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Abstract
High harmonic generation (HHG) from gas-phase atoms (or molecules) has opened up a new
frontier in ultrafast optics, where attosecond time resolution and angstrom spatial resolution are
accessible. The fundamental physical pictures of HHG are always explained by the
laser-induced recollision of particle-like electron motion, which lay the foundation of
attosecond spectroscopy. In recent years, HHG has also been observed in solids. One can expect
the extension of attosecond spectroscopy to the condensed matter if a description capable of
resolving the ultrafast dynamics is provided. Thus, a large number of theoretical studies have
been proposed to understand the underlying physics of solid HHG. Here, we revisit the
recollision picture in solid HHG and show some challenges of current particle-perspective
methods, and present the recently developed wave-perspective Huygens–Fresnel picture for
understanding dynamical systems within the ambit of strong-field physics.

Keywords: high harmonic generation, ultrafast science, attosecond physics,
wave and particle perspective, semiclassical models

(Some figures may appear in colour only in the online journal)

1. Introduction

The last three decades have seen the breakthrough of ultra-
fast science due to the generation of high-order harmonics
[1–6] and attosecond pulses [7–9] by using a near-infrared
femtosecond laser. Just after the observation of high harmonic
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generation (HHG), the plateau structure of the spectra, which
can not be explained by traditional perturbation theory, has
attracted lots of interest, and the pioneer studies eventually
led to great achievements: ‘three-step’ recollision model [3,
4]. When an atom or molecule is exposed to an intense
short infrared laser pulse, an electron that was ejected at
an earlier time may be driven back by the oscillating elec-
tric field to revisit its parent ion. When the electron recol-
lides with its parent ion, recombination and rescattering take
place. Recombination results in the emission of coherent XUV
radiation, i.e. HHG [10–15]. Rescattering can also result in
above-threshold ionization [16–18] and nonsequential double
ionization [19–21]. An analytical model called strong-field
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approximation (SFA) [22] was established following the idea
of ‘three-step’ recollision. A nice review of the SFA model is
referred to [23]. The ‘three-step’ recollision model provides
an intuitive basis for understanding the electron dynamics
underlying the strong-field processes [24–28]. It is of great
importance and value for attosecond control. For example,
HHG can be controlled by controlling the ‘three-step’ recol-
lision process so as to produce an isolated attosecond pulse
[7, 9, 29–32]. Moreover, the recollision itself encodes rich
information about the atomic or molecular structure and elec-
tron dynamics. Within this process, the ionization and recom-
bination events established a sort of electron interferometer,
where the ionized electron and the parent nucleus form the two
arms, and the structural (dynamical) information of the tar-
get atom or molecular is encoded into the interference fringes,
i.e. the spectra of HHG or photoelectron (if the electron does
not recombine) [33]. It reveals the self-detecting behavior of
coherent electrons induced by strong lasers, which has stim-
ulated advanced attosecond spectroscopy methods, e.g. high
harmonic spectroscopy (HHS) [34–43] and laser-induced elec-
tron diffraction (LIED) [44–48], for imaging and steering
the electron dynamics with unprecedented attosecond-sub-
angstrom ultrahigh spatiotemporal resolution.

In the last decade, HHG has also been observed in solids
[49–56]. Comprehensive knowledge and control of the elec-
tron dynamics in condensed-matter systems are pertinent
to the development of many modern technologies, such as
petahertz electronics [50, 57–59], optoelectronics [60–63],
information processing [50, 64–67], and photovoltaics [68–
70]. Therefore, there is a growing interest in extending the
attosecond science to condensed-matter systems. However, the
understanding of the underlying physics is limited by the com-
plicated structure and dynamical processes in solids, and thus
the extension of the well-developed attosecond techniques
from gas to solids still faces many challenges. Although sev-
eral numerical models, such as the time-dependent Schödinger
equation (TDSE) [71–78], semiconductor Bloch equations
(SBEs), [79–85] and time-dependent density functional theory
[86–92] can give good descriptions of HHG, the underlying
mechanisms are buried in the wave functions.

In order not to conceal the physics behind the mathematics,
two main mechanisms are usually considered to explain the
solid HHG: interband polarization and intraband current. The
former mechanism has much in common with the ‘three-step’
recollision model of gas HHG. The laser promotes an elec-
tron from the valence band (VB) to the conduction band (CB),
leaving a hole in the VB, then the electron is accelerated by the
laser field, and finally high harmonics can be produced when
the electron recombines (or rescatters) with the hole. The intra-
band mechanism also starts with the electron excitation from
the VB to the CB. Then, the electron and hole move anhar-
monically in the strong laser field, resulting in anharmonic cur-
rent and high harmonics. Unlike the interband polarization, the
intraband current comes from the electron and hole motions
separated in VB and CB. Which mechanism dominates the
solid HHG depends on the band gap of the solid and also the
parameters of driving laser pulse [93]. Generally, in a short-
wave infrared laser, the interband mechanism is dominant for

the high harmonic above the band gap, i.e. in the plateau of
the spectra. In contrast, the intraband mechanism dominates
at longer driving wavelengths or the high harmonics below the
band gap (see figure 1 and the discussion below).

In addition, many other effects have also been proposed that
contribute to or influence the HHG process, e.g. Brunel emis-
sion by tunnel ionization [94, 95], multiband effect by coup-
ling different excitation paths [96–98], multielectron effects
by electron correlation [89, 91], and so on. Beyond the micro-
scopic process, propagation effects, such as linear absorption
and phase matching of generated harmonics and nonlinear
interactions through a medium, can also affect HHG in solids
[99–103]. These effects require the solution of the coupled
microscopic response to Maxwell’s equations, which is com-
putationally demanding [98, 104, 105].

Due to the similarity between the interband mechanism
and the ‘three-step’ model, this mechanism has attracted a lot
of attention, and it is also in favor of the constructing HHS
techniques in solids. Therefore, some generalized recollision
models [106–109] have been proposed following the counter-
part of HHG in the gas phase. Within the framework of these
models, the electronic response under the influence of intense
laser fields gives rise to a multi-dimensional integral, resulting
from the expression of the currents (time-dependent dipole
momentum) within a factorial form under SFA. Then, the
saddle-point approximation is applied considering the form of
highly oscillatory integrals, and the recollision picture of the
electron dynamics is derived by the saddle-point equations.
These models provide useful and intuitive explanations of
HHG in solids, establishing a link between attosecond physics
in gas and condensed matter phases, and promoted the devel-
opment of HHS in solids [51, 52, 64, 82, 110–114]. In order
to apply the three-step model, one somehow needs to con-
sider the localization of the electron in the CB. However, the
electron is much less localized in solids compared to that in
gases. Moreover, solid systems always have complicated band
structures, and thus the diffraction of electron wave packets
may become prominent. Recently, a Huygens–Fresnel picture
for solid HHG has been proposed [115]. In this picture, the
electron motion is described by a series of wavelets instead of
classical particles, and the HHG is interpreted as a coherent
superposition of all wavelet contributions. This stimulates a
different paradigm and idea within the rapidly emerging the-
oretical studies of ultrafast electrodynamic processes in strong
fields.

In the last few years, several reviews have been published
that systematically summarize the current numerical and the-
oretical methods in the development of HHG in solids [93,
116–121]. In this review, we focus on the semiclassical per-
spective of solid HHG, which aims to decipher the phase
information of coherent electron dynamics, highlighting the
similarities and differences of the representative models. We
revisit the recollision picture for HHG in solids, which lies
at the heart of HHG and attosecond science, and present per-
spectives by treating the electron as a particle and a wave
packet. The remainder of this review is organized as follows.
In section 2, we summarize the current recollision models and
point out some challenges and special issues that need to be
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improved or solved. In section 3, we introduce the recently
proposed Huygens–Fresnel picture for HHG in solids. In
section 4, the differences and unifications between the particle-
like recollision picture and the wave-like Huygens–Fresnel
picture are clarified, and the advantages and drawbacks of the
different methods are compared. Moreover, we present a con-
crete calculation example to exemplify how electronic volatil-
ity acts on the HHG process. In section 5, we present a brief
outlook on the wave perspective in attosecond science.

2. Recollision models for HHG in solids

HHG in solids can result from interband and intraband
mechanisms [49, 99, 111, 122]. For the commonly used short-
wave infrared laser, the interband current is usually dominant
for the high harmonics in the plateau region, as demonstrated
by previous experiments [51, 123, 124] and theoretical results
[82, 106]. In a similar fashion as atomic HHG, saddle-point
equations have also been applied to the semiclassical interpret-
ation of interband HHG, which stimulates many theoretical
models [82, 106–109], such as the classical recollision model
[106], non-perfect recollision model [108], and so on. Here,
we briefly review these recollision models.

2.1. Derivation of HHG in solids

We start with a theoretical derivation of the HHG in solids.
Although these descriptions have been discussed in recent
reviews [116, 117], we still present the relevant results for
completeness and for the convenience of further discussion.
Note that the aim of this review is to elucidate one of
the numerous aspects of HHG in solid, namely the recolli-
sion picture. Some phenomena, such as multi-electron effects
and propagation effects, are out of the scope of this paper.
Therefore, here we show only the derivation of HHG from a
single-electron Hamiltonian.

The HHG process in solids is modeled by a nonrelativistic
electron in a periodic potential interacting with an external
electromagnetic field, which is described by a minimal-
coupling Hamiltonian [125] (atomic units (a.u.) are applied in
this work unless stated)

Ĥ(t) =
[p̂+A(r,t)]2

2
−U(r, t)+V(r), (1)

whereA(r, t) andU(r, t) are the vector and scalar potentials of
the external field, respectively, and V(r) is the crystal periodic
potential. There is a gauge freedom in choosing A(r, t) and
U(r, t),

A(r, t)→ A(r, t)+∇χ(r, t)
U(r, t)→ U(r, t)− ∂tχ(r, t), (2)

with χ(r, t) a differentiable real function. The gauge-
independent quantities are the electric and magnetic fields

F=−∇U− ∂tA, (3)

B=∇×A. (4)

The minimal-coupling Hamiltonian (1) can be reduced to a
simple form by using the dipole approximation, considering
that the wavelengths of driving fields used for HHG are much
larger than the dimension of the unit cell. In this case, the vec-
tor potential can be written in dipole approximation, k · r≪ 1,
as A(t)≡ A(r, t). The TDSE for this problem (in the dipole
approximation) is given by

i∂t|Ψ(t)⟩= HVG(t)|Ψ(t)⟩=
[
[p̂+A(t)]2

2
+V(r)

]
|Ψ(t)⟩.

