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Abstract
By numerically solving the three-dimensional time-dependent Schrödinger equation, we
theoretically investigate the dynamic interference of the hydrogen atom in intense arbitrarily
polarized high-frequency XUV pulses with and without the non-dipole correction included. Our
results show a clear shift of the dynamic-interference peaks in the photoelectron spectra from the
linearly and circularly polarized XUV pulses, which can be attributed to the different AC Stark
shifts of the ground state. The non-dipole correction for the electron–light interaction produces a
similar peak shift along the propagation direction in the photoelectron momentum spectra for the
linear and circular pulses. But no obvious non-dipole effect for the AC Stark shift of the ground
state is identified for the light pulse with intensity around 1019W cm−2.

Keywords: dynamic interference, AC Stark effect, non-dipole effect

(Some figures may appear in colour only in the online journal)

1. Introduction

The general field of laser–matter interaction is characterized by
impressive progress in light-source technology. Light sources
with intense intensity in the XUV frequency regions are being
rapidly developed [1–6]. For instance, free-electron lasers pro-
mise to provide laser pulses with intensity above 1020W cm−2.
In such high-intensity laser pulses, highly nonlinear interactions
between the laser pulses and matter are expected in the XUV
frequency region. One of the remarkable and counterintuitive
phenomena is atomic stabilization, which has been theoretically
[7–13] and experimentally [14–17] investigated for decades.
Moreover, the nonlinear interactions at high photon energy
exceeding the ionization energy can produce interference effects
like dynamic interference [18–29].

For a low-intensity XUV pulse, according to Einstein’s
photoelectric law, a single peak at E=ω−Ip in the energy

spectrum of the photoelectrons is expected. With the increase
in the peak intensity of the laser pulse, the single peak can be
shifted or even gradually evolve into multi-peak structures.
This modulation of the spectrum originates from the dynamic
interference mechanism. The principles and conditions to
observe such an interference effect have been explained in
previous works [26, 30]. In the presence of the intense laser
pulse, the binding potential of the system can be modified by
the AC Stark effect [31–35]. The electron wave packets,
which are ejected on the rising and falling edges of the laser
pulse, respectively, and reach the same final energy when the
instantaneous AC Stark shifts of the ionization potential
coincide at two different times, can interfere with each other
and produce the interference structures in the energy spectrum
of the photoelectrons. Similar interferences have also been
predicted earlier and observed in the low-frequency multi-
photon region [36–42]. Moreover, the atomic stabilization can
be important in the intense laser pulses, and the onset of
atomic stabilization is closely related to the appearance of the
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dynamic interference [30]. Furthermore, the non-dipole cor-
rection plays a non-negligible role in high laser intensities at
large photon energies. For instance, it has been pointed out
that the non-dipole effect may weaken the atomic stabilization
[8, 43–49]. Very recently, the non-dipole effect of the
dynamic interference has been theoretically investigated for a
linearly polarized laser pulse [50]. Furthermore, the dynamic
interference for the double ionization of helium has been
investigated [51]. Most of the previous investigations on
the dynamic interference mainly focused on linearly polarized
pulses. The existence of dynamic interference in circularly
polarized pulses has been confirmed in a previous theoretical
study on H− [20]. Peak shift in the photoelectron energy spectra
for a linearly polarized pulse and a circularly polarized laser
pulse was implicated in the calculation results, but no detailed
explanation for the peak shift was given. Moreover, the non-
dipole effect on the dynamic interference for non-linearly
polarized pulses has not been investigated as far as we know.

