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Gauge-Flux-Induced Anti-Pt Phase Transitions for Extreme
Control of Channel-Drop Tunneling

Chengzhi Qin, Bing Wang,* Shanhui Fan,* and Peixiang Lu*

Parity-time (PT) and anti-parity-time (anti-PT) symmetries have provided
important guiding principles in the research of non-Hermitian physics.
However, realizations of anti-PT symmetry in photonic systems usually rely on
optical nonlinearities and indirect-coupling approaches. Here, they apply the
channel interference principle mediated by synthetic gauge-flux biasing in
open-cavity systems to construct anti-PT symmetries. It is shown that a
specific 𝝅-flux biasing into a looped-resonator array can force a frequency
degeneracy between pairwise Bloch modes therein. By further coupling the
array into two external waveguides with tailored positions of ports, the system
near the degeneracy point can be described by an anti-PT-symmetric
Hamiltonian. When a real gauge-flux detuning is introduced, the system
undergoes a spontaneous transition between anti-PT and anti-PT-broken
phases, through which the two extreme cases of complete channel-drop
tunneling and complete tunneling suppression can be switched. Finally, by
superimposing a PT-symmetric term onto the anti-PT-symmetric Hamiltonian
via applying an imaginary gauge-flux biasing, extreme channel-drop
amplifying effects can be further realized by exciting the “lasing”mode under
the critical-coupling condition. The work bridges the physical connection
between synthetic gauge field and anti-PT symmetry. This paradigm may also
find many applications from optical routing, and switching to buffering and
amplifying on a chip–scale platform.

1. Introduction

Channel-drop tunneling, a resonant tunneling process between
two continuums of propagating states through localized resonant
states, is an important light transfer effect in waveguide-cavity
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systems.[1–4] The ability to control the
tunneling probability, especially to
achieve the extreme case of complete
tunneling, has been widely applied in
wavelength-division-multiplexing optical
communications.[1–4] On the other hand,
reaching the opposite extreme of com-
plete tunneling suppression has also led
to many applications in optical buffer-
ing and slow light propagations.[5,6]

The physical mechanism underlying
channel-drop tunneling is the channel-
interference principle, where two or
more resonant modes decaying into the
same radiation channel experience con-
structive or destructive interference, lead-
ing to the boosting or suppression of total
tunneling probability from one port to
another. Apart from controlling channel-
drop tunneling, channel interference has
manifested as a universal design prin-
ciple for governing light scattering and
radiation in various open-cavity systems.
Several notable examples include the
formations of super/subradiant modes
with enhanced/reduced decay rates from
channel interference in open rectangular,
cylindrical, and double-slit cavities,[7–9]

and their extreme cases of bound states in the continuum (BICs),
formed by the precise destructive interference of all outgoing ra-
diation channels.[10–12] Accordingly, channel interference has also
become a powerful guiding principle in developing highly direc-
tional optoelectronic devices and systems.[13,14]

In a seemingly unrelated context, the concepts of parity-time
(PT) and anti-parity-time (anti-PT) symmetries, as early estab-
lished in quantum mechanics, have spawned many light con-
trol strategies in non-Hermitian photonics research.[15–22] Com-
pared to the more familiar PT symmetry from the interplay be-
tween balanced on-site gain and loss, a less familiar concept is
anti-PT symmetry realized through dissipative coupling between
two detuned resonances.[19,20] Physically, owing to their similar
non-Hermitian origins, the dissipative coupling is closely related
to the channel-interference principle, both described by a linear,
imaginary coupling rate between two resonances via their energy
exchange with the common environment. Since anti-PT results
from the dissipative coupling, there should be a physical con-
nection between anti-PT symmetry and the channel-interference
effects. This connection, however, has not been previously ex-
plored. Moreover, an essential feature of anti-PT-symmetric
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systems is the phase transition between anti-PT and anti-PT-
broken regimes. A further natural question arises as to whether
anti-PT phase transition can be harnessed to control channel-
drop tunneling probability. This question confronts many chal-
lenges due to the difficulties in creating anti-PT symmetries in
photonics. Although being early demonstrated in atomic, elec-
trical, and diffusive systems,[23–26] anti-PT symmetries have only
recently been achieved in photonic systems through stimulated
Brillouin scattering[27,28] or using linear but indirect-coupling
approaches,[29–32] which require complex nonlinear processes or
specific designed auxiliary elements. In particular, the indirect-
coupling approaches only work well for the case of two spatially-
separated coupled resonators or waveguides,[29–32] which are not
applicable to the coupling of two spatially-overlapped resonances
as usually encountered in the channel-drop tunneling scenarios.
To overcome the limitations of optical nonlinearities and indirect-
coupling mechanisms, recent attempts have also proposed to
apply mechanical spinning for a resonator to realize anti-PT
symmetry.[33] In this case, the frequency detuning between two
counterpropagating modes is imparted by the spinning-induced
Sagnac–Fizeau frequency shift and the dissipative coupling be-
tween them is achieved by the backscattering of the tapered
waveguide. Although without relying on nonlinearities, the pre-
cise spinning of an optical resonator is still technologically chal-
lenging.
To overcome all these drawbacks, we propose a linear and

direct-coupling scheme using the channel-interference princi-
ple mediated by synthetic gauge-flux biasing in open-cavity sys-
tems to realize anti-PT symmetries, which inherently applies to
the control of channel-drop tunneling. We consider a coupled-
resonator array where all the modes are spatially overlapped
rather than separated from one another, enabling direct coupling
among them. Then a requirement for creating anti-PT symmetry
is to force a frequency degeneracy for two appropriate modes. We
show that the introduction of a gauge flux biasing into the array
can enable the frequency tuning for anti-PT construction. Syn-
thetic gauge field for photons, as the direct analog of real mag-
netic field for electrons, has emerged as a prerequisite ingredi-
ent for emulating photonic topological effects and also a powerful
tool for steering light propagation.[34–43] The physical effect of the
gauge field is to induce amomentum (phase) shift for the photon
through Peierls substitution.[34–43] When applied in a discretized
lattice system, the influence of gauge field on the eigen modes is
closely related to the lattice’s geometry (topology), i.e., the specific
boundary conditions. In particular, for a one-dimensional lattice
under periodic boundary conditions (PBCs), the gauge field can
induce a shift of Bloch momentum, which can be mapped into a
shift of eigen frequency through the lattice’s band structure.[41–43]

Without relying on optical nonlinearities and indirect-coupling
methods, the application of synthetic gauge field combined with
judicious lattice-geometry designmay provide a unique approach
to studying anti-PT physics in direct-coupling systems.
Toward this aim, we design looped geometry, coupled micror-

ing resonators with PBCs threaded by a synthetic gauge flux in-
troduced using auxiliary rings. The resonator loop is then cou-
pled to two external bus waveguides and is hence naturally dissi-
pative. We reveal that a 𝜋-flux biasing in the loop can force a fre-
quency degeneracy between pairwise Bloch modes, near which
the system can be described by an anti-PT-symmetric Hamilto-

nian. By introducing a real gauge-flux detuning from 𝜋, we can
realize a spontaneous transition between anti-PT and anti-PT-
broken phases and achieve the two extreme cases of channel-
drop tunneling, switching from complete tunneling to complete
tunneling suppression. Moreover, by introducing an imaginary
gauge-flux detuning, a PT-symmetric term can also be superim-
posed into the anti-PT-symmetric Hamiltonian, through which
we further realize the extreme channel-drop amplifying by ex-
citing the “lasing” mode under critical-coupling condition. Our
work reveals a linear, direct-coupling scheme to create anti-PT
symmetries, which may also find wide applications in optical
routing, switching, buffering, and amplifying for optical commu-
nications and signal processing.