(5)

Here, we are applying the velocity gauge, in whichU(r, t) = 0
and A(t) =−

´ t
−∞F(τ)dτ .

We first consider the field-free states before the laser field
is turned on. The eigenvalue equation can be written as[

p̂2

2
+V(r)

]
ψi,k(r) = Ei(k)ψi,k(r). (6)

In this equation, ψi,k(r) and Ei(k) are the Bloch functions and
the energy band of the field-free crystal with a band index i
and a crystal momentum k. In the coordinate representation,
ψi,k(r) is a product of a plane wave and a periodic envelope
function

ψi,k(r) = eik·rui,k(r), (7)

where ui,k(r+R) = ui,k(r) for all R from the Bravais lattice.
Let us now consider the instantaneous eigenstates ofHVG(t)

in the presence of a homogeneous external field, which satis-
fies(

[p̂+A(t)]2

2
+V(r)

)
|φi,k0(t)⟩= Ẽi,k0(t)|φi,k0(t)⟩. (8)

Since the Hamiltonian is periodic in space, the Bloch theorem
is applicable. The solution of equation (8) satisfying the Born–
von Kármán boundary condition yields [126]

⟨r|φi,k0(t)⟩= e−iA(t)·rψi,k(t)(r), (9)

Ẽi,k0(t) = Ei(k(t)). (10)

The states |φi,k0(t)⟩ are called accelerated Bloch states or
Houston functions [126, 127], and the time-dependent crys-
tal momentum k(t) = k0 +A(t) satisfies the acceleration the-
orem: dk

dt =−F(t).
Then, we use the Houston functions as a basis for solving

the TDSE with the ansatz

|Ψk0(t)⟩=
∑
m

αm,k0(t)|φm,k0(t)⟩. (11)

By inserting this ansatz into TDSE and projecting it onto
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⟨φn,k0(t)|, one gets

i∂tαn,k0(t)+
∑
m

αm,k0(t)⟨φn,k0(t)|i∂t|φm,k0(t)⟩

= ⟨φn,k0(t)|HVG(t)

[∑
m

αm,k0(t)|φm,k0(t)⟩

]
= En(k(t))αn,k0(t). (12)

Note that ⟨r|φm,k0(t)⟩= e−iA(t)·rψm,k(t)(r) = eik0·rum,k(t)(r)
and the nonadiabatic couplings are ⟨φn,k0(t)|i∂t|φm,k0(t)⟩=
−F(t) · ⟨un,k(t)|i∇k|um,k(t)⟩=−F(t) ·dnm(k(t)). Then, one
can obtain the following system of differential equations

i∂tαn,k0(t) = En(k(t))αn,k0(t)+F(t) ·
∑
l

dml(k(t))αl,k0(t).

(13)

The connection between the TDSE and SBEs can be
established by introducing the density matrix elements ρk0

mn =
αm,k0α

∗
n,k0

. Multiplying equation (13) by α∗
n,k0

and summing
by complex conjugate of the resulting equations, equation (13)
can be rewritten into differential equations

i∂tρ
k0
mn(t) = [Em(k(t))−En(k(t))]ρk0

mn(t)+F(t)

·
∑
l

[
dml(k(t))ρ

k0
ln (t)− ρk0

ml(t)dln(k(t))
]
. (14)

A dephasing term −i(1− δmn)ρ
k0(t)
mn /T2 can be introduced on

the right-hand side of equation (14), which phenomenolo-
gically describes the many-body couplings such as electron–
electron and electron–phonon scattering. Typical dephasing
times in semiconductors were found to be a few to tens of
femtoseconds [128, 129]. A shorter dephasing time suppresses
the contribution of multiple recombination quantum paths and
is always chosen to obtain agreement with the clean harmonic
structure observed in experiments [49]. Although the phe-
nomenological dephasing is computationally convenient, it
can only give qualitative results, and the discussions on deph-
asing are still an active research topic [103, 130, 131].

For simplicity, we only consider an initially fully filled VB
(‘m= v’) and an empty CB (‘m= c’) in our following discus-
sions. In this case, equation (14) evolves as the two-band SBEs

i∂tρ
k0
cv (t) =

{
ωk(t)
g +F(t) ·

[
Λk(t)
c −Λk(t)

v

]}
ρk0
cv (t)

+F(t) ·dk(t)
[
ρk0
vv (t)− ρk0

cc (t)
]
, (15)

i∂tρ
k0
cc (t) = F(t) ·

{
dk(t)

[
ρk0
cv (t)

]∗ − [
dk(t)

]∗
ρk0
cv (t)

}
, (16)

i∂tρ
k0
vv (t) =−F(t) ·

{
dk(t)

[
ρk0
cv (t)

]∗ − [
dk(t)

]∗
ρk0
cv (t)

}
. (17)

ωk
g = Ec(k)−Ev(k), Λ

k
m = dmm(k) and dk = dcv(k) denote

the band gap, Berry connection and transition dipole

momentum, respectively. The SBEs can be further simpli-
fied by a transformation using an integrating factor

αm,k0(t) = α̃m,k0(t)e
iϕD

m(k(t))+iϕB
m(k(t)), (18)

where the dynamic phase ϕD
m(k(t)) and the Berry phase

ϕB
m(k(t)) are defined by the following expressions

ϕD
m(k(t))=−

ˆ t

−∞
Em(k(τ))dτ, (19)

ϕB
m(k(t))=−

ˆ t

−∞
F(τ) ·Λk(τ)

m dτ. (20)

Using the notations Πk0 (t) = α̃c,k0 α̃
∗
v,k0

=

ρk0
cv (t)e

−i[ϕD
cv(k(t))+ϕB

cv(k(t))],Nk0
m (t) = α̃m,k0 α̃

∗
m,k0

= ρk0
mm(t) (m=

c,v) and rearranging equations (15)–(17), one gets

∂tΠ
k0(t) =−iF(t) ·dk(t)

[
Nk0
v (t)−Nk0

c (t)
]
e−i[ϕD

cv(k(t))+ϕB
cv(k(t))],

(21)

∂tN
k0
c (t) = 2Re

{
iF(t) ·

[
dk(t)

]∗
Πk0(t)ei[ϕ

D
cv(k(t))+ϕB

cv(k(t))]
}
,

(22)

∂tN
k0
v (t) =−2Re

{
iF(t) ·

[
dk(t)

]∗
Πk0(t)ei[ϕ

D
cv(k(t))+ϕB

cv(k(t))]
}
,

(23)

where ϕDcv(k(t))= ϕDc (k(t))−ϕDv (k(t)) and ϕBcv(k(t))=
ϕBc (k(t))−ϕBv (k(t)) are the transitional dynamic phase and
Berry phase, respectively. Note that for HHG in semicon-
ductors and insulators, the electrons are initially in the VB
before the external field is turned on (i.e. Nk0

v (t0) = 1) and the
population transfer to the CB is small. Thus, it is reasonable
to explore equation (21) by using the Keldysh approximation
Nk0
v (t)−Nk0

c (t)≈ 1. This decouples equations (21)–(23) so
that they can be formally integrated,

Πk0(t) =−i
ˆ t

t0

F(t ′) ·dk(t
′)e−i[ϕD

cv(k(t
′))+ϕB

cv(k(t
′))]dt ′, (24)

Nk0
c (t) = i

ˆ t

t0

F(t ′) ·
[
dk(t

′)
]∗

Πk0(t ′)ei[ϕ
D
cv(k(t

′))+ϕB
cv(k(t

′))]dt ′ + c.c.,

(25)

Nk0
v (t) = Nk0

v (t0)−Nk0
c (t). (26)

Finally, HHG in solids is determined by the microscopic
current J(t) =

∑
k0
jk0

(t), where the contribution from an elec-
tron with an initial crystal momentum k0 is evaluated as

4
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jk0
(t) =−⟨Ψk0(t)| [p̂+A(t)] |Ψk0(t)⟩

=−
∑
m,n

⟨Ψk0(t)|φm,k0(t)⟩⟨φm,k0(t)| [p̂+A(t)] |φn,k0(t)⟩

× ⟨φn,k0(t)|Ψk0(t)⟩

=−
∑
m,n

⟨φm,k0(t)| [p̂+A(t)] |φn,k0(t)⟩ρk0
nm(t)

=−
∑
m,n

pk0+A(t)
mn ρk0

nm(t). (27)

The momentum matrix elements can be determined by using

the relation [p̂+A(t)] =−i
[
r̂, ĤVG(t)

]
, that is

pk0+A(t)
mn = ⟨φm,k0(t)| [p̂+A(t)] |φn,k0(t)⟩

=−i
〈
φm,k0(t)

∣∣∣[r̂, ĤVG(t)
]∣∣∣φn,k0(t)

〉
. (28)

It is convenient to split the position operator into an intraband
part r̂i and an interband part r̂e [132], where r̂= r̂i+ r̂e and

⟨ψm,k|r̂i|ψn,k ′⟩= δmn
[
δ(k−k ′)dmm(k)+ i∇kδ(k−k ′)

]
,

(29)

⟨ψm,k|r̂e|ψn,k ′⟩= (1− δmn)δ(k−k ′)dmn(k). (30)

The relation between dmn(k) and the momentum matrix ele-
ments is given by

pk0+A(t)
mn

=−i
〈
φm,k0(t)

∣∣[r̂ĤVG(t)− ĤVG(t)r̂
]∣∣φn,k0(t)

〉
=

∑
l,k ′

[−i⟨φm,k0(t)|r̂|φl,k ′(t)⟩⟨φl,k ′(t)|ĤVG(t)|φn,k0(t)⟩

+ i⟨φm,k0(t)|ĤVG(t)|φl,k ′(t)⟩⟨φl,k ′(t)|r̂|φn,k0(t)⟩]

=
∑
l,k ′

[−i⟨ψm,k0+A(t)|r̂|ψl,k ′+A(t)⟩En(k0 +A(t))δlnδ(k0 − k ′)

+ iEl(k
′ +A(t))δmlδ(k0 − k ′)⟨ψl,k ′+A(t)|r̂|ψn,k0+A(t)⟩]

= δmn [∇kEn(k(t))] + i(1− δmn) [Em(k(t))−En(k(t))]dmn(k(t)).
(31)

Using the above relations, the microscopic current can be reor-
ganized as an intraband and an interband contribution, i.e.
J(t) = Jer(t)+ Jra(t):

Jra(t) =−
∑
m,k0

∇kEm(k(t))ρk0
mm(t), (32)

Jer(t) =−i
∑

m ̸=n,k0

[Em(k(t))−En(k(t))]dmn(k(t))ρk0
nm(t).

