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Abstract: We investigate the topological bound modes in a binary optical waveguide array
with anti-parity-time (PT) symmetry. The anti-PT-symmetric arrays are realized by
incorporating additional waveguides to the bare arrays, such that the effective coupling
coefficients are imaginary. The systems experience two kinds of phase transition, including
global topological order transition and quantum phase transition. As a result, the system
supports two kinds of robust bound modes, which are protected by the global topological
order and the quantum phase, respectively. The study provides a promising approach to
realizing robust light transport by utilizing mediating components.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Topological photonics have attracted considerable attention as they provide additional degree
of freedom to reveal new states of light [1-9]. They are also utilized for controlling light
flows that is insensitive to disorder [1]. The simplest model to investigate topologically
protected modes is the Su—Schrieffer—Heeger (SSH) model, which consists of binary arrays
[10,11]. By tuning the intra- and inter- cell coupling, topological order of the array changes
when a bandgap closes and then reopens. Topological protected modes appear at the gap of
band structure when two structures with different topological orders are interfaced [1,11]. The
SSH model is theoretically and experimentally reported in various optical systems, including
metallic resonators [9], photonic superlattices [10], silicon waveguides [11], semiconductor
micropillars [12], and plasmonic waveguides [13—-17].

Studies of topological photonics have so far mostly dealt with Hermitian systems.
Recently, a growing interest is paid to investigating topological properties of non-Hermitian
systems with gain and loss, especially the Parity-Time (PT) -symmetric systems [18-27]. The
PT symmetry is introduced to optics in 2008 for the first time [28], which requires the system
Hamiltonian H obeys relation [PT, H] = 0. The system can possess real spectrum in the
presence of gain and loss below PT-broken threshold [28-31]. The first experimental
observation of PT symmetry is by utilizing two coupled semiconductor waveguides [29],
where optical gain is provided though nonlinear two-wave mixing. Many fascinating
phenomenon are reveled in PT-symmetric systems [31-35], such as double refraction [28],
loss induced transparency [36], non-reciprocal propagation [29], and chiral mode switching
[37-39]. Topological phase transition also emerges in PT-symmetric systems, which is
closely related to the system degeneracy, known as exceptional point (EP) [19,21,23,40]. The
topological bound modes with PT symmetry are firstly observed in coupled waveguide arrays
[19], which are Hermitian-like and can be sustained with vanished gain and loss factor.
Interestingly, PT-symmetric systems support unique robust bound mode with no Hermitian
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counterparts. The bound modes appear at the interface between two arrays with same
topological order but with distinct quantum phases [41-43].

Anti-PT-symmetric systems, which obey {PT, H} = 0 with the commutator replaced by
the anticommutator, have also attracted much attention [44—49]. The original proposal of anti-
PT symmetry is in [44], where the refractive index of the system satisfies n(x) = —n*(—x). The
later studies demonstrate the discrete lattices with imaginary coupling can be anti-PT
symmetric as well [45,47]. The imaginary coupling is realized in flying atoms [47], electric
circuits [49], optical rings and waveguides by interacting the two bare states through a third
state [45,46,48]. Many intriguing wave dynamics are found in anti-PT-symmetric systems.
For example, flat broadband light transport and dispersion-induced dissipation are
demonstrated in double waveguide coupler [45]. The chiral mode conversion by dynamically
encircling an exceptional point (EP) is reported for symmetry-broken modes [48]. Actually,
anti-PT symmetry belongs to a more fundamental symmetry called charge-conjugation
symmetry [40,50,51], which is first proposed for superconductors and defined as {CT, H} =0
with C being unitary operator [51]. The charge-conjugation symmetry is a general property of
non-Hermitian systems consisting of two sublattices [50], which plays an important role in
determining topological property of the system [40,50,52-54]. The study of asymmetric
coupled systems indicates that the topological bound states can be generated via a degeneracy
induced by charge-conjugation symmetry [40,52]. Moreover, the topological bound modes
can be selectively pumped due to its special energy spectrum [50,54], which can be further
utilized to enhance the lasing performance with improved single mode property, higher slope
efficiencies, and robustness against perturbation [53,55-57].

