2

12

)

.

(7)�2
1
≈

iΔ�2

−Re(�)Im(�)
, �2 ≈ �20 +

Δ�2

(� − 2d) sinh(�20d) + �20d� cosh(�20d)

(8)
�2 = a(1 + i) + Δ�2

{
1i ⋅

[
2

3
Re(�)a3d3

EP
+ Im(�)

(
2adEP −

4

3
a3d3

EP

)]

−
[
2

3
Re(�)a3d3

EP
+ Im(�)

(
2adEP +

4

3
a3d3

EP

)]}−1

,

(9)�2 = a(1 + i) −
3Δ�2

4a3Re(�)4 + 12aIm(�)Re(�)
(1 + i),

(10)�EP = b
Re(�g)

Im(�g)
,
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Figures  6a, b show the location of EP as the incident wavelength is varied. The line 
represents the results directly calculated by the dispersion relation and the dots are the ana-
lytical results. One can see dEP monotonically increase with the increase of incident wave-
length. At the same time, φEP firstly decreases and then increases as the incident wave-
length increases. Figures  6c, d illustrate the location of EP as the chemical potential is 
varied. One can see dEP increases and φEP drops with the increase of chemical potential. 
The numerical results coincide fairly well with the theoretical indications.

5  Strong absorption in the vicinity of EPs

The propagating modes in GSAs possess large imaginary part in the vicinity of EPs as 
they are strongly mixed with the radiation ones. The real part of propagation constants kz 
relates to effective index of SPP mode as neff= real(kz)/k0 and the imaginary part represents 
the propagation loss with absorption coefficient given by α = 2Im(kz). To clearly see the 
absorption of propagating SPP mode in GSAs, we plot the curves α(d) for various Bloch 
momentums in Fig. 7a. When Bloch momentum equals to 0.01π, the absorption manifests 
a pronounced peak at d = 46.26 nm. As φ increases, the peak dramatically decreases and 
the position of peak shifts to larger period. Figure 7b presents the absorption coefficient 
as a funtion of Bloch momentum with d = 30 nm, 47 nm, and 60 nm. As d = 47 nm, α(φ) 
exhibits a distinct peak at Brillouin zone center and the maximum of absorption coeffi-
cient is 7.76  μm−1. As d increases, the peak significantly decreases. On the other hand, 
GSAs locates at strong coupling region with smaller period (d = 30 nm). The Bloch modes 

Fig. 6  The location of EPs for different parameters. a, b The position of EPs for varying incident wave-
length. c, d The position of EPs for various chemical potential
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is of slight propagation loss in entire Brillouin zone and the absorption coefficient displays 
a minimum at Brillouin center. Therefore, the maximum absorption of propagating mode 
will be limited to the value at d = ξ and φ = 0.

To explain such a strong absorption, we investigate the electric field distributions in the 
GSAs. The magnitude field between graphene sheets (− d < x < 0) is given by

The relation between amplitude  A+ and  A− can be determined by boundary condition 
and Bloch theorem (Wang et  al. 2012), which is given by A+ =

exp(−�d) exp(ikxd)−1

exp(ikxd)−exp(−�d)
A− . 

Accordingly, the electric fields can be acquired as Ex= –iη0/(εdk0)·Hy/·z and Ez = iη0/(εdk0)·
Hy/·x.

The longitude component of electric field |Ez|2 is continuous across graphene, while the 
transverse one |Ex|2 undergoes a sudden change at the interface of graphene and dielectric. 
Therefore, as illustrated in Fig. 7c, we plot |Ez|2 as a function period at the position of gra-
phene and |Ex|2 at the two interfaces of graphene. The dependence of longitude electric field 
on period d is accordant with that of absorption coefficient shown in Fig. 7a, while the trans-
verse one shows no relevance. So we conclude that propagation loss of Bloch mode is the 
result of enhanced longitude field Ez, and the propagation loss is almost proportional to |Ez|2. 
The longitude fields as a function of Bloch momentum also agree well with the proportional 

(11)Hy = A+exp[ − 𝜅(x + d)]+A−exp(𝜅x), − d < x < 0

Fig. 7  The absorption coefficient α and the field intensity of Bloch modes in GSAs. a α(d) curves for dif-
ferent Bloch momentums, b α(φ) curves for different periods, c, d the field intensity at the graphene corre-
sponding to a and b, respectively
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relation to absorption coefficient as shown in Fig. 7d. The maximum value of electric field of 
propagating mode will be limited to the value at Ez(φ = 0, d = ξ) as well.

When the Bloch wavevector is kx = 0, the amplitude satisfy A− = − A+. By setting A− = 1, 
the field in GSAs is given by

The field should be normalized by the power, which is defined by P = 1/2∫ 0

−d
Re

(
ExH

∗
y

)
dx.

Now we try to figure out the maximum electric field of propagating mode. We first con-
sider the case without considering the intrinsic loss of graphene. The power is calculated by

On the other hand, the longitude electric field at graphene (x = 0) should be

When the fields are normalized by setting P = 1 W/m, the longitude electric field should be

The absolute value of square of longitude electric field is given by

In the vicinity of Dirac point (φ = 0, d · ξ), the wavevector should be κ · 0 and 
kz =

√
�dk

2
0
+ �2

→ �
1∕2

d
k0 . One can find the limitation

Applying Eq. (17) into Eq. (16), we arrive at

which indicates the longitude electric field at DPs. The lossless case is the ultimate limita-
tion of Ez when the loss of graphene is reduced for larger relaxation time τ.