(33)

In this form, the intraband and interband currents are divided
by selecting the contribution from different band indices,
where the prefix ‘intra’ and ‘inter’ comes from the selection
of m= n and m ̸= n. The intraband term deals with the elec-
trons in each individual band (select m= n), and it necessar-
ily takes into account all bands. The interband term arises

Figure 1. A typical high harmonic spectrum for intraband and
interband emissions. The wavelength and electric amplitude of the
driving laser pulse is 3µm and 1.5V nm−1. The band gap energy is
3.3 eV corresponding to about 8.6th harmonic marked as a dashed
vertical line.

from the polarization oscillation between electrons in differ-
ent bands (selectm ̸= n). Inserting the equations (24)–(26) into
equations (32) and (33), we find

Jra(t) =−
∑
k0

∇kω
k(t)
g

ˆ t

t0

dt ′F(t ′) ·
[
dk(t

′)
]∗

ei[ϕ
D
cv(k(t

′))+ϕB
cv(k(t

′))]

×
ˆ t ′

t0

F(t ′ ′) · dk(t
′ ′)e−i[ϕD

cv(k(t
′ ′))+ϕB

cv(k(t
′ ′))]dt ′ ′ + c.c.,

(34)

Jer(t) =
∑
k0

ω
k(t)
g

[
dk(t)

]∗
ei[ϕ

D
cv(k(t))+ϕB

cv(k(t))]
ˆ t

t0

F(t ′)

·dk(t
′)e−i[ϕD

cv(k(t
′))+ϕB

cv(k(t
′))]dt ′ + c.c. (35)

The HHG spectrum can be obtained by Fourier transforming
the currents. In figure 1, we plot a typical high harmonic spec-
trum using the same parameters as in [82, 133]. It can be seen
that the interband harmonics are dominant above the band gap
(marked as a dashed vertical line), while the intraband har-
monics contribute mainly to the lower order harmonics. This
is a fairly common result [82, 133], so one tends to consider
only the interband contributions in the plateau region.

The SBEs could be improved from a two-band to a mult-
iband model by using the accurate energy bands and transition
dipole moments from first-principle calculations. The mult-
iband effects have also attracted a lot of attention in recent
studies [96–98, 110, 134–136], where the electron is excited to
higher CB or the quantum interference of different excitation
paths among different pair of bands becomes important.
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Figure 2. A summary of various types of methods for HHG in solids. On the left are the saddle-point methods, i.e. SRM: simple recollision
model, ERM: extended recollision model, WRM: Wannier recollision model, WBRM: Wannier–Bloch recollision model. On the right is the
Huygens–Fresnel method.

2.2. Saddle-point equations and the recollision models

According to the above discussion, the relevant observables,
i.e. the induced currents, are expressed as an integral form in
the multi-dimensional space by using the Keldysh approxim-
ation. These integrals are often solved by using the station-
ary phase approximation, which leads to a series of equations
identifying the points in the multi-dimensional space having
the most significant contributions in their evaluation. These
points are usually indicated as saddle points. Such an approach
enables an approximate intuitive physical picture with clas-
sical perceptions of the quantum mechanical processes under
investigation. Thus, the saddle-point methods are very power-
ful and valuable general theoretical tools to obtain asymp-
totic expressions of mathematical solutions and also help to
gain physical insights into the underlying phenomena. Such
techniques have been adapted to study the attosecond sci-
ence in gaseous systems in the past [22, 34–39, 45–48] and
have been extended to condensed-matter phase in recent years
[82, 106–109].

The first step to solving the TDSE is to choose a laser gauge
and a basis. The exact solution does not depend on this choice,
but the chosen gauge and basis dictate approximations that one
may wish to make, and they influence the physical interpreta-
tion of results [106, 107, 109, 137, 138]. Besides, the choice
of gauge and basis may play an important role in the numer-
ical description. The exact form of the Hamiltonian matrix
and the truncation of states will strongly influence the solution
of the electron dynamics [136, 139, 140]. Here, we focus on
the recollision models with interband currents, where the pre-
fix ‘inter’ highlight the transition between the CB and VB in
the recombination step. We briefly summarize several typical
analytical forms of interband current and the corresponding
recollision models for HHG in solids based on saddle-point

methods (see figure 2). Note that the integral form for the
currents, the derivation of the SBEs and the correspond-
ing physical pictures are similar for different specific basis,
e.g. employing the Bloch states or the Houston states. Thus,
we will only in detail introduce some typical models classi-
fied based on the choice of delocalized or localized basis for
the CB and VB, respectively, and focus on the discussions
of saddle-point equations and the corresponding recollision
models.

• Simple recollision model (SRM)

The original SRM deals with a direct band-gap centrosym-
metric material, and the k-dependence of the transition dipole
moment is neglected, i.e. dk ≡ d [106]. In this case, the berry
phase is not included and only the dynamic phase is preserved
in equation (35). Then, by transforming into the frame k=
k0 +A(t), one can obtain the interband current in frequency
domain as

JSRM
µ (ω) =

ˆ ∞

−∞
dteiωtJSRM

µ (t) =
ˆ ∞

−∞
dt
∑
k

ωk
gd

∗
µ

ˆ t

t0

F(s)

·de−i[SSRM(k,t,s)−ωt]ds+ c.c.. (36)

Here µ= {x,y,z} is the Cartesian indices that denotes the µ
component of a vector, and

SSRM(k, t,s) =
ˆ t

s
ω
κ(k,t,t ′)
g dt ′ (37)

is the accumulated phase with the time-dependent crys-
tal momentum κ(k, t, t ′) = k−A(t)+A(t ′). The phase
of the exponential SSRM(k, t,s)−ωt in this integrand can
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Figure 3. Sketch for the three-step dynamics within the SRM. In this model, it is assumed that the electron and hole are coinciding at both
the generation and recombination times.

vary wildly, introducing extreme cancellations that require
increased precision in the numerical integration.

To overcome this problem, one can employ the method of
steepest descents for the relevant oscillatory integrals, where
only the phase stationary (saddle) point contributes to the
integrand while highly oscillatory terms are neglected. Thus,
the integrals can be approximated using the values of the
integrand at stationary points of the action, reminiscent of
the emergence of classical trajectories as the stationary-action
points of the Feynman path integral. From this framework, the
major contribution for equation (36) comes from the stationary
(saddle) points and the corresponding saddle-point equations
can be derived from the derivatives of the phase term

∇k
[
SSRM(k, t,s)−ωt

]
=∆r(k, t,s)=

ˆ t

s
∇kω

κ(k,t,t ′)
g dt ′=0,

(38)

∇s
[
SSRM(k, t,s)−ωt

]
= ωκ(k,t,s)

g = 0, (39)

∇t
[
SSRM(k, t,s)−ωt

]
= ωk

g +F(t) ·∆r(k, t,s)−ω = 0.
(40)

These results are also proposed by Vampa et al [106] using
the length gauge SBEs with a Bloch basis. Note that the term
F(t) ·∆r(k, t,s) in equation (40) is omitted in Vampa’s work
[106] considering the recollision condition equation (38).
Neglecting the imaginary parts of the saddle point, the saddle-
point conditions give the SRM similar to the three-step model
of atomic HHG [4, 106]: (i) an electron–hole pair is created
with zero crystal momentum at time s (at the Γ point); (ii)
the electron and hole are separated by the laser field with

the instantaneous velocity∇kω
A(t)−A(t ′)
g ; (iii) the electron and

hole re-encounter to each other at time t and release a har-
monic photon with energyω = ωk

g . In figure 3, we plot a sketch
of the three-step dynamics within the SRM. In this model,
both the electron and the hole are seen as classical particles
and their motion follows the group velocity on the band struc-
ture. Then, the HHG is determined by the event of electron–
hole coinciding at birth and recolliding at emission times. This

analysis reveals that the trajectory picture of atomic HHG is
applicable to solids with some modifications. It establishes a
bridge between the microscopic electron–hole dynamics and
the HHG emissions, and therewith opens the possibility to
apply atomic HHS to the condensed matter phase. In addition,
this model yields a simple approximate cutoff law for HHG in
solids, which lies a little lower than the numerical results but
gives an identical slope (see figure 4 in [106]).

• Extended recollision model (ERM)

The ERM [108] is derived in a more general case where the
transition dipole phase and berry phase are involved. Thus,
we come back to the general form of interband current in
equation (35)

JERM
µ (ω) =

ˆ ∞

−∞
dteiωtJERM

µ (t)

=

ˆ ∞

−∞
dt
∑
k

Rk
µ

ˆ t

t0

Tκ(k,t,s)e−i[SERM(k,t,s)−ωt]ds+ c.c.