In this work, we investigate the topological bound modes in anti-PT symmetric waveguide
arrays with imaginary coupling. We show the imaginary coupling can be realized by
incorporating assistant waveguides to the bare array and considering both gain and loss. The
coupling strength can be further controlled by tuning the amount of gain and loss in respect
waveguides. We show the topological phase transition in anti-PT-symmetric arrays is closely
related to the imaginary part of band structure rather than its real part, which is different from
the case in Hermitian and PT-symmetric systems. We also show the quantum phase transition
can emerge by tuning the real part of refractive index, in contrast to PT-symmetric arrays in
which the imaginary part of refractive index is altered. The robust bound states protected by
global topological order and quantum phase are also discussed in detail.
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Fig. 1. Schematic of waveguide arrays with anti-PT symmetry. (a) The proposed sawtooth
array to realize the effective imaginary coupling. The blue and red sites represent bare arrays
and the gray and green are for assistant sites. (b) The equivalent array with imaginary
coupling. (¢) The geometry of proposed planar waveguide array with anti-PT symmetry.

2. Anti-PT symmetry and topological invariant

We start by investigating how to realize anti-PT-symmetric waveguide arrays with imaginary
coupling. The non-Hermitian coupling emerges in coupled waveguides with gain or loss [58]
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and also in open ring resonator with asymmetric scattering [59]. However, the imaginary part
of coupling coefficient is small compared with its real part. Complex coupling is also realized
by dynamically modulating refractive index along wave propagation direction [60,61].
However, it increased difficulties for experimental implementation. We follow another
approach by incorporating assistant waveguides into the bare array to realize imaginary
coupling [45,62,63]. The static on-site complex potentials simplify its practical
implementation and the coupling strength can be tuned by the amount of gain and loss. As
shown in Fig. 1(a), the proposed weekly coupled array have four waveguides in each unit cell,
which are labeled as A, B, C, and D with C and D being the assistant waveguides. The
corresponding effective detuning of propagation constants is denoted as J, d,, J3, and Jdy.
Only nearest coupling is considered. The coupling is represented by J; and .J,, which are
assumed to be real and positive. The wave should evolve according to the coupled mode
equation (CMT), which is given by

_ da,

= é‘lan +chn +J2dnfl

Z

db
—-i—~=0,b, +Jc,+J,d,
dz (1)

d
=S +J(a,+b)
Z

—i

+b,)

dd
_l == 54dn + J2 (an+1
dz
where a,, b,, ¢,,, and d,, denote the field amplitudes in respect waveguide in nth unit cell. If the
absolute value of detuning |d3| and |d4] are much larger than the coupling J; and .J,, the
assistant waveguides C and D can be eliminated adiabatically [45], that is,

C,, :_Jl(an +bn)’dﬂ :_Jz(anH +bn) (2)
J J,
Substituting Eq. (2) into the first two terms of Eq. (1), the corresponding CMT reduces to
d JE I} J? J,)}
(Tt L 2
dZ 53 54 53 54
3
2 2 2 2
b I I ST,
dz 53 54 53 54

Therefore, after setting
8 =—i(c,+¢,)-A/2,8, =—i(c,+¢,)+A/ 2,8, =)’ /¢,6,=iJ," c,, (4)

Equation (3) can be written as

da A . .
—i—*=——a, +ich, +ic,b, |,
dz 2 5)
—i—~ =jca +ic,a +éb
- 1%n 2%n+1 2 n*

The equivalent system described by Eq. (5) is depicted in Fig. 1(b). Each unit cell contains
two waveguides A and B with effective detuning of propagation constants being + A/2,
respectively. The intra- and inter- coupling coefficients are ic; and ic,, which are purely
imaginary values. In order to realize the imaginary coupling, Eq. (4) indicates that the bare
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arrays should be with gain and the assistant waveguides are with loss. Moreover, the amount
of loss significantly exceeds the amount of gain, that is, 03|, |d4 > |dy], |0|. As the adiabatic

elimination requires |Js), |d4 > J}, J», the bare coupling strength should also be much larger
than effective imaginary coupling, that is, J, J, > ¢y, ¢».

