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Abstract: We investigate the topological bound modes in a binary optical waveguide array 
with anti-parity-time (PT) symmetry. The anti-PT-symmetric arrays are realized by 
incorporating additional waveguides to the bare arrays, such that the effective coupling 
coefficients are imaginary. The systems experience two kinds of phase transition, including 
global topological order transition and quantum phase transition. As a result, the system 
supports two kinds of robust bound modes, which are protected by the global topological 
order and the quantum phase, respectively. The study provides a promising approach to 
realizing robust light transport by utilizing mediating components. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

Topological photonics have attracted considerable attention as they provide additional degree 
of freedom to reveal new states of light [1–9]. They are also utilized for controlling light 
flows that is insensitive to disorder [1]. The simplest model to investigate topologically 
protected modes is the Su–Schrieffer–Heeger (SSH) model, which consists of binary arrays 
[10,11]. By tuning the intra- and inter- cell coupling, topological order of the array changes 
when a bandgap closes and then reopens. Topological protected modes appear at the gap of 
band structure when two structures with different topological orders are interfaced [1,11]. The 
SSH model is theoretically and experimentally reported in various optical systems, including 
metallic resonators [9], photonic superlattices [10], silicon waveguides [11], semiconductor 
micropillars [12], and plasmonic waveguides [13–17]. 

Studies of topological photonics have so far mostly dealt with Hermitian systems. 
Recently, a growing interest is paid to investigating topological properties of non-Hermitian 
systems with gain and loss, especially the Parity-Time (PT) -symmetric systems [18–27]. The 
PT symmetry is introduced to optics in 2008 for the first time [28], which requires the system 
Hamiltonian H obeys relation [PT, H] = 0. The system can possess real spectrum in the 
presence of gain and loss below PT-broken threshold [28–31]. The first experimental 
observation of PT symmetry is by utilizing two coupled semiconductor waveguides [29], 
where optical gain is provided though nonlinear two-wave mixing. Many fascinating 
phenomenon are reveled in PT-symmetric systems [31–35], such as double refraction [28], 
loss induced transparency [36], non-reciprocal propagation [29], and chiral mode switching 
[37–39]. Topological phase transition also emerges in PT-symmetric systems, which is 
closely related to the system degeneracy, known as exceptional point (EP) [19,21,23,40]. The 
topological bound modes with PT symmetry are firstly observed in coupled waveguide arrays 
[19], which are Hermitian-like and can be sustained with vanished gain and loss factor. 
Interestingly, PT-symmetric systems support unique robust bound mode with no Hermitian 

                                                                                        Vol. 27, No. 10 | 13 May 2019 | OPTICS EXPRESS 13858 

#362178 https://doi.org/10.1364/OE.27.013858 
Journal © 2019 Received 12 Mar 2019; accepted 21 Apr 2019; published 29 Apr 2019 

https://doi.org/10.1364/OA_License_v1
https://crossmark.crossref.org/dialog/?doi=10.1364/OE.27.013858&amp;domain=pdf&amp;date_stamp=2019-04-29


counterparts. 
topological or

Anti-PT-s
the anticomm
PT symmetry
later studies 
symmetric as 
circuits [49], 
state [45,46,4
For example
demonstrated 
encircling an 
anti-PT symm
symmetry [40
with C being 
non-Hermitian
determining t
coupled syste
induced by c
can be selecti
utilized to enh
efficiencies, a

In this wo
arrays with i
incorporating 
coupling stren
waveguides. W
related to the 
the case in He
can emerge b
which the ima
global topolog

Fig. 1
array 
and th
coupli

2. Anti-PT s

We start by in
coupling. The

The bound m
rder but with d
ymmetric syst

mutator, have al
is in [44], whe
demonstrate 
well [45,47]. 
optical rings a

48]. Many intr
e, flat broadb

in double wav
exceptional po

metry belongs
0,50,51], which
unitary operato
n systems con
topological pr
ms indicates th
harge-conjuga
ively pumped 
hance the lasin
and robustness 
rk, we investig
imaginary cou
assistant wave