2. Construction of Anti-PT Symmetry in
Gauge-Flux-Biased Looped Resonator Array

Consider a channel-drop system consisting of a resonator loop
threaded by a synthetic gauge flux and side-coupled to two exter-
nal waveguides, as shown in Figure 1a. The resonator loop can
be constructed using an array of coupled microring resonators
with an even number of N = 2N1 (N ≥ 4) main rings. The
gauge flux stems from the asymmetric coupling coefficients Cccw
= C0e

iϕe−𝜅 , Ccw = C0e
−iϕe𝜅 along the counterclockwise (CCW)

and clockwise (CW) directions, achieved by incorporating aux-
iliary ring between adjacent main rings with opposite propaga-
tion phases and gain/loss distributions in the interior and exte-
rior half parts. The simplest case withN = 4 main rings is shown
in Figure 1b and discussed in detail in Section S1 (Supporting In-
formation). Here C0 is the coupling strength for the case of sym-
metric coupling and ϕ, 𝜅 are real and imaginary coupling phases.
The direction-dependent, asymmetric coupling phases impart an
effective, complex-valued gauge potential Ãeff along the array, as
defined by the path integral ϕ + i𝜅 = ∫n + 1 nÃeff dn = Ãeff, corre-
sponding to a total gauge flux of Φ̃ = ∮ Ãeffdn = N(𝜙 + i𝜅) pen-
etrating the whole loop.[38–43] By applying Born–von Karman pe-
riodic boundary conditions (PBCs),[41–43] the system can be de-
scribed by the following tight-binding Hamiltonian

HPBCs =
N∑
n=1

(
𝜔0â

†
nân + C0e

i𝜙e−𝜅 â†n+1ân + C0e
−i𝜙e𝜅 â†nân+1

)
(1)

where â†n(ân) is the creation (annihilation) operator for the
whispering-gallery-mode (WGM) in the n-th main ring, 𝜔0 is the
resonant frequency without coupling, and ân = ân+N denotes the
PBCs.
First, we consider the case with zero imaginary gauge flux 𝜅

= 0, where the gain/loss distribution is absent in the auxiliary
ring. Due to the preserved translational symmetry along the lat-
tice direction under PBCs, Equation (1) can support a set of eigen
Blochmodes, each of which is described by a real eigen-frequency
and a travelling-wave-form eigenstate (see Section S2 for detailed
derivation, Supporting Information){
𝜔l = 𝜔0 + 2C0cos

(
kl − Φ∕N

)||𝜓l⟩ = 1√
N

[
1, eikl , ei2kl ,… , ei(N−1)kl

]T (2)

where 〈𝜓 l|𝜓 l′〉 = 𝛿ll′ satisfies the orthogonal and normalization
condition, kl = 2𝜋l/N, (l = 1, 2,…, N) is the quantized Bloch
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Figure 1. Schematic diagrams of channel-drop tunneling systems and the gauge-flux-induced frequency detuning. a) Schematic of a general channel-
drop tunneling system consisting of a close-looped microring resonator array with an even number ofN = 2N1 main rings threaded by a complex gauge
flux Φ̃ = N(𝜙 + i𝜅) and side-coupled to two bus waveguides at ports 1 and 2 spaced byM sites with decay rates 𝛾c1 and 𝛾c2. b) The exemplified channel-
drop system withN= 4 main rings coupled throughN= 4 auxiliary rings, where the real and imaginary gauge fluxes are provided by the opposite lengths
and gain/loss distributions in the auxiliary rings, and d1, d2 are length parameters. c) Variation of the eigen-frequencies 𝜔1, 𝜔2, 𝜔3, 𝜔4 of four Bloch
modes versus the real gauge flux Φ. d) Schematic of the gauge-flux-induced frequency detuning between the Bloch-mode pair |𝜓2〉 and |𝜓3〉 and their
hybridization process near the degeneracy point. The frequencies of two modes are 𝜔2 = 𝜔c + 𝛿𝜔, 𝜔3 = 𝜔c−𝛿𝜔 under Φ = 𝜋 + 𝛿Φ, where 𝜔c is the
central frequency, 𝜔d is the degenerate frequency under Φ = 𝜋, 𝛿Φ and 𝛿𝜔 are gauge-flux detuning from 𝜋 and the frequency detuning, 𝛾c1 + 𝛾c2 is the
self-decay rate of each mode and 𝛾c1−𝛾c2 is the cross-decay rate between them. The right panel shows the simulated mode profiles of the four eigen
Bloch modes: |𝜓2〉, |𝜓3〉 and |𝜓1〉 and |𝜓4〉.

momentum equally distributed in the Brillouin zone due to
the PBCs constraint.[41–43] The eigen frequencies of four Bloch
modes for N = 4 cases are shown in Figure 1c. The introduction
of the gauge fluxΦ can induce a Bloch momentum shift through
Peierls substitution kl → kl − Φ/N, which further induces an
eigen-frequency shift to each Bloch mode. Meanwhile, the pres-
ence of gauge flux under PBCs does not change the traveling-
wave form of the Bloch-mode eigenstate. It should be mentioned
that in our system the choice of PBCs is necessary to construct
anti-PT symmetry. As we will show below, to realize anti-PT sym-
metry one should start from a frequency degeneracy point for two
chosen modes. With PBC this can be readily achieved by choos-
ing the appropriate gauge flux biasing in the array. By contrast, if
we adopt open boundary conditions (OBCs) instead of PBCs, the
resonator array supports a set of standing-wave modes instead
of traveling-wave Bloch modes for PBCs. The eigenfrequency of
each standing-wave mode is 𝜔s = 𝜔0 + 2C0cos(ks), where ks =
s𝜋/(N+ 1), s = 1, 2, …, N is the mode index, see Section S2 (Sup-
porting Information) for detailed derivation.[41–43] Since the pres-
ence of gauge flux Φ under OBCs does not change the eigenfre-
quency, we can get 𝜔s ≠ 𝜔s′ for s ≠ s′ under any choice of Φ, in-
dicating that the introduction of gauge flux under OBCs cannot
achieve frequency degeneracy to get anti-PT. Therefore, in our
work, the combination of appropriate gauge flux biasing with ju-
dicious choices of boundary conditions is essential for the con-
struction of anti-PT symmetries.