For periodic boundary, the Bloch theorem can be utilized and the system Hamiltonian is
given by

. :[ -A/2 ic, +ic, exp(—i¢)j‘ ©)

ic, +ic, exp(ip) A/2

The time-reversal operation T transforms a z-independent operator to its complex conjugate,
while the parity operator P exchanges locations of the modes [45]. Thus, the system
Hamiltonian fulfills the relation (PT)H(PT)™"' = —H, which implies the system is anti-PT-
symmetric. The anti-PT symmetry can be also defined by Pauli matrix ¢;, which requires
o, H(p)o, = —H*(p) [23]. Chiral symmetry is also important in determining topological
properties of the system, which is defined by o.H(p)o, = —H(p). The system possesses chiral
symmetry only when the detuning is A = 0. This ensures the Berry phase of individual band is
quantized. The eigenvalues of Eq. (6) are solved to be

A :J_r\/A2 /4—cl —c3 —2¢c, cos@. @)
The corresponding right and left eigenvectors are figured out as

14)= (cos(Ak /2) exp(i¢k)J 14)= [—sin(Ak /2) exp(i@)}

sin(A, /2) cos(A, /2) g
_ (cos(A, /2)exp(—ig,) ! _(—sin(A, /2)exp(-ig,) ! ®
(= sin(A, /2) | = cos(A, /2)

where Ay = arctan(—2ipi/A) and p(p) = c; + c,exp(—ip) = pexp(i¢y). The system has three
different phases according to anti-PT symmetry. When |c; — ¢,| > A/2, the system is in anti-
PT-symmetric phase and eigenvalues are purely imaginary across the Brillion zone. When |c;
— | < A/2, the system is in mixed anti-PT-symmetric and broken phases and eigenvalues
become complex-valued at the edge of Brillion zone. When |c; + ¢;| < A/2, the anti-PT
symmetry is fully broken and the eigenvalues develop into purely real values in the entire
Brillion zone.

We now investigate the topological invariant and show the topological transition arises in
anti-PT-symmetric systems. In non-Hermitian systems, the Berry phase for individual band is

defined by ¢, = gSki(ﬂi |d /dk|A,)dk [41], where + labels the upper and lower bands and k
represents Bloch momentum. The integration is taken over the 1D Brillouin zone.
Substituting Eq. (8) into the expression for ¢ £+ B, the Berry phase is derived as

9, =—dg, | 2+ eos(y,)dg, /2 ©)

When the chiral symmetry holds, that is, A = 0, the second term of Eq. (9) is vanished. ¢ + B
is quantized to be an integer multiple of w, which is ¢ 5 =7 for ¢; < ¢, and ¢ =+ B =0 for ¢; >
¢,. In this situation, the Berry phase of individual band can be still regarded as topological
invariant and utilized to indicate the topological phase transition. However, as A # 0, the
second term is not vanished. The Berry phase of a given band is not quantized and becomes
complex-valued. Interestingly, the global Berry phase ¢Gg = g5~ + @' [41-43], which is
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calculated by adding the complex Berry phase in both bands, remains quantized. Here we
utilize global Berry phase to reveal the topological nature of anti-PT-symmetric waveguide
arrays, which accurately captures the topological transition point ¢; = ¢;.

3. Bloch modes

The above theory is general for weekly coupled lattices. As coupled waveguides have been
widely utilized to demonstrate optical analogues of semi-classical electron dynamics [60,64—
66], we now consider planar InGaAsP waveguides to exam above theoretical analysis. The
geometry of proposed waveguide arrays is shown in Fig. 1(c). The structure is periodic along
x direction and light propagates along z axis. There are four waveguides in each unit cell,
which relative permittivity is denoted as e,, €p, &c, and ep. The real part of permittivity of
InGaAsP is gy = 12.25. The waveguides are assumed to be suspended in air with g,; = 1 for
simplicity. The width of waveguides w and the interlayer spacing d, are supposed to be
uniform, which are given as w = 0.24 um and dy = 0.5 pm, respectively. The incident
wavelength is fixed at A = 1.55 um. The parameters are chosen such that a single waveguide
only supports one propagating mode under TM polarization. The waveguides are weakly
coupled when the spacing between adjacent waveguides is much larger than the full width
half maximum of their eigenmode. In this work, the spacing is d = dy + w = 0.74 um and the
mode width is 0.31 pm. Therefore, the proposed geometry is in the weak coupling regime.
We now investigate the band structures and the field distributions of Bloch modes of anti-PT-
symmetric waveguide arrays, which can be calculated by transfer matrix method (TMM)
[67,70]. The propagation constant of a single waveguide is figured out as f, = 7.76 um . The
simulation shows the complex propagation constant of the single waveguide is k, =8, +
0.713A¢ with Ae denoting the detuned complex permittivity. The bare coupling strength J;
and J, can be extracted from a Hermitian double waveguide coupler, which is determined as
Jy =J>=Jy=0.047 um™'. Then, the effective imaginary coupling can be realized by adding
certain amount of gain and loss in respect waveguides according to Eq. (4). For example, the
detuning of propagation constants, effective intra- and inter-layer coupling strength in Figs.
2(a)and 2(b)are A/2=2x 10" um™, ¢; =4 x 107 pum ™" and ¢, = 1 x 10~ pm™’, respectively.
Then, the detuning of permittivity in waveguides A, B, C, and D should be Aes = (—2.8-7i) x
107, Aeg = (2.8-7i) x 107, Aec = 0.77i, and Aep = 3.09i, respectively. The effective coupling
strength can be properly controlled by tuning the detuning of imaginary part of permittivity.