(41)

For the sake of clarity, we rearrange the form of interband cur-
rent using notations as those in [108]. Tκ(k,t,s) = F(s)|dκ(k,t,s)∥ |
is the Rabi frequency (mathematically, it is the amplitude of
the termF(s) ·dκ(k,t,s)) with dκ(k,t,s)∥ representing the compon-

ent parallel to the electric field at ionization time,Rk
µ = ωk

g

∣∣dkµ∣∣
is the recombination dipole, and

SERM(k, t,s) =
ˆ t

s

[
ω
κ(k,t,t ′)
g +F(t ′) ·Λκ(k,t,t ′)

cv

]
dt ′

+βk
µ −β

κ(k,t,s)
∥ . (42)

is the accumulated phase with Λk
cv =Λk

c −Λk
v the Berry con-

nection difference and βk
µ ≡ arg

(
dkµ

)
the transition-dipole

phases.
In the framework of saddle-point method, the major contri-

bution to the integral over k come from the stationary points
determined by taking the partial derivatives with respect to k
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∇k
[
SERM(k, t,s)−ωt

]
=∇k

{ˆ t

s

[
ω
κ(k,t,t ′)
g +F

(
t ′
)
·Λκ(k,t,t ′)

cv

]
dt ′ +βk

µ −β
κ(k,t,s)
∥

}
=

ˆ t

s
∇kω

κ(k,t,t ′)
g dt ′ +

ˆ t

s
∇k

[
F
(
t ′
)
·Λκ(k,t,t ′)

cv

]
dt ′

+∇kβ
k
µ −∇kβ

κ(k,t,s)
∥ . (43)

Using the relation ∇(f · g) = f× (∇× g)+ (f ·∇)g+ g×
(∇× f)+ (g ·∇)f in the second term, one gets

ˆ t

s
∇k

[
F
(
t ′
)
·Λκ(k,t,t ′)

cv

]
dt ′

=

ˆ t

s
F(t ′)×

(
∇k ×Λ

κ(k,t,t ′)
cv

)
dt ′ +

ˆ t

s

(
F(t ′) ·∇k

)
Λ

κ(k,t,t ′)
cv dt ′

=

ˆ t

s
F(t ′)×

(
Ω

κ(k,t,t ′)
c −Ω

κ(k,t,t ′)
v

)
dt ′ −Λ

κ(k,t,t ′)
cv

∣∣∣∣t ′ t
t ′=s

, (44)

with the Berry curvature Ωk
m =∇k ×Λk

m. Substituting
equation (44) into (43) and reorganizing the formula, the
saddle-point condition with respect to the integration variable
k is

∇k
[
SERM(k, t,s)−ωt

]
=∆r(k, t,s)−∆D(k, t,s) = 0, (45)

with the electron–hole separation vector and group velocities

∆r(k, t,s) =
ˆ t

s

[
vκ(k,t,t

′)
c − vκ(k,t,t

′)
v

]
dt ′ (46)

vκ(k,t,t
′)

m =∇kEm(κ(k, t, t ′))+F(t ′)×Ωκ(k,t,t ′)
m , (47)

and the structure-gauge invariant displacement

∆D(k, t,s) =Dk
µ −Dκ(k,t,s)

∥ (48)

Dk
µ =Λk

cv−∇kβ
k
µ. (49)

Following the same procedure, themajor contribution to the
integral over s and t come from the stationary points determ-
ined by taking the partial derivatives with respect to s and t,

∂s
[
SERM(k, t,s)−ωt

]
= 0

⇔ ∂s

{ˆ t

s

[
ω

κ(k,t,t ′)
g +F

(
t ′
)
·Λκ(k,t,t ′)

cv

]
dt ′ −β

κ(k,t,s)
∥

}
= 0

⇔ −ωκ(k,t,s)
g −F(s) ·Λκ(k,t,s)

cv −∇kβ
κ(k,t,s)
∥ ∂sκ(k, t,s) = 0

⇔
[
ωκ(k,t,s)
g +F(s) ·Dκ(k,t,s)

∥

]
= 0, (50)

∂t
[
SERM(k, t, s)−ωt

]
= 0

⇔ ∂t

{ˆ t

s

[
ω
κ(k,t,t ′)
g +F

(
t ′
)
·Λκ(k,t,t ′)

cv

]
dt ′ −β

κ(k,t,s)
∥

}
−ω = 0

⇔ ωk
g +F(t) ·Λk

cv +

ˆ t

s
∂t

[
ω
κ(k,t,t ′)
g +F

(
t ′
)
·Λκ(k,t,t ′)

cv

]
dt ′

−F(t) ·∇kβ
κ(k,t,s)
∥ −ω = 0

⇔ ωk
g +F(t) ·

{
Λk
cv −∇kβ

κ(k,t,s)
∥ +

ˆ t

s
∇k

[
ω
κ(k,t,t ′)
g +F

(
t ′
)

·Λκ(k,t,t ′)
cv

]
dt ′

}
−ω = 0

⇔ ωk
g +F(t) ·

{
Λk
cv −∇kβ

κ(k,t,s)
∥ +∆r(k, t, s)−Λ

κ(k,t,t ′)
cv

∣∣∣∣t ′ t
t ′=s

}
−ω = 0

⇔ ωk
g +F(t) ·

[
∆r(k, t, s)+Dκ(k,t,s)

∥

]
= ω. (51)

In the fifth line of equation (51), we use the results in
equation (44). The saddle points (ksp, tsp,ssp) can be obtained
by solving the equations (45), (50), and (51), which are
termed the tunneling, recollision, and emission equations,
respectively.

One can see that the saddle points correspond to those crys-
tal momenta kst for which the electron and hole are born at
time s and recombine at time t with the electron–hole sep-
aration ∆r is equal to ∆D. According to the saddle-point
equations, the interband HHG can be interpreted in terms
of the following three steps: i) the equation (50) gives the
tunneling conditions k ′ = ksp +A(tsp)−A(ssp), that is, an
electron–hole pair is created by tunneling from VB to CB at
time ssp and with an initial momentum k ′; ii) the electron
and hole are accelerated by the laser and the equation (45)
constrains the relation between ionization time tsp and emis-
sion time ssp, i.e. the instant the electron–hole separation
∆r(ksp, tsp,ssp) is equal to ∆D(ksp, tsp,ssp); iii) the emission
frequency ω due to the electron–hole pair recombination at
time tsp with crystal momentum ksp and relative separation
∆r is determined by equation (51), which is the energy con-
servation law. This three-step model is referred to as an
extended recollision model (ERM) by relaxing the recolli-
sion condition by a preset recollision threshold R0, which
is introduced by Yue and Gaarde [108, 117]. As sketched
in figure 4, the ERM allows such imperfect recollision that
∆Rµ = |∆r(k, t,s)−∆D(k, t,s)| reaches its minimum within
the region ∆Rµ < R0. In other words, the recombination is
also possible upon an imperfect overlap of the electron’s and
hole’s wave packet, i.e. their centers do not overlap exactly.
The spatial separation of the electron and hole upon recombin-
ation constitutes the formation of a dipole, which has a polariz-
ation energy F(t) ·∆r(k, t,s). This affects the energy released
as photons in the recombination process. Different from SRM,
ERM introduces a recollision threshold that involves the delo-
calized feature of the electrons in solids.Moreover, the import-
ant role of Berry curvature and transition dipole phase has been
pointed out by considering the nonzero displacement ∆D and
energy shift F(t) ·Dκ(k,t,s)

∥ .

• Wannier recollision model (WRM)

By transforming the Bloch dipole moment dk = dcv(k)
to Wannier dipole moment dl =

´
Vcrystal

w∗
c (r− rl)rwv(r)dr,

Parks et al develop a generalized quasi-classical approach
accounting for the lattice structure [109]. There, they assume
a centrosymmetric system for which the diagonal elements
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Figure 4. Sketch for the three step dynamics within the ERM. In this model, the recombination is allowed for such imperfect recollision
that ∆Rµ = |∆r(k, t,s)−∆D(k, t,s)| reaches its minimum within the region ∆Rµ < R0 considering the finite size of the electron’s and
hole’s wave packet.

dmm(k) can be set to zero. The connection between the Bloch
and Wannier basis functions is given by a Fourier transform
according to

um,k(r) =
∑
j

wm (r− rj)e−ik·(r−rj), (52)

wm (r− rj) =
1
Vcell

ˆ
BZ
um,k(r)eik·(r−rj)dk. (53)

Here, wm (r− rj) is the Wannier function of band m corres-
ponding to the primitive unit cell at position rj. Vcell is the
volume of a unit cell, and the integration is performed over the
first Brillouin zone (BZ). Then, the Bloch functions in trans-
ition dipole moment are replaced by Wannier functions with
the help of relation (52), which leads to

dk =
∑
j,k

ˆ
Vcell

w∗
c (r− rk) [r− rj]wv (r− rj)eik·(rj−rk)dr

=
∑
j,l

ˆ
Vcell

w∗
c (r− (rj+ rl)) [r− rj]wv (r− rj)e−ik·rldr

=
∑
l

e−ik·rl
ˆ
Vcrystal

w∗
c (r− rl)rwv(r)dr=

∑
l

dle−ik·rl .

(54)

In the above derivation, a transform rk = rj+ rl changes the
summation index k with l in the second line, and perform-
ing

∑
j changes the integration volume from a unit cell to the

whole crystal in the second line. The Wannier dipole moment
dl are in form of the Fourier series expansion coefficients of
the Bloch dipole moment, which describes a transition where
an electron is born l lattice away from the hole. Inserting
equation (54) into equation (36), one can obtain the real-space
interband current,

JWRM
µ (ω) =

∑
j,l

{
d∗j [dl ·Tj l(ω)]−dj

[
d∗l ·T∗

j l(−ω)
]}

=
∑
j,l

[
Pj l(ω)−P∗

j l(−ω)
]
, (55)

Tj l(ω) = ω
∑
k

ˆ ∞

−∞
dt
ˆ t

−∞
dsF(s)eiφ(k,t,s,rj,rl) (56)

where φ = −
´ t
s ω

κ(k,t,t ′)
g d t ′ +ωt+k · (rj− rl)+

[A(t)−A(s)] · rl. These integrals are solved by saddle-point
integration with saddle-point conditions

ωκ(k,t,s)
g +F(s) · rl = 0, (57)

∆r(k, t,s) = rj− rl, (58)

ωk
g +F(t) · rj = ω, (59)

resulting from the partial derivatives with φ respect to s, k,
and t. This Wannier quasi-classical description transforms the
three-stepmodel from reciprocal space to real space [109], and
we call it Wannier recollision model (WRM). In figure 5, we
show a sketch for the three steps in WRM: (i) an electron is
transitioned from x0 to x0 + xl at birth time s; (ii) the electron–
hole pair is separated by the laser field following the classical
trajectory ∆r(k, t,s); (iii) the electron and hole recombine at
time t with probability amplitude dje−iks(tb,tr)·xj and release
a harmonic photon of frequency ω = ωk

g +F(t) · xj when the
separation ∆r(k, t,s) is equal to xj− xl. While Bloch analysis
describes an electron–hole pair by a single trajectory, WRM
describes it by a swarm of weighted trajectories that generate
and recombine at different sites in the crystal. This enables
to evaluate the contributions of individual lattice sites to the
HHG process and hence addresses the question of localization
of harmonic emission in solids.