To construct an anti-PT-symmetric Hamiltonian, the first re-
quirement is to start from a frequency degeneracy point for two
chosen modes. For the case of N = 4 shown in Figure 1c and N
= 6, 8 shown in Figure S2 (Supporting Information), the degen-
eracy can only occur under an integer multiple of 𝜋 flux, Φ0 = 𝜋,
2𝜋, 3𝜋, etc. Specifically, for an even number of 𝜋 flux, Φ0 = 2p𝜋
(p∈Z), such as Φ0 = 0, the modes |𝜓 l〉 and |𝜓N− l〉 are degenerate
at 𝜔l = 𝜔N− l = 𝜔d = 𝜔0 + 2C0cos(kl), (l = 1,…, N/2−1), while the
left two modes |𝜓N/2〉 and |𝜓N〉 cannot find degenerate partners.
For N = 4 as an example, we get only one degenerate mode pair
𝜔1 = 𝜔3 = 𝜔0 + 2C0cos(k1) = 𝜔0 and two non-degenerate ones
𝜔2 = 𝜔0 + 2C0cos(k2) = 𝜔0 − 2C0, 𝜔4 = 𝜔0 + 2C0cos(k4) = 𝜔0 +
2C0. While for an odd number of 𝜋 flux, Φ0 = (2p+ 1)𝜋 (p∈Z),
all the N = 2N1 modes can be divided into N1 degenerate mode
pairs. In particular, for Φ0 = 𝜋, the modes |𝜓 l〉 and |𝜓N + 1 − l〉 are
degenerate at𝜔l =𝜔N + 1− l =𝜔d =𝜔0 + 2C0cos(kl −𝜋/N), (l= 1,…,
N/2−1). For the two cases, the degenerate mode pair can be uni-
formly denoted by |𝜓 l〉 and |𝜓 l′〉, where l′ = N − l or l′ = N + 1
− l for Φ0 = 0 or 𝜋, respectively. In the vicinity of the degeneracy
point, as Φ is slightly detuned from Φ0 by 𝛿Φ, i.e., Φ = Φ0 + 𝛿Φ,
there will emerge a frequency detuning between the mode pair{
𝜔l = 𝜔0 + 2C0 cos(kl − Φ0∕N − 𝛿Φ∕N) = 𝜔c + 𝛿𝜔
𝜔l′ = 𝜔0 + 2C0 cos(kl′ − Φ0∕N − 𝛿Φ∕N) = 𝜔c − 𝛿𝜔

(3)

where 𝜔c = 𝜔0 + 2C0cos(kl−Φ0/N)cos(𝛿Φ/N) ≈ 𝜔d, 𝛿𝜔 =
2C0sin(kl−Φ0/N)sin(𝛿Φ/N) are central frequency and frequency
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detuning between the two modes. The gauge-flux detuning in-
duced frequency detuning for the N = 4 case is shown in
Figure 1d, where there are two degenerate mode pairs 𝜔1 = 𝜔4 =
𝜔0 + √2C0, 𝜔2 = 𝜔3 = 𝜔0−√2C0 under Φ0 = 𝜋, near which 𝛿𝜔
can be continuously tuned by the gauge-flux detuning 𝛿Φ.
After obtaining the frequency detuning, the second require-

ment is to create a dissipative (imaginary) coupling between these
two modes for anti-PT construction. Here the dissipative cou-
pling stems from the radiation interference between these two
modes into the two external waveguides via two ports 1 and 2. As
shown in Figure 1a, we start from the most general case where
the two waveguides are connected at n = 1 and n = M + 1 main
rings, giving rise to a site interval of M between the two ports.
HereM can take the value of 1, 2,…,N−2, and the specific case of
M=N/2=N1 is illustrated in Figure 1b. For light incidence from
port 1 at the frequency near𝜔c, it will simultaneously excite these
twomodes whichwill in turn decay back into the twowaveguides.
In terms of temporal-coupled-mode theory (TCMT),[44–47] the in-
terference of radiation between the two modes can be described
by a 2 × 2 out-coupling matrix

D =
(
D1,l D1,l′

D2,l D2,l′

)
=
( √

2𝛾c1
√
2𝛾c1√

2𝛾c2e
iMkl

√
2𝛾c2e

iMkl′

)
(4)

where Dn , l denotes the coupling coefficient from mode |𝜓 l〉 to
port n = 1, 2, which is proportional to the respective modal pro-
file at n = 1 and n = M + 1 main rings. 𝛾 c1, 𝛾 c2 are the decay
rates of the two modes at the two ports. According to the energy-
conservation condition,[44–47] we can obtain the joint decaymatrix
for the two modes

Γc =
D†D
2

=
(

𝛾c1 + 𝛾c2 𝛾c1 + 𝛾c2ei𝜃
𝛾c1 + 𝛾c2e−i𝜃 𝛾c1 + 𝛾c2

)
(5)

where

𝜃 = M(kl′ − kl) (6)

which denotes the propagation phase difference of the twomodes
between the two ports. As shown in Figure 1d, the diagonal ele-
ment of Γc is the total self-decay rate of each mode into the two
ports, while the off-diagonal element is the cross-decay rate of the
twomodes, which accounts for the channel interference between
them. By applying quasi-normal-mode (QNM) theory regarding
all channels as outgoing radiation boundary conditions,[47,48] we
can obtain an effective non-Hermitian Hamiltonian Heff = Ω −
iΓc to describe the radiation interference between the twomodes,
whereΩ= [𝜔l, 0; 0,𝜔l′] is the eigen-frequency matrix. By combin-
ing with Equations (3) and (5), we can write downHeff

Heff =
(
𝜔c + 𝛿𝜔 0

0 𝜔c − 𝛿𝜔

)
− i

(
𝛾c1 + 𝛾c2 𝛾c1 + 𝛾c2ei𝜃

𝛾c1 + 𝛾c2e−i𝜃 𝛾c1 + 𝛾c2

)
(7)