3 C,—C,<—-A/2 -3 —C.= 3 .
2 ijm\ (c) 10710222 (e)15p10—2on2
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X X x L
= 0 —CMT =0 —=0
E E, i S
_:W _ ~15
-1 -0.5 ¢0/ 0.5 1 10—1 -0.5 d)0 0.5 1 1—1 -05 0 0.5 1
. T . /n X
(b) 5x10 (d) 5x10 (f) 5x10
- «TMM ~ —
= —CMT o o
g 0 il‘: 0}.%—{ J‘NO 009888888888838s0e
(0] o B/
o x o
-5 _5 -
-1 -05 0 05 1 =1 -05 0 0.5 1 -1 -0.5 O 0.5 1
o/m o/n o/n

Fig. 2. The band structures of anti-PT-symmetric waveguide arrays for various coupling
strength. (a), (c), and (e) The real part of band structure. (b), (d), and (f) The imaginary part of
band structure. In all figures, the intra-layer coupling and the detuning of real part of
propagation constant are fixed at ¢; =4 x 10~ um™ and A =4 x 10 pm™', respectively. The
inter-layer coupling varies with (a) and (b) ¢, =1 x 10™ um™, (c) and (d) ¢, =4 x 10~ um™,
(e)and (f) c; =7 x 107 pm ™.
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Figure 2 plots the band structures in the first Brillouin zone for various inter-layer
coupling, while the intra-layer coupling and detuning of real part of propagation constants
remain unchanged. There are two bands in the system, representing two different kinds of
Bloch modes. The lines stand for the results calculated by CMT according to Eq. (7) and the
dots represent the simulations of TMM. In Figs. 2(a) and 2(b), the coupling strength fulfills
the condition ¢; — ¢; > A/2 and then the system should be in anti-PT-symmetric phase. In this
phase, the imaginary part of band structure is gaped while the real part of the band structure is
closed. As the coupling satisfies |c; — ¢,| < A/2, the imaginary part of band structure is closed.
In Figs. 2(c) and 2(d), the coupling is ¢; = ¢,. One can see the imaginary part of band structure
closes at the EP near the edge of Brillion zone. As ¢, is further modified and fulfills ¢; — ¢; <
—A/2, as shown in Figs. 2(e) and 2(f), the imaginary part of band reopens and the real part
remains closed. The simulation and the theoretical results coincide well with each other,
which indicates the structure is surly in the weak coupling regime and the anti-PT-symmetric
waveguide array is realized. The general topological band theory states that the topological
phase of matter changes when a bandgap closes and then reopens when the system is further
modified. In the Hermitian and PT-symmetric systems, the topological phase relates to the
real part of band structure. Here in anti-PT-symmetric systems, we show the topological
phase transition relates to the imaginary part of band structure as the real part of band
structure is closed all the time. The system is topologic nontrivial as ¢; < ¢, and topological
trivial as ¢; > ¢,. Therefore, our study enriches the knowledge of topological transition. As the
imaginary part of band structure is closed in the entire broken region (lc; — ¢o| < A/2), the
band indices lose their meaning at a band crossing. Therefore, the topological invariant in the
system is a property of the entire Hamiltonian, not individual bands [23].

Here we want to explain the role of Im(k,) under propagation. The more amplified mode,
that is, the mode have negative Im(k.), would remain visible over a longer distance. Moreover,
the amplified band structure can be extracted from the wave propagation for a broad Gaussian
input beam. The imaginary part of band structure determines the amplification of total energy
of Gaussian beam Im(k,) = —Ln(Ey/Ei,)/2L, where E,, and E;, denote the output and input
energy of Gaussian beam and L presents the total propagation distance. If a single waveguide
is excited, the wave should evolve analogously to discrete diffraction with amplified energy
subject to modified Bessel function [68].