• Wannier–Bloch recollision model

A Wannier–Bloch approach was also developed by Osika
et al [107]. Compared to WBR, they use a mixed repres-
entation, where Wannier wavefunctions and Bloch wavefunc-
tions are used for characterizing the VB and CB, respectively.
Therefore, this model provides an atomistic-like description of
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Figure 5. Sketch for the three-step dynamics within the WRM. In this model, the contributions of individual lattice sites, where it ionized
and recombined, to the HHG process is resolved by transforming the crystal momentum-dependent Bloch transition dipole moment to the
cite-dependent Wannier dipole moment.

HHG in solid-state systems, where we have a k-dependence
on the CB and localized recombination in the VB. In the
Wannier–Bloch approach [107], it focuses on the 1D lattice
and the TDSE is solved with the ansatz

|Ψ(t)⟩=
∑
j

|wv,j⟩aj(t)+
ˆ
BZ
ac(k, t) |ψc,k⟩dk, (60)

where the wave function of a single electron is expressed as a
superposition of the localizedWannier wave states |wv,j⟩ in the
VB and delocalized Bloch state |ψc,k⟩ in the CB. Here, j runs
over all atomic sites in the crystal. The Wannier functions of
the mth band can be represented by a set of Bloch functions

|wm,j⟩= wm,j(x) =
ˆ
BZ
ψm,k (x− xj) w̃m(k)dk. (61)

In this form, w̃m(k) is a product of a normalization constant
and a phase depending on crystal momentum k. For 1D lattice,
the w̃m(k) are independent of k provided the Wannier func-
tions are real and symmetric under appropriate reflection, and
they fall off exponentially with distance [140, 141]. Note that
the Wannier functions form a completely orthogonal set in the
VB but are not eigenfunctions of the Hamiltonian, the elec-
tron wave function may spread in the lattice because of the
interatomic hopping and the acceleration driven by the laser
field. Thus, the coefficient aj(t) acquires nonzero values dur-
ing the laser pulse, and the harmonic emission is obtained by
summing up the contribution of each Wannier state

JWBRM(ω) = ω

ˆ +∞

−∞
dteiωt

∑
k

∑
j

a∗j (t)djc(k)ac(k, t)+ c.c.,

= ω |w̃v|2
ˆ +∞

−∞
dteiωt

∑
k

∑
j

[
aj(t)d

k
]∗

eikxj

×
∑
j ′

ˆ t

t0

dsF(s)dκ(k,t,s)e−iκ(k,t,s)xj ′ e−i
´ t
s
Ec(κ(k,t,t ′))dt ′ .

(62)

The transition dipole moment from the CB to the VB is
djc(k) =

[
w̃vdk

]∗
eikxj . Then, one can reorganize this current as

a product of a global amplitude and phase

JWBRM(ω) =
∑
j,j ′

∑
k

ˆ +∞

−∞
dt
ˆ t

t0

dsfj,j ′(k, t,s)e
−iΦj,j ′ (k,t,s)+iωt,

(63)

fj,j ′(k, t,s) = ω |w̃v|2 |aj(t)|
[
dk
]∗ |aj ′(s)|F(s)dκ(k,t,s), (64)

Φj,j ′(k, t,s) =
ˆ t

s
Ec(κ(k, t, t ′))dt ′ +φaj(t)− kxj−φaj ′ (s)

+κ(k, t,s)xj ′ . (65)

Note that φaj ≡ arg(aj) is the phase associated with the popu-
lation coefficient aj. The physical information about the radi-
ation by means of the Wannier–Bloch approach is extracted
from the saddle-point conditions

Ec(κ(k, t,s))+ ∂sφaj ′ (s)+F(s)xj ′ = 0, (66)

ˆ t

s
∇kEc(κ(k, t, t ′))dt ′ + xj ′ − xj = 0, (67)

Ec(k)+ ∂tφaj(t)+F(t)xj = ω, (68)

which gives a recollision model [107] involving the delocal-
ization of the electrons as shown in figure 6: (i) an electron
located at the atomic site xj ′ is excited from the valence to the
CB at time s; (ii) this electron is accelerated in the CB while
the electron wave function spreads along the periodic lattice
structure; (iii) at time t, the electron recombines at the site xj,
and the excess electron energy is emitted in the form of a high-
harmonic photon. Then, the delocalization occurs because the
electron can recombine with different Wannier sites from the
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Figure 6. Sketch for the three-step dynamics within the WBRM. In this model, the delocalization occurs because the electron can
recombine with different Wannier sites from the one it has initially been excited from, considering the spreading of both the electron and
hole wavefunctions.

one it has initially been excited from, considering the spread-
ing of the electron wavefunctions. By analyzing the spatial-
resolved HHG process, one can determine the degree of loc-
alization of the HHG process as a function of experimental
parameters, with implications for HHG efficiency and for the
emerging area of atto-nanoscience [142].

2.3. Discussions on saddle-point approximation

Since all of the above models are rooted in the saddle-point
approximation, it is valuable to revisit the validity of the
saddle-point approximation in order to discuss the scope of the
model and the corresponding recollision picture. Thus, we first
recall a general form of saddle-point integration theorem. We
quote only some of the derivations and conclusions that will
be called upon in this review. More complete and rigorous dis-
cussions of the saddle-point method can be found in [23, 143].
The saddle-point approximation is a powerful method for ana-
lyzing the asymptotic behavior of a complex integration

I(σ) =
ˆ
C
f(z)eσg(z)dz, (69)

with parameter σ≫ 1. Both f (z) and g(z) are smooth complex
analytical functions of z andC is the integral path.We consider
non-degenerate multiple isolated stationary phase points z=
zs (index s) where g ′(z) =∇zg(z)|z=zs = 0 and g ′ ′(zs) ̸= 0.
The integration path C can be deformed to follow an appropri-
ate path through the critical points of the integrand utilizing the
Cauchy–Goursat theorem [144] without changing the value of
the integral. This allows one to make a very useful simplific-
ation in calculating the interested integral. By expanding the
exponential in the integrand along the steepest descent into a
truncated Taylor series around the stationary phase point, one
can obtain

I(σ) =
ˆ
C
f(z)eσg(zs)+

1
2σg

′ ′(zs)(z−zs)
2+···dz,

≈ eσg(zs)
ˆ
C
f(z)e

1
2σg

′ ′(zs)(z−zs)
2

dz. (70)

Retaining to the second order, one gets a Gaussian func-
tion with width O(

√
1/σ). Using the generalized Riemann–

Lebesgue lemma, the contributions for this type of integral
come predominantly from the stationary phase points zs, while
the oscillatory parts of the integrand cancel out for large σ.
Then, the integration in equation (69) can be asymptotically
approximated as a sum of stationary phase point contributions

I(σ) =
∑
s

(
2π
σ

) 1
2 f(zs)√

det(−g ′ ′(zs))
eσg(zs). (71)

Equation (71) is called the saddle-point approximation and the
expression ∇zg(z)|z=zs = 0 is referred to as the saddle-point
equation (correspondingly, zs is called the saddle point).

From the above discussion, the saddle-point approxim-
ation is valid only when σ is large enough. To give an
intuitive illustration, we take a typical form of integral
I(σ,σg) =

´ +∞
−∞ e−σgσx

2
eiσx

2
dx as an example, where e−σgσx

2

and eiσx
2
corresponds to amplitude term f (z) and phase term

eσg(z) in equation (69) respectively. Utilizing Cauchy–Goursat
theorem [144], one can deform the integration path to fol-
low the steepest descent, i.e. z= (x+ iy)|x=y. In this form,
for a fixed σ, a smaller σg describes a relatively slowly
varying amplitude compared with the phase in the integ-
rand around the saddle point x= 0. Figure 7 shows the
behavior of e−σgσx

2
eiσx

2
along the steepest descent, where

the parameter σ is set to 1 without loss of generality.
Comparing the results for three different values of σg, it
is shown that with decreasing σg the evaluation of the
oscillatory integral converges to a Gaussian form contrib-
uted by the phase term, i.e. I(σ,σg) =

´ +∞
−∞ e−σgσx

2
eiσx

2
dx≈´ +∞

−∞ eiσx
2
dx=

√
2π
−iσ . Namely, the saddle-point approxim-

ation (equation (71)) works well. However, for cases the
oscillation of the amplitude term is comparable to (σg =
1) or even faster than (σg = 10) the phase term, the integ-
ration deviates from the result of saddle-point approxima-
tion. This conclusion can be also obtained with an analyt-

ical form I(σ,σg) =
´ +∞
−∞ e−(σg−i)σx2dx=

√
2π

(σg−i)σ

limσg→0−−−−−→
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Figure 7. Behavior of the integrand of I(σg) =

Re
(´ +∞

−∞ e−σgσz
2

eiσz
2

dz
)
around the saddle point along the steepest

descent with different parameter σg and σ= 1. The results with
σg < 0.1 have no discernible difference from the results with
σg = 0.1.

√
2π
−iσ . For the physical problems we are interested in, the

coefficient in the phase term σ is related to the electron energy.
Thus, one can expect that the saddle-point integral gives a reas-
onable approximation when the accumulated electron energy
is large enough and the phase term of the integrand varies
much faster than the other factors with respect to the integ-
ration variables.

Combing back to equation (41), the HHG contributed by
the interband current is expressed as an integral with amplitude
and propagation phase terms. Within the saddle-point approx-
imation, the interband current in equation (41) is given by a
sum over all the relevant stationary values {ksp, tsp,ssp}

Jterµ (ω)≈
∑

ksp,tsp,ssp

H(ksp, tsp,ssp)

×Rkst
µ T

ksp−A(tsp)+A(ssp)e−i(Sµ(ksp,tsp,ssp)−ωtsp) + c.c.
(72)

with an additional Hessian factor H(ksp, tsp,ssp) =
1√

det[2π i∂2Sµ|ksp,tsp,ssp ]
that accounts for the width of the

complex-integration Gaussians. The term ∂2Sµ is the Hessian
matrix with element ∂l∂mSµ (l, m= {k, t,s}). As discussed in
section 2.2, the semiclassical picture of HHG is obtained in the
scenario that the integral is approximated using the values of
the integrand at stationary points of the phase term, based on
which the classic correspondence between the electron traject-
ory and harmonic emission is established. Thus, the validity
of the semiclassical picture rests on whether the saddle-point
approximation is valid.