(12)

Hy = − exp[−𝜅(x + d)] + exp(𝜅x), −d < x < 0

Ez =
i𝜂0𝜅

k0𝜀d
exp[−𝜅(x + d)] +

i𝜂0𝜅

k0𝜀d
exp(𝜅x), −d < x < 0

Ex = −
𝜂0kz

𝜀dk0
exp[−𝜅(x + d)] +

𝜂0kz

𝜀dk0
exp(𝜅x), −d < x < 0

(13)P =
�0kz

2�dk0

[
1 − exp(−2�d)

�
− 2d exp(−�d)

]

(14)Ez(x → 0−) =
i�0�

k0�d
[exp(−�d)+1]

(15)
Ẽz(x → 0−) =

i𝜂0𝜅[exp(−𝜅d)+1]
√

𝜂0k0kz𝜀d

2

[
1−exp(−2𝜅d)

𝜅
− 2d exp(−𝜅d)

]

(16)||Ẽz
||
2
=

2𝜂0

k0𝜀d

𝜅3(exp(−𝜅d) + 1)2

kz
[
1 − exp(−2𝜅d) − 2𝜅d exp(−𝜅d)

]

(17)lim
�→0,d→�

1 − e−2d� − 2de−d��

�3
=

�3

3

(18)||Ẽz
||
2
=

24𝜂0

𝜀
3∕2

d
k2
0
𝜉3

,
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For lossy case, the express of power and the value of wavevector are different. The 
power is given by

which is accommodate with Eq.  (13) as Im(κ) = 0. Because of the strong confinement of 
SPP in graphene, the wavevector of lossy case fulfill κ ≫ k0 and we have kz · κ. Moreover, 
the wavevector is approximated to be κ · [−6Im(ξ)Re(ξ)]1/2/[Re(ξ)]2(1 + i) = a(1 + i) at φ = 0 
and d = Re(ξ). At this point, the square of normalized longitude electric field at graphene 
reads as

It is found that |Ez|2 indicated by Eq. (20) is 2.23 × 107 V2/m2, accommodating with the 
numerical value 2.21 × 107 V2/m2.

We now study absorption and field enhancement in the MWAs and focus at the influ-
ence of metal thickness tm. Figure  8a shows the absorption coefficient as a function of 
period for different thickness of metal films. The Bloch momentum is fixed at φ = 0.02π. 
As tm = 2 nm, the absorption shows a pronounced peak at d = 48.3 nm. As the thickness 
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Fig. 8  The absorption coefficient and b the field intensity (|Ez|2) of Bloch modes in MWAsy as a function of 
period for different thickness t. c, d are the α(φ) curves for t = 2 nm and 20 nm, respectively
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of metal film increases, the maximum of absorption coefficient decreases and the position 
of the maximum shifts to larger period d. The peak almost disappears as tm = 20 nm. The 
transverse electric field intensity (|Ez|2) at the interface of metal and dielectric is shown 
in Fig. 8b. The dependence of |Ez|2 on period d is consistent with that of α. Therefore, the 
strong absorption and field enhancement only arise in thin metal. To further confirm the 
conclusion, Fig. 8c, d present α(φ) curves with respect to different periods at t = 2 nm and 
t = 20 nm, respectively. As t = 2 nm, the maximum absorption emerges at d = 47.9 nm in 
the Brillouin zone center. The maximum absorption will significantly decrease as period 
deviates from the critical value. On the other hand, at t = 20 nm, the loss of Bloch mode is 
relatively small in the whole Brillouin zone. The theory we develop for graphene can be 
utilized in MWAs when the metal films is thin enough. We adopt σm = (εm − εd)k0t/(iη0) to 
indicate the equivalent surface conductivity of thin metal. At this configuration, the max-
imum of longitude field indicated by Eq.  (20) is |Ez|2 = 1.15 × 106 V2/m2 at d = 47.7 nm, 
which agrees well with the rigorous value 1.05 × 106  V2/m2. As the thickness of metal 
increases, the absorption is quite small as shown in Fig. 8d. Therefore, the strong absorp-
tion and field enhancement only emerge in GSAs or in MWAs with thin thickness. The 
study also provides useful information to deal with the propagation loss of SPPs in wave-
guide arrays. To avoid the strong loss of SPPs, one should choose thick metal films and 
other parameters such that the system performs away from EPs.

6  Conclusion

In conclusion, we have investigated the EPs in MWAs GSAs. The EPs emerges at the 
boundary of strong coupling and week coupling ranges, which can greatly alter the disper-
sion relation. The topological property of EPs, including the cross conversion of Bloch 
modes and variation of geometric phase, are studied by encircling an EP in the parametric 
space formed by Bloch momentum and period of structure. We show the Bloch modes 
exhibit strong propagation loss in the vicinity of EPs in GSAs or in MWAs with ultrathin 
metal films. The abnormal absorption can be explained by the enhanced longitude electric 
field along the propagation direction and we analytically calculated the limitation of maxi-
mum of enhanced field. The loss and field enhancement drop when the thickness of metal 
films increases. Our results may benefit to the design of plasmonic waveguides and find 
applications in optical switches and sensors at the nanoscale.
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