(a) 1 (b) 4
0.8 0.8
0.6 — 0.6
L 04 L 04
0.2 0.2
0 0
0 2 4 6 8 0 2 4 6 8
X (um) X (um)
(c) 4 (d) 1
0.95 0.8
0.9 0.6
w w
0.85 0.4 s
—_— de 1 3
0.8 — mode ] 0.2M .
0.75 0 :
4 6 8 10 12 14 4 6 8 10 12 14
J./c, JJ/c,

Fig. 3. (a) and (b) are the mode profiles of Bloch modes for ¢ = 0 in upper and lower bands,

respectively. (c) The field fidelity as a function of coupling strength J,. (d) The amount of loss

added in assistant waveguides C and D for different coupling strength. In the calculation, J; =
—1

JS=Jdp,c1=cr=cp=4 X 10’3um .
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Figures 3(a) and 3(b) plot mode profiles (|H,|) of Bloch modes at the center of Brillion
zone corresponding to Fig. 2(c). Most of energy is confined at the bare waveguides A and B.
The mode in upper band, as shown in Fig. 3(a), is almost perfect as the field in the assistant
waveguide is almost vanished. However, the mode in lower band, as present in Fig. 3(b), is
not ideal as a small amount of energy of is concentrated at the assistant waveguides C. In
order to quantitatively compare the similarity of the eigenmode with that in ideal anti-PT-
symmetric waveguide arrays, we define the field fidelity, which is given by

Fe ¥

m=A,B

Aol (10)

|A+my and |4’ ) denote the normalized eigenvectors of ideal anti-PT-symmetric arrays and
arrays with assistant waveguides, respectively. Considering the condition of adiabatic
elimination and Eq. (4), the field fidelity should relate to J, and J,, the bare coupling strength
in arrays with assistant waveguides. Figure 3(c) plots the fidelity of two Bloch modes as a
function of the ratio of bare coupling strength to effective imaginary coupling strength. The
mode 1 at upper band is almost perfect as the field fidelity approximates to unity. The fidelity
of mode 2 at lower band increases as the ratio of coupling strength increases and tends to
unity as Jy/cy — oo. However, at the same time, the amount of loss added into the assistant
waveguides is serious for large ratio. Figure 3(d) plots the detuning of imaginary part of
propagation constants as a function of the ratio Jo/cy. The detuning in assistant waveguide
rapidly grows with the increase of coupling strength. It is difficult to realize huge amount of
loss in experiment and it is also hard to maintain the real part of propagation constants.
Therefore, the ratio of coupling strength should be carefully designed. For the mode shown in
Figs. 3(a) and 3(b), the ratio of coupling strength is Jo/cy = 11.75. The field fidelity of two
modes reaches as high as 0.9998 and 0.9856, which implies the arrays with assistant
waveguides match well with the anti-PT-symmetric arrays.

4. Normal topological bound modes

In the above sections, we have discussed the band structure of periodic waveguide arrays and
its topological invariant. One of most remarkably feature of topological photonics is that the
interface between topologically inequivalent media necessarily hosts robust boundary modes.
Now we study the topological bound modes in anti-PT-symmetric arrays.
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Fig. 4. Topological bound modes in finite waveguide arrays. (a) The geometry of finite lattice.
(b) The propagation constants for all supermodes. (c¢) and (d) are the mode profiles for the
topological edge modes. The effective coupling strength is ¢, = 1 x 107 pm™" and ¢, =4 x 107
pum™". The detuning of real propagation constant is A =4 x 107,
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Figure 4(a) depicts the ideal finite waveguide arrays with imaginary coupling and the
corresponding actual structure with assistant waveguides. The actual structure is terminated
with assistant waveguides. The effective coupling strength is ¢; = 1 x 10~ um™ and ¢, = 4 x
10~ um™ and the detuning of propagation constants is A =4 x 107, As a result, the structure
is topological nontrivial. The end of the structure can be regarded as the interface of two
structures with different topological order, that is, the topological non-trivial waveguide array
and the topological trivial air. Therefore, it must possess topological bound modes. The
spectrum of propagation constants of the finite waveguide arrays is shown in Fig. 4(b). The
number of bare waveguides is N = 30. One can see there is a pair of edge modes located at the
gap of imaginary part of band. The imaginary part of propagation constants of two modes is
equal while their real parts are different. The mode profiles of two edge modes are illustrated
in Figs. 4(c) and 4(d). One mode is located at the right termination of the structure and the
other is confined at the left. The lines represent the simulation results calculated by TMM and
the dots are theoretical results for the ideal model. Despite of a small amount of energy
confining to the assistant waveguides, the simulation agrees well with the theoretical
indication. In Fig. 4(c), the field is mainly concentrated on waveguide A and waveguide B
exhibits vanishing amplitude. In contrast, as plotted in Fig. 4(d), the energy is mainly
distributed in waveguide B. The vanishing amplitudes at waveguide A or B is the result of
topological protection on the edge mode as it prevents the edge mode from merging with bulk
modes under a continuous deformation of the system’s parameters.