For Heff to be a standard anti-PT-symmetric Hamiltonian, the
cross-decay rate should be purely imaginary, which further re-
quires 𝜃 = 0 or 𝜃 = 𝜋. Specifically, for the case of Φ0 = 0, we can
get 𝜃 =M(kl′ − kl)=M[2𝜋(N−l)/N−2𝜋l/N]=−2𝜋lM/N1. To reach
𝜃 = 0 for each l, we should choose M = N1, where the two ports
are located at the opposite sites in the resonator loop, as typically

shown in Figure 1b for the N = 4 case. For Φ0 = 𝜋, we have 𝜃 =
M(kl′ − kl) =M[2𝜋(N+ 1 − l)/N −2𝜋l/N] = 𝜋(1−2l)M/N1. In this
case, we can also chooseM = N1 to get 𝜃 = 𝜋. Note that for Φ0 =
0, the modes |𝜓N/2〉 and |𝜓N〉 cannot find degenerate mode part-
ners to form anti-PT symmetry. Moreover, 𝜃 = 0 means the full
constructive interference between the two modes, which cannot
be harnessed to realize the complete tunneling suppression as is
shown below. Thus throughout the paper, we only choose Φ0 =
𝜋 andM =N1 to construct anti-PT symmetry that is applicable to
all Bloch modes. The analysis of a general case with an arbitrary
port configuration is shown in Section S5 (Supporting Informa-
tion). For Φ0 = 𝜋 and M = N1, the effective Hamiltonian can be
rewritten as

Heff =
(
𝜔c + 𝛿𝜔 0

0 𝜔c − 𝛿𝜔

)
− i

(
𝛾c1 + 𝛾c2 𝛾c1 − 𝛾c2
𝛾c1 − 𝛾c2 𝛾c1 + 𝛾c2

)
(8)

By diagonalizingHeff, we can obtain the eigen-frequencies for
the two hybridized modes

�̃�± = 𝜔c − i(𝛾c1 + 𝛾c2) ±
√
(𝛿𝜔)2 − (𝛾c1 − 𝛾c2)2 (9)

The full phase diagram for an anti-PT phase transition is
shown in Figure 2a, where the system exhibits an exceptional
point (EP) when the frequency detuning reaches |𝛿𝜔| = |𝛿𝜔EP|
= |𝛾 c1−𝛾 c2|. As 𝛿𝜔 varies across 𝛿𝜔EP, the system undergoes
a spontaneous anti-PT phase transition, which is accompanied
by the energy-spectrum transition from the decay-rate bifur-

cation �̃�± = 𝜔c − i[(𝛾c1 + 𝛾c2) ∓
√
(𝛾c1 − 𝛾c2)2 − (𝛿𝜔)2] to the real-

frequency bifurcation�̃�± = [𝜔c ±
√
(𝛿𝜔)2 − (𝛾c1 − 𝛾c2)2] − i(𝛾c1 +

𝛾c2). Since 𝛿𝜔 = 2C0sin(kl−Φ0/N)sin(𝛿Φ/N) ∝ 𝛿Φ for a tiny 𝛿Φ,
the frequency detuning can be tuned by gauge-flux detuning in a
linear fashion shown in Figure 2b. Therefore, we can induce anti-
PT phase transition by proportionally increasing the gauge flux
detuning. As we will demonstrate below, by exploiting anti-PT
phase transition, we can further achieve versatile extreme con-
trol over the channel-drop tunneling effects.
The rigorous channel-drop tunneling transmittance spectrum

can be obtained by applying TCMT,[44–47] which reads{ d
dt
|Ψ⟩ = −iHeff |Ψ⟩ + KT ||s+⟩||s−⟩ = C ||s+⟩ + D |Ψ⟩ (10)

where |Ψ〉 = (a1, a2,…, aN)
T is the normalizedmode amplitude in-

volving allN Blochmodes, |s+〉 = (s1+, 0)
T, |s−〉 = (s1−, s2−)

T are the
input and output amplitudes in the two waveguides, for which
we consider only light input from the bottom waveguide. C is
the direct reflection coefficient matrix at the two ports, KT, D are
2 × Nmatrices denoting the in-coupling and out-coupling coeffi-
cients between all Blochmodes and the twowaveguidemodes. By
applying time-reversal symmetry conditions,[44–47] we can obtain
C = −I2, where I2 is 2×2 identity matrix, and

K∗ = D =
(
D1,1 D1,2 ⋯ D1,N
D2,1 D2,2 ⋯ D2,N

)
=
( √

2𝛾c1
√
2𝛾c1 ⋯

√
2𝛾c1√

2𝛾c2e
iMk1

√
2𝛾c2e

iMk2 ⋯
√
2𝛾c2e

iMkN

) (11)
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Figure 2. Phase diagram of anti-PT phase transitions and associated channel-drop tunneling effects. a) Phase diagram of anti-PT phase transition: The
complex eigen-frequencies of the two hybridized modes versus frequency detuning 𝛿𝜔. At 𝛿𝜔 = 0, the two hybridized modes become downward- and
upward-decay modes of |𝜓±〉. b) Variations of central frequency 𝜔c and frequency detuning 𝛿𝜔 versus the gauge flux detuning 𝛿Φ. c,d) Channel-drop
tunneling transmittance spectra of T11 and T21 in the anti-PT regime. The solid and circle curves denote the theoretical and simulated results, respectively.
In c and d, the gap between adjacent main and auxiliary rings is g0 = 260 nm, and the gaps at the bottom and top waveguides are g1 = 350 nm and g2
= 220 nm. The gauge fluxes are Φ = 1.4𝜋 and Φ = 1.2𝜋 in (c) and d. e) Channel-drop tunneling transmittance spectrum in the anti-PT-broken regime.
The gaps are g0 = 260 nm and g1 = g2 = 320 nm. f,g,h) Simulated field distributions for the above three cases in (c, d, e), for light excitation from the
bottom waveguide at the peak frequency in the transmittance spectrum.

which is the complete form of Equation (4) by generalizing from
the two degenerate modes to all Nmodes. In Equation (10), Heff
= Ω − iΓc is also the complete form of effective Hamiltonian of
Equation (7), whereΩ is the eigen-frequencymatrix with nonzero
diagonal element [Ω]l , l′ = 𝜔l, Γc = D†D/2 is the complete joint
decay matrix of Equation (5), with the matrix element given by
[Γc]l , l′ = 𝛾 c1 + 𝛾 c2exp[iM(kl′ − kl)].
For monochromatic light excitation at frequency 𝜔, the mode

amplitude evolves as d|Ψ〉/dt = −i𝜔IN|Ψ〉, where IN is the N×N
identity matrix. By combining with Equation (10), we can get
|s−〉 = S(𝜔)|s+〉, where the scattering matrix is S(𝜔) = C +
D[−i(𝜔IN−Heff)]

−1KT, from which we can obtain the transmit-
tance spectra T11(𝜔) = |S11(𝜔)|,

2 T21(𝜔) = |S21(𝜔)|
2 in the through

and drop waveguides. Since 𝜔–𝜔c, it is safe to only consider the
two modes’ contributions, which gives rise to the closed-form

transmittance spectra (see Section S3 for detailed derivation, Sup-
porting Information)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