In atomic gases, the integral form of harmonic emis-
sion under strong field approximation involves a highly
oscillatory term in the phase factor Θ(p, t,s) = ωt−´ t
s dτ

(
[p+A(t)]2

2 + Ip
)

[22] with the canonical momentum p

and atomic ionization potential Ip. One can examine the beha-
vior of the phase in the simplest case where an intense mono-
chromatic linearly polarized laser field F(t) = F0 cos(ω0t) is
applied

Θ(p, t,s) = ωt−
ˆ ωt

ωs


[
p∥ − F0

ω0
sin(θ)

]2
2

+ Ip

 dθ
ω0

= ωt− F2
0

2ω3
0

ˆ ωt

ωs

[
ω0p∥
F0

− sin(θ)

]
dθ+

Ip
ω0

(ω0t−ω0s)

= ωt− Up

ω0

ˆ ωt

ωs

[
ω0p∥
F0

− sin(θ)

]
dθ+

Ip
ω0

(ω0t−ω0s) .

(73)

Up =
F2
0

4ω2
0
is the ponderomotive energy of the electron under

the action of the laser field, and Ip
ω0

is the number of photons
necessary to ionize the target atom. The saddle-point approx-
imation is asymptotically exact provided Up

ω0
and Ip

ω0
are large

enough, which is in general well satisfied with a strong low-
frequency laser field.

The situation is however quite different for the interband
HHG in solids. On the one hand, in contrast to the free-electron
dispersion relevant for gas HHG, solid systems have more
complicated electron band structures. Then, the variation of
the integrand phase term actually depends on a coupling form
of the laser and crystal parameters, and one needs to meticu-
lously evaluate the applicability of the saddle-point approxim-
ation. On the other hand, previous works have suggested the
important role of electron delocalization in solid HHG, e.g. the
nonzero recollision threshold [108], and the delocalization of
HHG emission [107, 109]. While the particle-like recollision
models attempt to incorporate these properties, the wave-like
performances are still difficult to be fully described. To shed
light on these problems, we consider a representative example
by considering the evolution of a wave packet

Ψ(x, t, t0) =
ˆ ∞

−∞
f(k)eikx−iφ(k,t,t0)dk, (74)

where f(k) = e−(k/kw)
2
is the Gaussian wavepacket in k-space,

φ(k, t, t0) =
´ t
t0
dτε(k+A(τ)−A(t0)) is the dynamical phase

with energy dispersion ε, and A(t) =−F0/ω0sin(ω0t) is the
vector potential of the laser field. The saddle-point approxim-
ation gives a classical picture that the center of the wave packet
moves with group velocity ∇kε, i.e. xc(t) =

´ t
t0
dτ∇kε(k+

A(τ)−A(t0)).
We evaluate the results from equation (74) with different

dispersions: the free-electron (FE) dispersion (i.e. parabolic
band) and a crystal energy dispersion (we take the first CB
of ZnO crystal along the Γ−M direction as an example). We
use the same laser parameters as those in [82, 124], and shift
the parabolic band to mimic the same band gap of ZnO, i.e.
Ip = Eg = 0.1213 a.u.. The energy and corresponding velocity
dispersions are shown in figures 8(a) and (b), respectively. One
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Figure 8. A numerical demonstration of the evolution of a wave packet with different energy dispersion. (a) The energy dispersions ε(k)
and (b) the corresponding velocity dispersions ∇kε(k) of FE and crystal ZnO. (c) and (d) in color show the time-dependent distributions of
the wavepacket for FE and crystal ZnO, respectively. The maximum value of the wave function is marked by dashed pink lines, while the
classical movement is marked by dashed black lines.

can see obvious nonlinear velocity dispersion for crystal ZnO
in the region far away from the top of VB. Using equation (74),
one can obtain the time-dependent distribution of the wave-
packet ρ(x, t) = Ψ(x, t, t0)∗Ψ(x, t, t0). The results are shown in
figures 8(c) and (d) for FE and crystal ZnO. The conformal
contour shows the time-dependent distribution of the wave-
packet and the dashed black lines show the classical move-
ment xc. In the case of FE, it can be seen that the shape of
the wavepacket is almost unchanged except for free diffusion.
Moreover, the classical motion is always consistent with the
center of the wavepacket (the locations for maximum wave-
packet distribution marked by dashed pink lines). However,
for a crystal energy dispersion, one can clearly see that the
Gaussian wavepacket is distorted during evolution, and the
classical motion fails to describe the locations of themaximum
wavepacket distribution. Note that the discrepancy between xc
and xmax[ρ] is closely related to the distortion of the electron
wavepacket during evolution, which is typically a wave feature
and cannot be described by treating an electron as a particle.

Before we proceed, let us briefly recap the previous dis-
cussions. Literatures have shown that the recollision models
are widely applied and work well for HHG in gases. Several
particle-like recollision models have also been developed and
used for HHG in solids to explore HHG features such as the
emission time, harmonic cutoff, etc [106–109]. Despite being
promising in some cases, our discussions above suggest that
there are still challenges for the recollision picture to describe
solid HHG considering the non-parabolic energy band and the
delocalization of the valence electrons for general semicon-
ductors, insulators, and dielectrics, such as the noticeable error

in describing the emission time. This prevents us from extend-
ing the successful HHS from gases to solid systems.

The success and challenge of the particle-like recollision
picture based on the saddle-point approximation are remin-
iscent of the use of geometric optics. Although the propaga-
tion of light should be accurately described as waves, one may
approximately describe it in the form of rays, in analogy to
the semiclassical trajectories in HHG, see figure 9. In fact, the
geometric-optics approximation (or eikonal approximation) is
just one of the applications of the saddle-point approximation
(this can be seen in [115] and will be addressed later on in
this review). However, when the size of objects and apertures
is comparable to the wavelength of light, geometry optics is
no more a good approximation. Diffraction effects become
noticeable, which are essentially interference of wavelets, and
one must revert to wave optics described by the Huygens–
Fresnel principle. Likewise, when the saddle-point approxim-
ation is not good enough, one should turn to more accurate
models that take into account the wave properties of the elec-
tron wavepackets during the HHG process. In the following
section, we will introduce such kind of model in the spirit of
the Huygens–Fresnel principle.

3. Huygens–Fresnel picture for HHG in solids

In this section, we introduce a wave perspective of solid HHG
by an analogy to the Huygens–Fresnel principle. Aiming to
show the mathematical and physical basis of the wave per-
spective more intuitively, we use the propagator to re-deduce
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Figure 9. Relation between the particle-like recollision models and wavelet stationary-phase method. The harmonic emission at the
observation time, just like the wave at the observation point in the Huygens–Fresnel principle, can be described by the interference of the
contributions from all wavelets. If the diffraction during the propagation can be neglected, the electron can be treated as a particle, which is
similar to geometrical-optics approximation. In this case, the electron motion can be described by classical trajectories obeying the
saddle-point equations.

the interband current in a form of Feynman path integral.
There is no essential difference from the derivations shown
in section 2.1.

A general propagator K̂(t, t0), describing the propagation of
a state from t0 to t, satisfies fundamental properties as

|Ψ(t)⟩= K̂(t, t0)|Ψ(t0)⟩, (75)

K̂(t, t0) = K̂(t, t ′)K̂(t ′, t0). (76)

Using the propagator, one can rewrite the current contributed
by an electron with an initial momentum k0 as

jk0
(t) =−⟨φv,k0(t0)|K̂Hk0 (t0, t) [p̂+A(t)] K̂Hk0 (t, t0)|φv,k0(t0)⟩,

=−
∑
m,n

⟨φv,k0(t0)|K̂Hk0 (t0, t)|φm,k0(t)⟩p
k0+A(t)
mn

×⟨φn,k0(t)|K̂Hk0 (t, t0)|φv,k0(t0)⟩. (77)

In this form, we transform the expression to Houston repres-

entation, i.e. using the propagator K̂Hk0 (t, t0) = T e−i
´ t
t0
H̃k0 (s)ds

with a system Hamiltonian H̃k0
mn(t) = δmnEn(k(t))+F(t) ·

dmn(k(t)), with k(t) = k0 +A(t). Then, by using the two-band
system and neglect the contribution of intraband effects, the
interband current can be expressed in the form

jterk0
(t) =−⟨φv,k0(t0)|K̂Hk0 (t0, t)|φv,k0(t)⟩pk0+A(t)

vc

×⟨φc,k0(t)|K̂Hk0 (t, t0)|φv,k0(t0)⟩+ c.c.,

=−
ˆ t

t0

dsKHk0 (v, t0;v, t)pk(t)vc KHk0 (c, t;c,s)

×
[
−iF(t) ·dk(s)

]
KHk0 (v,s;v, t0)+ c.c.,

=

ˆ t

t0

dsωk(t)
g

[
dk(t)

]∗
ei[ϕ

D
cv(k(t))+ϕB

cv(k(t))]F(s)

·dk(s)e−i[ϕD
cv(k(s))+ϕB

cv(k(s))] + c.c.. (78)

In the second line, KHk0 (m, t2;m, t1) =

e
−i
´ t2
t1

[
Em(k(t ′))+F(t ′)·Λk(t ′)

c

]
dt ′

describes the intraband propaga-
tion from time t1 to t2 on band m, and the relation pk(t)vc =

−iωk(t)
g [dk(t)]∗ is applied in the third line, which gives the

current as that in equation (35). Moreover, it suggests a
Feynman path interpretation of interband HHG as illustrated
in figure 9(d): (i) an electron initially (t0) located at k0 in the
VB is propagated to k(s) at time s, and (ii) is ionized from VB
to CB; (iii) the ionized electron is propagated from time s to t
in the CB, and (iv) recombine with the hole propagating from
time t0 to t in the VB. This is exactly the physical picture the
four-step model depicts [133], and the pre-acceleration pro-
cess is none other than the electron propagation described by
the term KH(v,s;v, t0) prior to ionization. The pre-acceleration
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process suggests that one can selectively excite the electron
from different initial crystal momentum dominantly contrib-
uting to HHG by designing the laser fields, so as to realize the
control of HHG (yield, cutoff energy, etc), and access elec-
tronic and optical properties for materials in a wider range of
the BZ by using HHS [133].