On the other hand, as the inter-layer space dj is uniform between different waveguides,
the system is topological trivial without considering gain and loss. The imaginary coupling
strength is actually controlled by tuning the imaginary part of permittivity in assistant
waveguides. Therefore, our results also indicate the topological phase transition is induced
solely by gain and loss control, not the Hermitian factors [27]. Our model can also relate to
previous study of SSH-like model with asymmetric coupling [21,40,52] by a basis change
(ay', bu)' = (an, ib,)". After the basis change, the system Hamiltonian takes the form

-A/2 ¢, tc, exp(—igp)
—c, — ¢, exp(ig) A/2 '

H= an

Both inter- and intra- coupling becomes asymmetric and the onsite potential is —A/2 and A/2.
As A =0, the chiral symmetry is fulfilled, which retains the energy of topological mode to be
zero, that is, k, = 0. The nonvanished onsite potential A breaks chiral symmetry and the
energy of topological mode is not remained at zero anymore, as shown in Fig. 4(b).
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Fig. 5. Propagation of topological edge modes. In (a) and (b), the input fields are eigenmodes.
(c) and (d) are for a single waveguide excitation from the right and left termination.



Research Article

Optics EXPRESS

Figure 5 presents the propagation of two topological edge modes. The wave propagation
is simulated using Rigorous coupled-wave analysis (RCWA) method [69]. In Fig. 5(a) and
5(b), the incident fields are the eigenmodes shown in Figs. 4(c) and 4(d). The fields are well
confined at the ends of waveguide arrays during the propagation. The energy of two modes at
different propagation distance z is almost neither decayed nor amplified. This agrees with the
results shown in Fig. 4(b) as the imaginary part of propagation constants of two edge modes
is zero. The situation is different when a single waveguide is excited. As shown in Figs. 5(c)
and 5(d). The wave diffuses into the structure during the propagation. The reason can be
understood. When wave is launched from the single waveguide, the bulk modes and the edge
modes are excited simultaneously. As some bulk modes are more amplified than the edge
modes, the bulk modes dominated after enough long propagation distance. In order to select
the edge modes, one may pump the two waveguides at the structure termination as the edge
modes are mostly confined at the termination waveguides.

5. Abnormal topological bound modes

In spite of the general topological phase transition, the previous study has shown that the PT-
symmetric arrays also experience quantum phase transition. The quantum phase transition
refers to an abrupt change of Berry phase of individual band [41-43]. Here we show the
quantum phase transition emerges in the anti-PT-symmetric waveguide arrays as well.

—~ 0.5} _
s T
z ! —
'c,*+C,
_1 N ' N ' L N : N ' .
0 2 4 6 8 0 2 4 6 8

Al2 x10° Al2 x10°

Fig. 6. The Berry phase as a function of detuning A. (a) Real part and (b) imaginary part of the
Berry phase. The red and blue curves represent upper and lower bands, respectively. The
effective coupling strength is ¢; =4 x 10~ pm™ and ¢; =1 x 107 pm™.