T11(𝜔) =
[4𝛾c1𝛾c2 + (𝜔 − 𝜔c)

2 − (𝛿𝜔)2]
2 + 4(𝜔 − 𝜔c)

2(𝛾c2 − 𝛾c1)2

[4𝛾c1𝛾c2 − (𝜔 − 𝜔c)
2 + (𝛿𝜔)2]

2 + 4(𝜔 − 𝜔c)
2(𝛾c2 + 𝛾c1)2

T21(𝜔) =
16𝛾c1𝛾c2(𝛿𝜔)

2

[4𝛾c1𝛾c2 − (𝜔 − 𝜔c)
2 + (𝛿𝜔)2]

2 + 4(𝜔 − 𝜔c)
2(𝛾c2 + 𝛾c1)2

(12)

where T11(𝜔) + T21(𝜔) = 1, indicating the energy-conservation
condition in the two waveguides. By changing the frequency de-
tuning through varying gauge-flux detuning, we can continu-

Laser Photonics Rev. 2024, 18, 2300458 © 2024 Wiley-VCH GmbH2300458 (5 of 11)
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ously tune the transmittance T21 from zero fully to unity. In par-
ticular, we are interested in the two extreme cases of complete
channel-drop tunneling with T21 = 1, T11 = 0 and complete tun-
neling suppression with T21 = 0, T11 = 1, where the incident light
is completely transferred into the through and drop waveguides,
respectively. Below, we will identify the conditions to realize the
two extreme cases and reveal the role of anti-PT phase transition
in realizing them.

3. Complete Channel-Drop Tunneling with Anti-PT
Phase Transitions

First, we consider the extreme case of complete channel-drop tun-
neling with T11 = 0, T21 = 1. According to Equation (12), this case
can be achieved by reaching the transmittance zeros of T11, which
requires

{
4𝛾c1𝛾c2 + (𝜔 − 𝜔c)

2 − (𝛿𝜔)2 = 0
(𝜔 − 𝜔c)

2(𝛾c2 − 𝛾c1)2 = 0
(13)

Case 1: For each mode pair, there is only one frequency where
the transmittance zero is reached, the frequency can only be 𝜔 =
𝜔c. The frequency detuning should take the critical value

|𝛿𝜔| = |𝛿𝜔critical| = 2
√
𝛾c1𝛾c2 (14)

Since the system exhibits anti-PT phase transition at EPs with
|𝛿𝜔| = |𝛿𝜔EP| = |𝛾 c1−𝛾 c2|, it is thus necessary to compare these
two critical values to determine whether complete tunneling oc-
curs in the anti-PT or anti-PT-broken regime. If complete tunnel-
ing occurs in the anti-PT regime, we have 2

√
𝛾c1𝛾c2 < |𝛾c1 − 𝛾c2|,

which further requires 𝛾 c2/𝛾 c1 > 3+ 2√2 or 0< 𝛾 c2/𝛾 c1 < 3−2√2.
On the contrary, if complete tunneling occurs in the anti-PT-
broken regime, the condition should be 3−2√2 < 𝛾 c2/𝛾 c1 < 3
+ 2√2. So, the singe-frequency complete channel-drop tunnel-
ing tends to occur in the anti-PT regime for highly asymmetric
channel-drop systems and in anti-PT-broken regime for the sys-
tems with comparable 𝛾 c1 and 𝛾 c2. Case 2: There are two trans-
mittance zeros for each mode pair, the two frequencies are 𝜔1,2 =

𝜔c ±
√
(𝛿𝜔)2 − 4𝛾c1𝛾c2 in Equation (12), where 𝛿𝜔 should satisfy|𝛿𝜔| ≥ 2
√
𝛾c1𝛾c2 to keep 𝜔1,2 in the real-frequency axis. Mean-

while, the additional constraint on the two decay rates is 𝛾 c1 = 𝛾 c2,
indicating the thresholdless feature for the anti-PT phase transi-
tion with |𝛿𝜔EP| = |𝛾 c1−𝛾 c2| = 0. Accordingly, there will emerge
double peaks in the transmittance spectrum for each degenerate
mode pair.
The theoretical analysis of complete channel-drop tunneling

has also been verified by numerical simulations using COMSOL
Multiphysics. In the simulations, we choose the case ofN= 4 and
use Si3N4 waveguides with refractive index n0 = 2 and width W
= 0.5 μm. By operating at telecommunication wavelength 𝜆0 =
1.55 μm, we can obtain an effective mode index neff = 1.7512 and
mode wavelength 𝜆m = 𝜆0/neff = 0.8851 μm. The average radii
of the main and auxiliary rings are R1 = R2 = 8.3848 μm, sat-
isfying 2𝜋R1,2 = m1,2𝜆m, where m1 = m2 = 40 is the azimuthal
longitudinal order of the WGM. Figure 2c shows the transmit-

tance spectrum for the single-frequency complete channel-drop
tunneling case, where we fix the gap at g0 = 260 nm between
adjacent main and auxiliary rings to get C0/2𝜋 = 38 GHz. The
lengths of the straight-waveguide parts in the auxiliary rings are
d1,2 = [2 + 1/8±(1/16 + 1/40)]𝜆m, corresponding to a total real
gauge flux of Φ = 2𝜋N(d1−d2)/𝜆m = 𝜋 + 0.4𝜋, where 𝛿Φ = 0.4𝜋
is the gauge-flux detuning from Φ0 = 𝜋. With these length pa-
rameters, the anti-resonant condition 2(d1 + d2) = (8 + 1/2)𝜆m is
satisfied in the auxiliary ring.[38–43] According to Figure 2b, the
gauge-flux detuning 𝛿Φ = 0.4𝜋 corresponds to a frequency de-
tuning |𝛿𝜔| ≈0.44C0. In addition, the two decay rates are chosen
as 𝛾 c1 = 0.07C0, 𝛾 c2 = 9𝛾 c1 by setting the bottom and top ring-
waveguide gaps at g1 = 350 nm and g2 = 220 nm, which satisfies
𝛾 c2/𝛾 c1 = 9 > 3 + 2√2 and |𝛿𝜔critical| = 2