ngth can be fu
We show the t
imaginary part

ermitian and P
by tuning the re
aginary part of
gical order and

1. Schematic of w
to realize the effe
he gray and gree
ing. (c) The geome

symmetry and

nvestigating ho
e non-Hermitia

modes appear 
distinct quantum
tems, which ob
lso attracted mu
ere the refracti
the discrete l
The imaginary

and waveguide
riguing wave d
band light tr
veguide couple
oint (EP) is re
s to a more 
h is first propos
or [51]. The ch

nsisting of two
roperty of the 
hat the topolog
tion symmetry
due to its spec

ng performance
against perturb

gate the topolog
upling. We sh
eguides to the 

urther controlle
opological pha
t of band struc
T-symmetric s
eal part of refr
f refractive ind
d quantum phas

waveguide arrays 
ective imaginary c
en are for assista
etry of proposed p

d topologica

ow to realize a
an coupling em

at the interfa
m phases [41–4
bey {PT, H} =
uch attention [
ive index of the
lattices with i
y coupling is r
es by interactin
dynamics are f
ransport and 
er [45]. The ch
eported for sym
fundamental s
sed for superco
harge-conjugat
o sublattices [5

system [40,5
gical bound stat
y [40,52]. Mor
cial energy spe
e with improve
bation [53,55–
gical bound mo
how the imag
bare array and

ed by tuning th
ase transition in
cture rather tha
systems. We al
ractive index, i
dex is altered. 
se are also disc

with anti-PT sym
coupling. The blue
ant sites. (b) The
planar waveguide a

al invariant 

nti-PT-symme
merges in coupl

face between 
43]. 
= 0 with the co
44–49]. The or
e system satisf
imaginary cou
realized in flyi
ng the two bar
found in anti-P

dispersion-ind
hiral mode conv
mmetry-broken
symmetry call
onductors and 
tion symmetry 
50], which play
50,52–54]. The
ates can be gen
reover, the top
ectrum [50,54
ed single mode

–57]. 
odes in anti-PT

ginary couplin
d considering b
he amount of g
n anti-PT-sym

an its real part, 
lso show the qu
in contrast to P
The robust bo

cussed in detail

mmetry. (a) The p
e and red sites rep
e equivalent array
array with anti-PT 

etric waveguide
led waveguide

two arrays w

ommutator rep
riginal proposa
fies n(x) = −n*
upling can be
ing atoms [47]
re states throug
PT-symmetric 
duced dissipa

nversion by dyn
n modes [48]. 
led charge-con
defined as {CT
is a general pr
ys an importan
e study of asy

nerated via a de
pological boun
], which can b
e property, hig

T symmetric w
ng can be rea
both gain and 
gain and loss i

mmetric arrays i
which is diffe

uantum phase t
PT-symmetric 

ound states pro
l. 

 

proposed sawtooth
present bare arrays
y with imaginary

T symmetry. 

e arrays with im
es with gain or 

with same 

placed by 
al of anti-
(−x). The 

e anti-PT 
], electric 
gh a third 

systems. 
ation are 
namically 
Actually, 
njugation 
T, H} = 0 
roperty of 
nt role in 
ymmetric 
egeneracy 
nd modes 
be further 
gher slope 

waveguide 
alized by 
loss. The 

in respect 
is closely 
rent from 
transition 
arrays in 

otected by 

h 
s 
y 

maginary 
loss [58] 

                                                                                        Vol. 27, No. 10 | 13 May 2019 | OPTICS EXPRESS 13859 



and also in open ring resonator with asymmetric scattering [59]. However, the imaginary part 
of coupling coefficient is small compared with its real part. Complex coupling is also realized 
by dynamically modulating refractive index along wave propagation direction [60,61]. 
However, it increased difficulties for experimental implementation. We follow another 
approach by incorporating assistant waveguides into the bare array to realize imaginary 
coupling [45,62,63]. The static on-site complex potentials simplify its practical 
implementation and the coupling strength can be tuned by the amount of gain and loss. As 
shown in Fig. 1(a), the proposed weekly coupled array have four waveguides in each unit cell, 
which are labeled as A, B, C, and D with C and D being the assistant waveguides. The 
corresponding effective detuning of propagation constants is denoted as δ1, δ2, δ3, and δ4. 
Only nearest coupling is considered. The coupling is represented by J1 and J2, which are 
assumed to be real and positive. The wave should evolve according to the coupled mode 
equation (CMT), which is given by 
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2 1 2