In this work, we study the dynamic interference of the
H atom in intense linearly and circularly polarized high-
frequency XUV laser pulses by numerically solving the three-
dimensional (3D) time-dependent Schrödinger equation
(TDSE). At low intensity, no difference is identified in the
photoelectron energy spectra for linearly and circularly
polarized laser pulses. However, obvious dynamic-inter-
ference shifts can be observed in the energy spectra for laser
pulses with different polarizations at high intensities. This
shift increases as the photon energy of the laser pulse
decreases. By extracting the instantaneous AC Stark shift
of the initial state from the TDSE calculation, we find that
this shift originates from the different AC Stark shifts of
the ground state in circularly and linearly polarized pulses.
The second-order perturbation theory and zero-order high-
frequency Floquet theory (HFFT) are invalid for describing
the polarization dependence of the AC Stark shift in such
intense laser pulses. A polynomial is raised to fit the energy
shift of the ground state in differently polarized pulses. We
verify that the non-dipole effect produces a similar peak shift
along the propagation direction in the photoelectron
momentum distributions (PEMDs) for the linear and circular
laser pulses, which originates from the fact that the AC Stark
shift of the continuous states are dependent on the ejection
angle after non-dipole correction is included. No obvious
non-dipole effect on the AC Stark shift of the ground state is
identified for the laser parameters considered in this work.

This paper is organized as follows. In section 2, we intro-
duce our method for numerically solving the 3D TDSE. Then,
we analyze the dynamic interference in the differently polarized
pulses within dipole approximation in section 3.1. In section 3.2,
we investigate the non-dipole effect on dynamic interference in
circularly polarized pulses. Section. 4 provides a brief summary.

2. Theoretical methods

We investigate the dynamic interference by numerically sol-
ving the 3D TDSE. The TDSE for the H atom is (atomic units

are used unless otherwise stated)

( ) ( ) ( )¶Y
¶

= Yi
t

t
H t

r
r

,
, , 1

where the Hamiltonian in the velocity gauge is given by

[ ( )] ( ) ( )=
+

+H
A r t

V
p

r
,

2
, 2

2

where V(r)=−1/r is the attractive Coulomb potential of the
H atom.

In the dipole approximation, the vector potential A(t) of
the laser pulse is space-independent, and the Hamiltonian in
the dipole approximation is written as
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Here, we have omitted the term A2(r, t)/2, which only con-
tributes a global phase [ ( ) ]ò t t

-¥
i dA rexp , 2

t 2 of the wave
function and can be canceled by gauge transform. The global
phase does not change any physical observations, but it
indeed induces the gauge dependence of the AC Stark shift
which has been discussed in the previous work [26].

When the lowest-order non-dipole correction is con-
sidered, the vector potential A(r, t) is both time- and space-
dependent, and it is expressed as
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c

tA r A k r F,
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Here, A(t) and F(t) are the usually adopted vector potential
and electric field of the laser pulse in the dipole approx-
imation, respectively, where k is the unit vector in the
direction of the laser propagation and c is the vacuum light
speed. Inserting equation (4) into equation (2), we express the
lowest-order corrected non-dipole Hamiltonian as
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In our simulation, the laser pulse propagates along the
positive y axis and is polarized in the x-z plane. The vector
potential A(t) of the laser pulse is written as
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where A0 is the amplitude of the vector potential, η is the
ellipticity with η=0 and η=1 representing the linearly and
circularly polarized laser pulses, respectively, and f (t) is the
envelope of the laser pulse, which is written as
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where τ is the full width at half maximum (FWHM) of the
laser pulse.

In our simulation, the TDSE in equation (1) is solved in
the spherical coordinates, in which the wave function Ψ(r, t)

2

J. Phys. B: At. Mol. Opt. Phys. 53 (2020) 095601 J Liang et al



is expanded by spherical harmonics ∣ ñlm ,
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where Rlm(r, t) is the radial part of the wave function. This
radial wave function is discretized by a finite-element discrete
variable representation method [52]. The matrix elements of
the Hamiltonian in the representation of spherical harmonics
are given in the appendix. The time propagation of the TDSE
is calculated by the split-Lanczos method [53] with the time
step fixed at Δt=0.01 a.u. The initial wave function is
prepared by the imaginary-time propagation. The ionization
amplitude is extracted from the final wave function by pro-
jecting it to the scattering state ∣ ( )Y ñrp ,

( ) ( )∣ ( ) ( )= áY Y ñM tp r r, . 9p

Then, the energy spectrum of the photoelectron is given by

( ) ∣ ( )∣ ∣ ∣ ( )ò ò q q f=D E M sin d dp p , 102

where θ and f are the polar and azimuthal angle of the
photoelectron in the spherical coordinate frame, respectively.