As has been discussed in section 2.2, the electron wave
packet will be dramatically distorted during the evolution due
to the delocalization of the electron wave packet and the com-
plicated dispersion of the band structure in solids. Therefore,
the wave properties of electrons have to be considered. Here, a
wave perspective of solid HHG by an analogy to the Huygens–
Fresnel principle is introduced [115]: the electron wave packet
ionized by the laser field is treated as a composition of wave-
lets in analogy with the secondary wavelets in the Huygens–
Fresnel principle. Each wavelet is denoted as {kl,s}, where kl
is the central momentum of the electron wavelet at time s. In
this case, observing the harmonic emission at time tr, just like
observing the light wave at a given observation point in the
Huygens–Fresnel principle, can be described by the interfer-
ence of the contributions from all wavelets. Following these
concepts, one can express the harmonic emission at time tr as:

Yµ(tr,ω)

=

ˆ +∞

−∞
w(t, tr)eiωt

∑
k0

jk0
(t)dt

=

ˆ +∞

−∞
w(t, tr)eiωt

∑
k0

Rk(t)
µ

×
ˆ t

t0

dsTk(s)e
−i
´ t
s

[
ωk(t ′)
g +F(t ′)·Λk(t ′)

cv

]
dt ′+β

k(t)
µ −β

k(s)
∥ + c.c.

=

ˆ +∞

−∞
w(t, tr)eiωt

∑
k ′

Rk(k ′,t,s)
µ

×
ˆ t

t0

dsTk
′
e−i

´ t
s

[
ωk(k ′,t ′,s)
g +F(t ′)·Λk(k ′,t ′,s)

cv

]
dt ′+β

k(k ′,t,s)
µ −βk ′

∥ + c.c.

=
∑
kl,s

f(kl,s)
ˆ +∞

−∞

ˆ +∞

−∞
dtdk ′g(k ′,kl)e−iS(k ′,t,s)

×R(k ′, t,s)w(t, tr)+ c.c., (79)

where w(t, tr) = e−(t−tr)
2/t2w is an integral window with width

tw near the observation point. From the second line to the third
line, we transform the summation of initial crystal momentum
k0 by the ionization crystal momentum k ′ = k0 +A(s), and
use a new notation k(k ′, t,s) = k ′ +A(t)−A(s). From the
third to the forth line, we separate the electronwave packet into

a series of Gaussian wavelets g(k ′,kl) = e−(k
′−kl)

2
/k2w with

width kw. The corresponding weight coefficient f(kl,s) satis-

fies
∑

kl
g(k ′,kl)f(kl,s) = Tk

′
= F(s)

∣∣∣dk ′

∥

∣∣∣. The accumulated

phase S(k ′, t,s) and the disturbance R(k ′, t,s) of the wavelet
{kl,s} are

S(k ′, t,s) =
ˆ t

s

[
ωk(k ′,t ′,s)
g +F(t ′) ·Λk(k ′,t ′,s)

cv

]
dt ′

+βk(k ′,t,s)
µ −βk ′

∥ −ωt, (80)

R(k ′, t,s) = ωk(k ′,t,s)
g

∣∣∣dk(k ′,t,s)
µ

∣∣∣ . (81)

Equation (79) can be interpreted as following: the ioniza-
tion event is split into several Gaussian wavelets (which are
the equivalent to the secondary wavelets of Huygens–Fresnel
principle), and Yµ(tr,ω) describes how these wavelets contrib-
ute to the HHG of frequencyω at time tr within the observation
window w(t, tr). For brevity, we first focus on the contribution
of a single wavelet

D(kl, tr,s) =
ˆ +∞

−∞

ˆ +∞

−∞
dtdk ′g(k ′,kl)e−iS(k ′,t,s)

×R(k ′, t,s)w(t, tr). (82)

Here, we use such a narrow time window to probe the har-
monic emission near the observation time tr, so that one can
assume the disturbanceR(k ′, t,s) changes a little in this region,
and apply the first order Taylor expansion to the accumulated
phase

D(kl, tr,s) =
ˆ +∞

−∞

ˆ +∞

−∞
dtdk ′g(k ′,kl)

×w(t, tr)e
−i

[
S(k ′,tr,s)+S

(1)
t (k ′,tr,s)(t−tr)

]
R(k ′, t,s),

=

ˆ +∞

−∞
dk ′g(k ′,kl)e−iS(k ′,tr,s)

×
ˆ +∞

−∞
dtw(t, tr)e

−iS(1)t (k ′,tr,s)(t−tr)R(k ′, t,s),

=

ˆ +∞

−∞
dk ′g(k ′,kl)e−iS(k ′,tr,s)

×
ˆ +∞

−∞
dτw(τ,0)e−iS(1)t (k ′,tr,s)τR(k ′, tr+ τ,s),

=

ˆ +∞

−∞
dk ′g(k ′,kl)e−iS(k ′,tr,s)R(k ′, tr,s)W

×
[
S(1)t (k ′, tr,s),∆E

]
. (83)

In the third line, we have replaced the integration variable t
with τ = t− tr, and the last line comes from the integration
over τ using Gaussian integration, where we use the notation

W
[
S(1)t (k ′, tr,s),∆E

]
=

ˆ +∞

−∞
dτw(τ,0)e−iS(1)t (k ′,tr,s)τ

= tw
√
πe

−
[
S
(1)
t (k ′,tr,s)

∆E

]2

. (84)

S(1)t denotes the partial derivative with respective to t and
∆E= 2/tw is the emission bandwidth. The integral over
k ′ can also be performed following similar procedure and
equation (83) can be further derived as

D(k ′, tr,s) = e−iS(kl,tr,s)G
[
S(1)k ′ (kl, tr,s),∆x

]
×W

[
S(1)t (kl, tr,s),∆E

]
R(kl, tr,s) (85)
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where G
[
S(1)k ′ (kl, tr,s),∆x

]
= (kw

√
π)3e−[

S
(1)
k ′ (kl,tr,s)

∆x ]2 with

∆x= 2/kw and S(1)k ′ (kl, tr,s) =∇k ′S(k ′, tr,s)|k ′=kl .
By substituting equation (85) into equation (79), the har-

monic yield can be rewritten as

Yµ(tr,ω) =
∑
kl,s

f(kl,s)P(kl, tr,s)e−iS(kl,tr,s) (86)

whereP(kl, tr,s) = G
[
S(1)k ′ (kl, tr,s),∆x

]
W
[
S(1)t (kl, tr,s),∆E

]
R(kl, tr,s) is a Gaussian form emission pulse contributed by
a single wavelet {kl,s} and e−iS(kl,tr,s) is the corresponding
phase. Equation (86) can be intuitively interpreted in form
of Huygens–Fresnel principle: secondary wavelets from the
source with weights f(kl,s) coherently disturb the observation
point with amplitude P(kl, tr,s) and relative phases e−iS(kl,tr,s).

4. Comparison between wave and particle
perspective

From a traditional particle perspective, one can assume that a
harmonic emission with precise photon energy is emitted at
a certain time. However, from a wave perspective, the dom-
inant contribution of a single wavelet is determined by the
conditions∣∣∣S(1)t (kl, tr,s)

∣∣∣= ∣∣∣ωkl+A(tr)−A(s)
g +F(tr) ·Dkl+A(tr)−A(s)

µ −ω
∣∣∣

<∆E, (87)

∣∣∣S(1)k ′ (kl, tr,s)
∣∣∣= |∆r(kl, tr,s)−∆D(kl, tr,s)|<∆x. (88)

This means the harmonic emissions at the observation time
tr have uncertainties ∆E and ∆x considering the width of
the Gaussian distribution P(kl, tr,s). The wave properties are
inherently embedded in the evolution of the Gaussian wave-
lets, and the contributions by wavelets at different tr are fully
interfered. By contrast, in the particle perspective, the saddle-
point contribution with different emission times and frequen-
cies are independent with each other.

For the summation over s, the constructive interference
occurs when the phase varies most slowly, i.e.

|∂sS(kl, tr,s)|=min{|∂sS(kl, tr,s)|} ,

⇔
∣∣∣−ωkl

g +F(s) ·
[
∆r(kl, tr,s)−Dkl+A(tr)−A(s)

µ

]∣∣∣
=min{|∂sS(kl, tr,s)|} . (89)

These conditions are different from that obtained by saddle-
point equations. The classical correspondence between the
microscopic electron dynamics and harmonic emissions is
established by considering the most probable distribution at
the observation point. Note that particle-like recollision pic-
ture from the saddle-point method can be reproduced in a
quasiparticle limit, i.e. ∆x→ 0 and ∆E→ 0. This just cor-
responds to the limitation where the integrand phase term

varies much faster than the amplitude factors. In this case,
the saddle-point method gives a considerable approximation.
Therefore, the wave perspective indeed involves the particle-
like recollision pictures as a subset case, and gives more com-
prehensive physical insights. More specifically, we can take
the simple symmetric one-dimensional system as an example
to show the wave properties. In this case, the condition (89)

can be reduced to∆r(kl, tr,s) =− F(s)2

∂sF(s)

´ tr
s ∂

2
kω

k(kl,t
′,s)

g dt ′ (for

min{|∂sS(kl, tr,s)|}> 0). The term
´ tr
s ∂

2
kω

k(kl,t
′,s)

g dt ′ just cor-
responds to the wave deformation during propagation with the

dispersion ωk(kl,t
′,s)

g , which evaluates the influence of the wave
properties.

Having established the Huygens–Fresnel model, we con-
tinue the discussions in section 2.3, so that one can intuit-
ively illustrate the connections and differences between the
Huygens–Fresnel and saddle-point methods. Here, we still
focus on the oscillatory integration I(σ) =

´ +∞
−∞ f(z)eσg(z)dz.

Different from the saddle-point approximation, which is
only valid for large σ, Huygens–Fresnel method is realized
based on a wavelet ensemble and can give reasonable results
provided the Gaussian wavelets are narrow enough. Thus, the
accuracy of the Huygens–Fresnel method is controllable and
can be always guaranteed. To the contrary, the validation of the
saddle-point method relies on the system parameters, e.g. the
electron band structure and the laser parameter, and may fail
in some circumstances (as has been shown in section 2.3).