3 1

4 2 1

( )
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n n n

n
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 (1) 

where an, bn, cn, and dn denote the field amplitudes in respect waveguide in nth unit cell. If the 
absolute value of detuning |δ3| and |δ4| are much larger than the coupling J1 and J2, the 
assistant waveguides C and D can be eliminated adiabatically [45], that is, 
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Substituting Eq. (2) into the first two terms of Eq. (1), the corresponding CMT reduces to 
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Therefore, after setting 
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Equation (3) can be written as 
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The equivalent system described by Eq. (5) is depicted in Fig. 1(b). Each unit cell contains 
two waveguides A and B with effective detuning of propagation constants being ± ∆/2, 
respectively. The intra- and inter- coupling coefficients are ic1 and ic2, which are purely 
imaginary values. In order to realize the imaginary coupling, Eq. (4) indicates that the bare 
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arrays should be with gain and the assistant waveguides are with loss. Moreover, the amount 
of loss significantly exceeds the amount of gain, that is, |δ3|, |δ4|  |δ1|, |δ2|. As the adiabatic 

elimination requires |δ3|, |δ4|  J1, J2, the bare coupling strength should also be much larger 

than effective imaginary coupling, that is, J1, J2  c1, c2. 

For periodic boundary, the Bloch theorem can be utilized and the system Hamiltonian is 
given by 

 1 2

1 2

/ 2 exp( )
.

exp( ) / 2

ic ic i
H

ic ic i

ϕ
ϕ

−Δ + − 
=  + Δ 

 (6) 

The time-reversal operation T transforms a z-independent operator to its complex conjugate, 
while the parity operator P exchanges locations of the modes [45]. Thus, the system 
Hamiltonian fulfills the relation (PT)H(PT)−1 = −H, which implies the system is anti-PT-
symmetric. The anti-PT symmetry can be also defined by Pauli matrix σi, which requires 
σxH(φ)σx = −H*(φ) [23]. Chiral symmetry is also important in determining topological 
properties of the system, which is defined by σzH(φ)σz = −H(φ). The system possesses chiral 
symmetry only when the detuning is Δ = 0. This ensures the Berry phase of individual band is 
quantized. The eigenvalues of Eq. (6) are solved to be 

 2 2 2
1 2 1 2/ 4 2 cos .c c c cλ ϕ± = ± Δ − − −  (7) 

The corresponding right and left eigenvectors are figured out as 
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 (8) 

where Δk = arctan(−2iρk/Δ) and ρ(φ) = c1 + c2exp(−iφ) = ρkexp(iφk). The system has three 
different phases according to anti-PT symmetry. When |c1 − c2| > Δ/2, the system is in anti-
PT-symmetric phase and eigenvalues are purely imaginary across the Brillion zone. When |c1 
− c2| < Δ/2, the system is in mixed anti-PT-symmetric and broken phases and eigenvalues 
become complex-valued at the edge of Brillion zone. When |c1 + c2| < Δ/2, the anti-PT 
symmetry is fully broken and the eigenvalues develop into purely real values in the entire 
Brillion zone. 

We now investigate the topological invariant and show the topological transition arises in 
anti-PT-symmetric systems. In non-Hermitian systems, the Berry phase for individual band is 

defined by /B k
i d dk dkϕ μ λ±

± ±=   [41], where ± labels the upper and lower bands and k 

represents Bloch momentum. The integration is taken over the 1D Brillouin zone. 
Substituting Eq. (8) into the expression for φ ± B, the Berry phase is derived as 

 / 2 cos( ) / 2B k k kd dϕ φ γ φ± = − ±    (9) 

When the chiral symmetry holds, that is, Δ = 0, the second term of Eq. (9) is vanished. φ ± B 
is quantized to be an integer multiple of π, which is φ ±B = π for c1 < c2 and φ ± B = 0 for c1 > 
c2. In this situation, the Berry phase of individual band can be still regarded as topological 
invariant and utilized to indicate the topological phase transition. However, as Δ ≠ 0, the 
second term is not vanished. The Berry phase of a given band is not quantized and becomes 
complex-valued. Interestingly, the global Berry phase φGB = φB

− + φB
+ [41–43], which is 
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