√
𝛾c1𝛾c2 ∼ 0.42C0. In this

case, we can obtain |𝛿𝜔| ≈ |𝛿𝜔critical|, where the single-frequency
complete channel-drop tunneling condition of Equation (14) is
satisfied.
As shown by the simulated transmittance spectra denoted by

the circle and square curves in Figure 2c, the complete channel-
drop tunneling occurs at 𝜔 = 𝜔c for the mode pair |𝜓2〉 and
|𝜓3〉, which coincides well with the theoretically computed re-
sults (solid curves) using Equation (10). Note that the transmit-
tance peak at the degeneracy frequency of |𝜓1〉, |𝜓4〉 does not
reach unity. This is attributed to the tiny differences in decay rates
𝛾 c1 and 𝛾 c2 for |𝜓1〉, |𝜓4〉 compared to those of |𝜓2〉, |𝜓3〉. For
comparison, we also simulate the partial channel-drop tunneling
case by reducing the gauge-flux detuning by half to 𝛿Φ = 0.2𝜋
while keeping 𝛾 c1 and 𝛾 c2 unchanged. As shown in Figure 2d, the
peak transmittance T21 does not reach unity, which also matches
well with the theoretical curve. Both cases of complete and partial
channel-drop tunneling have been verified by the simulated field
distributions in Figure 2f,g, where the input light manifests full
or partial tunneling in the drop waveguide. On the other hand,
to achieve double-frequency complete channel-drop tunneling in
the anti-PT-broken regime, we fix the gauge flux atΦ= 𝜋 + 0.4𝜋,
with 𝛿Φ = 0.4𝜋 and choose a symmetric channel-drop system
with 𝛾 c1 = 𝛾 c2 = 0.1C0 by setting g1 = g2 = 320 nm. The double-
peak feature truly emerges in the theoretical and numerical trans-
mittance spectra shown in Figure 2e, which is also well evidenced
by the simulated field distribution shown in Figure 2h.

4. Broadband, Complete Channel-Drop Tunneling
Suppression in the Anti-PT Regime

On the contrary, we can also achieve the other extreme of com-
plete channel-drop tunneling suppression by reaching the degen-
eracy point under zero gauge-flux detuning. By setting 𝛿𝜔 = 0 in
Equation (12), we find that T11(𝝎) ≡ 1, T21(𝝎) ≡ 0 can be fulfilled
for any input frequency (see Section S3 for detailed derivation,
Supporting Information), indicating that the complete tunneling
suppression is a broadband behavior. Figure 3a shows the sim-
ulated transmittance spectrum for the N = 4 case, which shows
the flat transmittance spectrum for the complete tunneling sup-
pression. To explain the underneathmechanism, let us check the
hybridized modes at the degeneracy point

�̃�± = 𝜔l − i(𝛾c1 + 𝛾c2) ± [−i(𝛾c1 − 𝛾c2)]

=
{
𝜔l − i2𝛾c1(downward-decay mode)
𝜔l − i2𝛾c2(upward-decay mode)

(15)

Laser Photonics Rev. 2024, 18, 2300458 © 2024 Wiley-VCH GmbH2300458 (6 of 11)
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Figure 3. Transmittance spectrum for complete channel-drop tunneling suppression case and a schematic sketch of the forming of unidirectional-
decayed modes. a) Channel-drop tunneling transmittance spectra T11 and T21 at degeneracy point of 𝛿𝜔 = 0 under Φ = 𝜋. The solid and circle curves
are theoretical and simulated results. The inset figure denotes the eigen-frequencies of the four Bloch modes, showing two degenerate mode pairs of
𝜔1 = 𝜔4 and 𝜔2 = 𝜔3. b) Mode profiles of |𝜓2〉 and |𝜓3〉 and their interference to form downward- and upward-decayed modes |𝜓±〉. c) Simulated field
distributions of |𝜓2〉, |𝜓3〉 and |𝜓±〉 = (|𝜓2〉 ± |𝜓3〉)/√2, obtained by exciting from bottom and top waveguides. The zoom-in figures represent the
detailed mode profiles showing the phase distributions of |𝜓2〉, |𝜓3〉 at the bottom and top rings.

corresponding to the two hybridized eigenstates

||𝜓±
⟩
= 1√

2

(||𝜓l⟩ ± ||𝜓N+1−l
⟩)

(16)

which are formed by the symmetric and antisymmetric super-
positions of |𝜓 l〉 and |𝜓N + 1 − l〉 with an equal weight factor
of 1:±1. It is easy to check the orthogonal and normalization
condition for the two hybridized modes: 〈𝜓+|𝜓+〉 = 〈𝜓−|𝜓−〉 =
1, 〈𝜓+|𝜓−〉 = 〈𝜓−|𝜓+〉 = 0. After hybridization with identical
weight factor, the original bidirectionally-decayedmodes |𝜓 l〉 and
|𝜓N + 1 − l〉 with the same decay rate of 𝛾 c1 + 𝛾 c2 into the two
waveguides transform into unidirectionally-decayedmodes |𝜓±〉
with decay rates 2𝛾 c1 and 2𝛾 c2 into only bottom or top waveg-
uide. This hybridization process of |𝜓2〉 and |𝜓3〉 for the N =
4 case is shown in Figure 3b. Here |𝜓±〉 = (|𝜓2〉 ± |𝜓3〉)/√2 =
[(1,−1,1,−1)T/2± (1,−i,−1,i)T/2]/√2 = (2,−1−i,0,−1 + i)T/2√2
and (0,−1 + i,2,−1−i)T/2√2, indicating the vanishing mode am-
plitude of |𝜓+〉 (|𝜓−〉) at the top (bottom) main ring due to the de-
structive interference of |𝜓2〉 and |𝜓3〉 therein, giving rise to the
unidirectional decay downward (upward) into the bottom or top
waveguide, respectively. The interference feature is also embod-
ied in the out-coupling matrix D for |𝜓+〉 in Equation (4), where
D1, l =D1, l′,D2, l +D2, l′ = 0, showing the constructive and destruc-
tive interference of |𝜓 l〉 and |𝜓 l′〉 at ports 1 and 2.
As shown by the simulation in Figure 3c, |𝜓+〉 (|𝜓−〉) can be

excited directly from the bottom (top) waveguide with arbitrary

frequency, which will lead to complete tunneling suppression on
the other side. The excitation of |𝜓+〉 or |𝜓−〉 alone but not both
can be verified by calculating the static mode coefficients in the
resonator array under light excitation from one bus waveguide.
For example, for light input from the bottom waveguide, accord-
ing to Equation (10), we can obtain the mode coefficients (see
Section S3 for derivation, Supporting Information)

|Ψ⟩ = (
al, aN+1−l

)T = [−i(𝜔I2 −Heff )]
−1KT ||s+⟩

∝
[
−i(𝜔 − 𝜔c + 𝛿𝜔) + 2𝛾c2,−i(𝜔 − 𝜔c − 𝛿𝜔) + 2𝛾c2

]T (17)

from which we have (al, aN + 1 − l)
T ∝ (1,1)T = 𝜓+ for 𝛿𝜔 = 0,

meaning that only 𝜓+ is excited. This analysis is also applicable
to the excitation from the right end of the top waveguide.
The effect of complete tunneling suppression under 𝜋-flux bi-

asing is a universal behavior, which can be generalized to the case
with an arbitrary even number of main rings N = 2N1. The two
exemplified cases of N = 6 and 8 are shown in Figure 4, both of
which manifest complete tunneling suppression features over a
broadband regime both for the bottom and up waveguide excita-
tions. The degenerate mode pairs are indicated by the inserted
figures in Figure 4a,d, which read 𝜔1 = 𝜔6 = 𝜔0 + √3C0, 𝜔2