This does notmean that the saddle-pointmethod is not valu-
able. It can still be used to simplify the Huygens–Fresnel cal-
culation and facilitate our analysis on the HHG process even
for σ ∼ 1, as one needs to only take into account the wave-
lets near the saddle points to get a good accuracy. For an
intuitive demonstration, we come to the specific functional
form I(σ) =

´ +∞
−∞ eσg(z−1)2eiz

2
dx. The behavior of the integ-

rand for different σg is shown in figures 10(a)–(c). The integ-
ration is performed along the real axis, which directly cor-
responds to physical quantity without introducing the com-
plex part. Along this path, the oscillatory term varies faster
when leaving further away from the saddle point (see the gray
lines in figure 10). This indicates that the dominant contribu-
tion still comes from the region near the saddle points. Thus,
only the contribution of wavelets near the saddle points needs
to be considered. The contribution of a single wavelet from
the Huygens–Fresnel method (Re(eσg(x−1)2ei+i2(x−1))) is also
shown in figures 10(a)–(c) for comparison. One can see that
the discrepancy between the accurate integrand function and
the contribution of a single Huygens–Fresnel wavelet becomes
smaller for large σg, where the width of the integrand function

(with a Gaussian envelope f(z) = e−σg(z−1)2) is smaller. This
behavior is further demonstrated in figure 10(d) by comparing
the integration versus width parameter σg. With increasing σg
(i.e. narrower wavelet), the result of Huygens–Fresnel method
converges rapidly to the accurate one.

The relation between the particle perspective recollision
and wave perspective Huygens–Fresnel pictures is indeed ana-
logous to the different limits of a single slit diffraction. When
the slit is much wider than the wavelength, the phenomenon
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Figure 10. The behavior of Huygens–Fresnel method for f(z) = e−σg(z−1)2 and g(z) = eiz
2

. (a)–(c) The gray and dashed black lines denote
the function value of f (z) and Re(g(z)) along the x-axis. The integrand function values for accurate and Huygens–Fresnel methods are
shown as red and blue lines for a wavelet with (a) σg = 0.1, (b) σg = 1, and (c) σg = 10. (d) The comparison between the integrand value
for accurate and Huygens–Fresnel methods for different parameter σg.

of geometric optics will cover up the diffraction phenomenon.
Namely, the influence of the latter is very small compared with
the geometric optical phenomenon dominated by Fermat’s
principle even though the diffraction phenomenon still exists
under the influence of the boundary. However, the wave prop-
erties are more and more significant as the slit width decreases
and become comparable to the wavelength. The diffraction
pattern should be described by the interference of the wave-
lets following theHuygens–Fresnel principle. As expected, the
integral for HHG near the saddle point has a similar form to the
Fresnel–Kirchhoff diffraction integral. The wave perspective
Huygens–Fresnel picture for HHG is none other than a coun-
terpart of the optical Huygens–Fresnel principle. Meanwhile,
the particle perspective recollision picture of HHG can be
seen as a counterpart of the geometric-optics approximation
by treating the propagation of light as rays.

In the above discussions, we mainly focus on the mathem-
atical and physical bases of the Huygens–Fresnel and recol-
lision pictures. For a semi-classical model, it is expected to
provide a simple and intuitive physical picture and help people
understand the dynamical mechanism behind the observa-
tions. Both Huygens–Fresnel and recollision pictures provide
intuitive physical insights in the HHG process. However,
their performances in specific processes are different. In the
recollision picture, an initial tunneling time s and an initial
crystal momentum k0 are picked, and the emission time is
determined by the condition of recollision, i.e.∇kSµ(k, t,s) =
∆r(k, t,s)−∆D(k, t,s) = 0. In contrast, in the Huygens–
Fresnel picture, the semiclassical correspondence is

established on the constructive interference condition of dif-
ferent wavelets |∂sS(kl, tr,s)|=min{|∂sS(kl, tr,s)|}, i.e. for
an observation point {ω, tr}, and one can find the constructive
ionization time s for from each wavelet. Note that the Gaussian
termG[S(1)k ′ (kl, tr,s),∆x] has a large width∆x considering the
narrow wavelet applied. The significant displacement between
the electron and hole S(1)k ′ (kl, tr,s) has less important influ-
ences on the emission, compared with the picture based on
the recollision conditions where the radiation decays rapidly
with increasing displacement. This difference, due to the non-
local property of the wavepackets in solids, leads to different
predictions for both the time-frequency properties and the
time-domain interferometry in the HHG process as verified in
[115]. Moreover, Huygens–Fresnel picture can provide a more
comprehensive understanding of the HHG process by analyz-
ing the interference and transition between different wavelets.
Specifically, the semi-classical correspondence obtained from
the recollision picture is a series of independent paths. The
phenomena, such as channel splitting and transforming, have
been oversimplified to the saddle-point contribution, and the
wave properties are not properly involved. In general, the
recollision picture can well describe the HHG process under
conditions where the saddle-point approximation is applic-
able, as it does in gas HHG. However, one must be vary careful
with the saddle-point methods for HHG in solids, even though
they can provide some qualitative understanding in some
cases. It is important to ask whether and when the particle-
like recollision models still work well in solids, especially for
cases where an exact and comprehensive understanding of the
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HHG process is needed, e.g. ultra-high resolution measure-
ments using HHS [64, 145–147]. If not how one can establish
the internal clock in the relevant spectroscopy methods? To
address these questions, the Huygens–Fresnel involving the
wave property is indispensable.

5. Summary and outlook

In this review, we have given an introduction to the physical
pictures of the interband HHG in solids from both particle
and wave perspectives. We discuss in detail the mathemat-
ical basis, physical interpretation and possible shortcomings
of existing recollision models from particle perspective. Then,
aHuygens–Fresnel picture fromwave perspective is also intro-
duced. The similarities and differences between thismodel and
the recollision models are discussed to illustrate how it over-
comes the shortcomings of the existing recollision methods.
To some extent, the saddle-point approximation is a mathem-
atical bridge between the quantum world and classical phys-
ics. However, one needs to be very careful about the condi-
tions under which it holds. The Huygens–Fresnel picture gives
a comprehensive physical insight in the strong-field ultrafast
science, and extends the range of application to the region out
of reach of the recollision picture. Although in this review we
have focused our discussion on the physical picture of HHG
in solids, the conclusions we have drawn clearly hold for a
broader variety of scenarios:

• Visions with HHS in solids. One can develop atto-
second spectroscopy in the condensed matter if an internal
clock capable of resolving ultrafast dynamics is provided.
Specifically, the interband HHG in solids forms a time
domain interferometry, which gives a self-detection of both
the crystal structure and the microscopic dynamics [51,
53, 55, 64, 112, 113, 148]. The fact, that the timeline
provided by the particle-like picture shows clear deviations,
strongly indicates that a corrected internal clock should be
established taking into account the wave-like behaviors of
electron wavepackets in solid HHG. The Huygens–Fresnel
method suggests a new paradigm for HHS, where the qual-
itative preliminary insight can be obtained with saddle point
results and richer and exact insight is acquired from the fine
‘diffraction fringe’ considering the wave properties. This
suggests that developing specific ‘diffraction theories’ for
varied parameter intervals may be a treasure trove to be
investigated in the future.

• Visions with HHG in gases. Although the recollision pic-
ture has achieved great success in gas HHG [33, 149, 150],
previous studies have mainly focused on high energy har-
monic emission in the plateau or cutoff region. In recent
years, a wealth of experimental phenomena have been
observed in the near- and below-threshold region [151–
154], which are closely related to the dynamics of low
energy electrons and fine orbital structures. Numerical or
semi-empirical theories have been developed to understand
these phenomena [155–157]. However, the extension of the
semiclassical trajectory model is difficult and controversial.

The main difficulty is that in these regions the Coulomb
effect is no longer negligible. Although theoretical mod-
els try to solve this problem by modifying the semiclas-
sical action including the Coulomb potential, the quantum
response under the Coulomb potential is not well described.
For example, in such models, describing the potential effect
in semiclassical action V(x(t)) needs to determine both the
momentum and location of the electron, which violates
the uncertainty principle. In this case, coming back to the
scenery of electron wave propagation is favorable. It is easy
to find that for a narrow spatial wavepacket, the phase accu-
mulated due to the Coulomb effect can be determined by the
path of its central position. Therefore, one can try to decom-
pose the wavepacket propagation under the Coulomb poten-
tial into the propagation of a series of spatial wavelets using
the Huygens–Fresnel method. This may help to build a uni-
form semiclassical picture for HHG involving both high and
low-energy electrons.

• Visions with strong field ionization. Quantum trajectory
models are widely used in strong field ionization, either
to interpret the interference structure in the photoelectron
momentum spectrum or to construct the LIED [158–163].
In these models, the microscopic dynamics are always
described by a trajectory ensemble with semiclassical action
determined by the energy accumulation along the classical
electron trajectories. One may expect the Coulomb effect
becomes more important when the electron ionization posi-
tion is not far from the nucleus and the ionizationmomentum
distribution is not narrow enough, e.g. in the multiphoton
ionization regime or for the rescattering arm of photoelec-
tron holography [164, 165]. In these regions, the classical
drift of the electron is not sufficient to pull the electron out
of the Coulomb region quickly enough that a significant
diffraction effect will occur due to the combined effect of
Coulomb attraction and free diffusion of the electron wave-
packet. As a result, the quantum trajectory model tends to be
invalid because it underestimates the interference between
different trajectories—the Coulomb effect will obviously
lead to coupling between trajectories of different momenta.
The Huygens–Fresnel method provides a new perspective,
may hopefully broaden the application of photoelectron
momentum spectroscopy/LIED, and shed light on contro-
versial issues, e.g. the ionization time.

In this review, we focus mainly on the physical perspect-
ives for HHG in solids, and the discussions are restricted to a
two-band system under the single-active electron approxima-
tion. There are still many other complex effects, e.g. multiband
effect [96–98, 110, 134–136], multielectron correlation effect
[89, 91], propagation effects [99–103] and so on, which are
under lively discussions and need further investigation. Strong
field physics is a rapidly developing field. Its territory is also
expanding rapidly, regarding both the involved laser paramet-
ers and species of materials. Possibly because of the big suc-
cess of the particle-like recollision model in gas HHG, it is
always simply extended to a newfield and applicationswithout
strict thinking. The purpose of this review is to point out a
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problem which is often neglected in the process of expand-
ing the application range of the present particle-like recolli-
sion theories and relevant technologies, that is, whether the
original approximation or picture still works well. We hope
that this review gives newcomers to get an overview of the
topic and provides guidance on the potential development of
theories and applications.
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