Figures 6(a) and 6(b) plot the complex Berry phase with increasing the detuning A as ¢,/c;,
> 1. The results are numerically calculated by Eq. (9). In the limit A = 0, the second term of
Eq. (9) is vanished and the Berry phase is quantized. As A is not vanished, the Berry phase of
individual band is not quantized and continuously varying by increasing the detuning A. The
results can be divided into three phases. In phase I, that is, ¢;— ¢, < A/2, the system is anti-PT-
symmetric. The eigenvalues are purely imaginary and ¢p * are imaginary as well. In phase II,
that is, ¢;— ¢; < A/2 < ¢ + ¢, the eigenvalues become complex and the Berry phase is also
complex. In phase III, that is, A/2 > ¢; + ¢,, the eigenvalues are real in the entire Brillion zone
and the system is in fully anti-PT-broken phase. The Berry phase in this region is real. The
three phases have distinct boundary as the Berry phase is not continuous. Any abrupt
transition denotes the transition threshold where the system-associated quantum phase transits
from one to another. Therefore, our system exhibits three different quantum phases. The
unusual robust bound modes appear at the Phase I to III transition interface.
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Fig. 7. Bound mode induced by quantum phase transition. (a) The proposed structures. (b) The
spectrum of eigenmodes. The green dot denotes the robust bound modes. (¢) The mode profiles
of bound mode. The lines present the simulated results and the dots are the theoretical results
calculated by the coupled mode theory. (d) Propagation of bound mode.

Figure 7(a) depicts the structures under consideration, where two semi-infinite
waveguides with different quantum phases are interfaced. The coupling strength is set to be ¢,
> ¢, such that the end of the structure will not support topological edge modes. The real part
of propagation constants of two semi-arrays are different, which are denoted as A; and A,. In
the calculation, the parameters are chosen as ¢; = 4 x 107 um"l, =1x10"° um"l, A =0,
and A, = 22 x 107° pm"l, which satisfies the relation A1/2 < |c;— ¢;| and Ay2 > |c; + ¢yl
Therefore, the two arrays are under the same topological order since global Berry phase are
the same. However, their quantum phases are different. The left part is in the anti-PT-
symmetric phase (phase I) and the right part is in fully anti-PT-broken phase (phase III).
Figure 7(b) presents the propagation constants of all eigenmodes as the number of bare
waveguides are set to be N = 30. There is an eigenmode located at the bandgap of the real
spectrum, which is the robust mode generated by quantum phase transition. Figure 7(c) plots
the mode profile of the bound mode, which energy is well concentrated at the interface. The
simulated mode profile agrees well with the theoretical prediction, except that a small amount
of energy resides at the assistant waveguides. Figure 8(d) shows the simulation results for the
propagation of the bound mode. The energy is well confined to the center interface during the
propagation.

The bound mode induced by the quantum phase transition is robust against topological
disorder. To validate its robustness, we introduce a perturbation of coupling strength J. into
the structure. Figure 8(a) depicts the ideal arrays as coupling near the interface is altered to be
¢1—0. and ¢, + .. The corresponding array with assistant waveguides is illustrated in Fig.
8(b). The permittivity of center five waveguides in the dotted box is changed while the
geometric parameters remain unchanged. Figures 8(c) and 8(d) plot the mode profiles of the
bound modes for different .. The interface modes persist with field concentrated at the same
waveguide, indicating its robustness against local topological perturbation. Remarkably, in
Fig. 8(d), the local coupling strength is totally reversed (c; < c¢;). In this situation, the bound
modes can is not destroyed, showing large fault-tolerance. The lines and dots stand for the
results of TMM and CMT, respectively. They are well accordant with each other.
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Fig. 8. Robustness of the bound mode against perturbation. (a) The proposed structures by
tuning the local coupling strength at the interface. (b) The realistic structure with assistant
waveguides. (c) and (d) are the mode profiles of bound modes as the perturbation of coupling
strength is 9, =1 x 10~ um™ and 3 x 107 pm™', respectively.

6. Summary

In conclusion, we have studied a non-Hermitian extension of SSH model, that is, the
topological bound modes in anti-PT-symmetric waveguide arrays with imaginary coupling.
The imaginary coupling is realized by incorporating assistant waveguides to the two bare
waveguides and considering both gain and loss. We show the system undergoes two different
kinds of topological phase transition, including global topological order transition and
quantum phase transition. As a result, the system supports two kinds of robust bound modes
which are protected by the global topological order and the quantum phase, respectively. As
the coupling strength can be flexibly controlled by tuning the amount of gain and loss, the
topological phase transition can be controlled without tuning geometric parameters. In
addition, the quantum phase transition can emerge by tuning the real part of refractive index,
in contrast to PT-symmetric systems where the imaginary part of refractive index is
modulated. The results enrich the study of topological photonics in anti-PT symmetric
systems and may provide a way to realize robust light propagation by using mediating
components.
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