= 𝜔5 = 𝜔0, 𝜔3 = 𝜔4 = 𝜔0−√3C0 for N = 6 and 𝜔1 = 𝜔8 = 𝜔0
+ 2C0cos(𝜋/8), 𝜔2 = 𝜔7 = 𝜔0 + 2C0cos(3𝜋/8), 𝜔3 = 𝜔6 = 𝜔0 +
2C0cos(5𝜋/8), 𝜔4 = 𝜔5 = 𝜔0 + 2C0cos(7𝜋/8) for N = 8. More de-
tailed discussions about the modal profiles of these degenerate
mode pairs are shown in Section S4 (Supporting Information).

Laser Photonics Rev. 2024, 18, 2300458 © 2024 Wiley-VCH GmbH2300458 (7 of 11)
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Figure 4. Complete channel-drop tunneling suppression for N = 6 and 8 cases. a) Channel-drop tunneling transmittance spectra T11 and T21 for N = 6
under 𝜋-flux biasing. The inset figure shows the band structure of the looped resonator array and eigen-frequencies of six Bloch modes, forming three
degenerate mode pairs𝜔1 =𝜔6,𝜔2 =𝜔5,𝜔3 =𝜔4. b,c) Simulated field distributions for light input from the bottom and top waveguides at the frequency
𝜔 = 𝜔3. d,e,f) The similar figures with (a,b,c) but for N = 8. In this case, there are four degenerate mode pairs 𝜔1 = 𝜔8, 𝜔2 = 𝜔7, 𝜔3 = 𝜔6, 𝜔4 = 𝜔5.

The demonstrations prove the universality and scalability of the
broadband complete tunneling suppression effect under 𝜋-flux
biasing.

5. Channel-Drop Amplifying Effects under
Imaginary Gauge-Flux Biasing

The above analysis is based on a purely passive system without
light amplification, in this section we will extend to an active sys-
tem to achieve channel-drop amplifying effects. To this aim, we
apply an additional imaginary gauge flux biasing with 𝜅≠0 su-
perimposed onto the original real gauge flux by introducing the
simultaneous gain/loss distributions in the auxiliary rings,[41–43]

as shown in Figure 1b. To keep themode degeneracy unchanged,
we fix the real gauge flux at Φ0 = 𝜋, such that the total complex-
valued gauge flux is N(ϕ + i𝜅) = 𝜋 + iN𝜅. The eigen frequencies
of all Bloch modes also become complex-valued 𝜔l − i𝛾 l, which
read{
𝜔l = 𝜔0 + 2C0 cosh(𝜅) cos(kl − 𝜙)
𝛾l = −2C0 sinh(𝜅) sin(kl − 𝜙)

(18)

from which we can find 𝛾N + 1 − l = −𝛾 l, meaning that the ad-
ditional imaginary gauge-flux biasing can impart an opposite
intrinsic gain/loss rate to the degenerate mode pair, as also
shown in the insert figure of Figure 5a. The balanced gain/loss
rates form a PT-symmetric term superimposed onto the original

anti-PT-symmetric Hamiltonian, which gives rise to a modified
Hamiltonian

Heff =
(
𝜔c − i𝛾l 0

0 𝜔c + i𝛾l

)
− i

(
𝛾c1 + 𝛾c2 𝛾c1 − 𝛾c2
𝛾c1 − 𝛾c2 𝛾c1 + 𝛾c2

)
(19)

By comparing with Equation (8), we find that the imaginary
gauge-flux detuning can induce a decay-rate detuning 2i𝛾 l for
the two modes, which is different from the real gauge-flux in-
duced frequency detuning 2𝛿𝜔. The two eigen frequencies of
Equation (19) are given by

�̃�± = 𝜔c − i[(𝛾c1 + 𝛾c2) ∓
√
(𝛾c1 − 𝛾c2)2 + (𝛾l)

2] (20)

Different from the real gauge-flux detuning that can induce
anti-PT phase transition, here the imaginary gauge-flux detun-
ing will keep the system always in the anti-PT phase with de-
cay rate bifurcation. The effect of imaginary gauge flux is to tune
the decay-rate bifurcation amount of the two hybridized modes
by controlling the intrinsic decay rate of 𝛾 l, as shown by Equa-
tion (20). Interestingly, as 𝛾 l reaches a critical value under a spe-
cific imaginary gauge flux biasing

|𝛾l| = |𝛾l,critial| = 2
√
𝛾c1𝛾c2 (21)

Laser Photonics Rev. 2024, 18, 2300458 © 2024 Wiley-VCH GmbH2300458 (8 of 11)
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Figure 5. Channel-drop amplifying effects under an additional imaginary gauge-flux biasing. a) Logarithmic maximum transmittances T11 and T21 versus
the imaginary gauge-flux induced intrinsic gain/loss rate 𝛾 l. The inset figure shows the 𝛾 l of the four Bloch modes, showing the opposite signs for the
Bloch-mode pairs of |𝜓2〉, |𝜓3〉 and |𝜓1〉, |𝜓4〉. b,c,d) Channel-drop transmittance spectra under critical-coupling conditions and in the over-coupling
and under-coupling regimes. In the three cases, the gaps are fixed at g1 = g2 = 320 nm, and the gauge flux is Φ = 𝜋 + 0.628 i, 𝜋 + 0.28i, and 𝜋 + 1.4i by
choosing the imaginary refractive index 𝛿n = 0.0022, 0.001, and 0.005 in (b,c,d). e,f,g) Simulated field distributions for the excitation from the bottom
waveguide at central frequency 𝜔c for the above three cases in (b,c,d).

the imaginary coupling rate between the two degenerate modes
becomes i(𝛾 c1 + 𝛾 c2), which gives rise to two eigen frequencies

�̃�± = 𝜔c − i(𝛾c1 + 𝛾c2) ± i(𝛾c1 + 𝛾c2)

=
{
𝜔c, (lasing mode)
𝜔c − i2(𝛾c1 + 𝛾c2), (lossy mode)

(22)

where the hybridized mode |𝜓+〉 exhibits a purely real eigen fre-
quency𝜔c, indicating that it has been pushed to the lasing thresh-
old, dubbed as the lasing mode.[49,50] Meanwhile, the other hy-
bridized mode |𝜓−〉 exhibits a larger decay rate of 2(𝛾 c1 + 𝛾 c2)

than the uncoupled decay rate of 𝛾 c1 + 𝛾 c2 for each individual
mode, indicating that it manifests as a lossy mode.
The excitation of the lasingmode can also be detected from the

channel-drop tunneling transmittance spectrum (see Section S3
for detailed derivation, Supporting Information)

⎧⎪⎪⎨⎪⎪⎩
T11(𝜔) =

[4𝛾c1𝛾c2 + (𝜔 − 𝜔c)
2 + (𝛾l)

2]
2 + [2(𝜔 − 𝜔c)(𝛾c1 − 𝛾c2)]2

[4𝛾c1𝛾c2 − (𝜔 − 𝜔c)
2 − (𝛾l)

2]
2 + [2(𝜔 − 𝜔c)(𝛾c1 + 𝛾c2)]2

T21(𝜔) =
16(𝛾l)

2𝛾c1𝛾c2

[4𝛾c1𝛾c2 − (𝜔 − 𝜔c)
2 − (𝛾l)

2]
2 + [2(𝜔 − 𝜔c)(𝛾c1 + 𝛾c2)]2

(23)
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which satisfiesT11(𝜔)> 1,T21(𝜔)> 1 andT11(𝜔) –T21(𝜔)= 1, indi-
cating the light amplification nature under the imaginary gauge-
flux biasing and energy-difference preservation feature in the two
waveguides. As 𝛾 l = 𝛾 l ,critical, the transmission pole is reached at
the real frequency 𝜔c, i.e., T11(𝜔c) = T21(𝜔c) = ∞, as shown in
Figure 5a, verifying that the lasing threshold is reached. The oc-
currence of a transmission pole in the real frequency axis with in-
finite transmittance is a clear signature of the existence of the las-
ing mode. As 𝛾 l deviates from 𝛾 l ,critical, either in the over-coupling
regime, 𝛾 l < 𝛾 l ,critical, or in the under-coupling regime, 𝛾 l > 𝛾 l ,critical,
the pole cannot reach the real frequency axis, which leads to a
finite amplification in the channel-drop tunneling. Remarkably,
the critical-amplifying behavior shares a similar physical nature
with the critical-coupling concept for perfect light absorption in
a single-port resonator, both of which require a match between
the intrinsic and external decay rates.[51,52]

The simulated transmittance spectrum at the critical coupling
point is shown in Figure 5b, which exhibits a very large ampli-
fication at the transmittance peak. Here the two gaps are still
fixed at g1 = g2 = 320 nm, which gives rise to 𝛾 c1 = 𝛾 c2 = 0.1C0.
The complex refractive index is chosen as n = n0 ± 0.0022i in
the loss/gain parts of the auxiliary ring to get 𝜅 = Im(neff)k0𝜋R2
= 0.157 and hence Φ = 𝜋 + iN𝜅 = 𝜋 + 0.628i. Note that due
to the presence of inevitable inaccuracies of the parameters, the
simulated transmittance peak cannot reach infinite as the theory
predicted. For comparisons, we also simulate the over-coupling
and under-coupling cases by reducing or increasing the imagi-
nary gauge flux to Φ = 𝜋 + 0.28i and 𝜋 + 1.4i in Figure 5c,d by
choosing n = n0 ± 0.001i and n = n0 ± 0.005i to get 𝜅 = 0.07 and
0.35, both of which manifest amplified channel-drop tunneling
but withmuch lower amplifications. The simulated field distribu-
tions for the above three cases are shown in Figure 5e–g, where
the lasing case exhibits a very large output-input ratio of ≈105
while the other two cases show much lower ratios with compara-
ble output-input magnitudes, thus verifying the above theoretical
analysis for the lasing condition.

6. Conclusion

In summary, by applying gauge-flux biasing in a channel-drop,
looped-resonator system, we achieve anti-PT phase transition
and realize extreme control over channel-drop tunneling. As the
real gauge-flux detuning varies, the system undergoes a phase
transition between anti-PT and anti-PT-broken regimes, through
which we achieve two extreme cases of complete channel-
drop tunneling and complete tunneling suppression, realized by
reaching the transmission zero or exciting the unidirectionally-
decayed modes. Moreover, by introducing an imaginary gauge-
flux biasing, we also achieve extreme channel-drop amplifying
effects with giant amplification by reaching the transmittance
pole of lasing mode under critical coupling conditions. Our work
unveils a new strategy of applying a synthetic gauge field to in-
duce anti-PT phase transition and realizes versatile extreme con-
trol over the channel-drop tunneling processes. The paradigm
may stimulate further theoretical and experimental studies of ap-
plying photonic topological aspects to controlling non-Hermitian
properties of light.
All these extreme channel-drop tunneling effects we develop

may find potential applications in many different light-control

scenarios. For instance, the ability to turn the transmittance spec-
trum from zero to unity can be used to develop tunable add-drop
filters. The switching between complete channel-drop tunneling
and complete tunneling suppression can be utilized to develop
optical switches for light directional routing, wavelength demul-
tiplexing, and signal processing. Moreover, the broadband com-
plete tunneling suppression with all-pass featuresmay be used to
design optical buffers and delay lines for light storage and slow-
light applications. In this case, since the light can be stored in the
array with a long life time, it may also be used for optical sensing
applications. Finally, the effect of giant light amplification during
channel-drop tunneling can be harnessed to design active, non-
Hermitian optoelectronic devices, such as gauge-flux-mediated
microring lasers and high-ratio optical amplifiers.
In terms of experimental realizations, the passive, i.e., real

gauge-flux-biasing microring resonator arrays can be realized
based on the standard silicon-on-insulator (SOI) platforms with
precise control of the geometries of auxiliary rings to provide
the required gauge flux.[38,39,53] Meanwhile, the gap values be-
tween main and auxiliary rings as well as between main rings
and bus waveguides should also be carefully designed to pro-
vide the required decay rates. Then, the imaginary gauge-flux-
biasing resonator arrays can be realized based on active platforms
with InGaAsP multiple quantum wells as the gain media and
Cr/Ge layers on top of rings as the loss materials. We note that
the integration of III–V material systems with silicon photonics
platforms has been actively researched.[54,55] To provide the re-
quired gain/loss distribution, external light pumping with selec-
tively pumped areas and pumped power should also be carefully
controlled.[40,56,57]
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Supporting Information is available from the Wiley Online Library or from
the author.
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Rev. Mater. 2016, 1, 16048.
[12] A. F. Sadreev, Rep. Prog. Phys. 2021, 84, 055901.
[13] H. Zhou, B. Zhen, C. W. Hsu, O. D. Miller, S. G. Johnson, J. D.
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