3. Results and discussion

3.1. Dynamic interference in dipole approximation

Figure 1 shows the photoelectron energy spectra for a H atom
ionized by the laser pulses with different intensities. The
results are calculated in dipole approximation. Here, the fre-
quency and FWHM of the laser pulses are ω=53.6 eV and
τ=15 cycles, and we consider both the linearly and circu-
larly polarized laser pulses. For the lowest intensity,
I0=1×1015W cm−2, the spectrum shows a single peak
locating at E=ω−Ip=40 eV. As the intensity increases to
I0=1×1017W cm−2, the peak becomes stronger due to the
higher ionization probability, and the position of the peak

shifts towards higher energy. This shift originates from the
AC Stark shift of the ground state [28]. For these intensities,
the spectra for the linear and circular laser pulses are the
same. When the intensity increases to I0=1×1019W cm−2,
modulation appears on the energy spectra. This modulation
originates from the dynamic interference, and it has been
extensively studied previously [18–28, 30]. The interesting
result here is that the dynamic interference fringes in the
circular laser pulse shift towards the high energy relative to
the linear case. Such a shift has also been observed in a
previous study for H− [20], but without detailed explanation.

As demonstrated previously [18–21], the dynamic inter-
ference pattern is determined by the AC Stark shift of the
ground state. To understand the shift of the interference in the
linear and circular laser field, we extract the AC Stark shift of
the ground state in the TDSE calculation. The exact expres-
sion for the probability amplitude aE(t) for the populating of
the continuum state with energy E can be written as

( ) · ( ) ( ) ( )òå= - ¢ ¢ ¢-
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j
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t

j
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where aj(t′) is the amplitude of the eigenstate ∣Yñj of the field-
free Hamiltonian, and ∣ ∣= áY Yñp pEj E j is the transition matrix
element from ∣Yñj to ∣Y ñE . Since the photon energy of the laser
pulse is much higher than the binding potential of the ground
state of the H atom and the narrow spectrum width due to the
∼fs scale pulse duration, the transition from other channels,
except the ground state ( j=0), can be neglected. Then,
equation (11) is reduced to

( ) · ( ) ( ) ( )ò= - ¢ ¢ ¢-

-¥
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iEt

E

t
iEt

0 0

Obviously, the probability amplitude aE(t) only depends on
a0(t) for a certain laser pulse. The validity of equation (12) has
been checked in [30]. In our TDSE calculation, a0(t) can be
obtained by projecting ∣ ( )Y ñt to ∣Y ñ0 ,

( ) ∣ ( ) ( ) ( )( )= áY Y ñ = f-a t t g t e . 13i t
0 0

Here, g(t) and f(t) are the modulus and phase of the ampl-
itude, respectively. Then, the AC Stark shift of the ground
state in the TDSE calculation can be extracted by

( ) ( ) ( )f
=E t

d t

dt
. 140

Figure 2 displays this time-dependent energy of the ground
state for different intensities. The parameters of the laser
pulses are the same as those in figure 1. Note that the energy
shift extracted from equation (14) depends on the instanta-
neous strength of the electric field. For the circularly polarized
pulse, the strength of the electric field follows the envelope of
the laser pulse, and there are no oscillations in the time-
dependent energy shift, as shown by the red line in the inset
of figure 2. On the contrary, in the linear case, E0(t) oscillates
fast at twice the frequency of the laser pulse, as shown by the
blue line in the inset of figure 2. We apply a mean filter
method to smooth the oscillating energy [30]. The obtained
cycle-averaged energies of the ground state are shown by the
solid line in figure 2. For the lowest intensity, I0=1×

Figure 1. The photoelectron energy spectra for the H atom ionized
by the laser pulses with different intensities. The solid and dot-
dashed lines are the results for the linearly and circularly polarized
laser pulses, respectively. The intensities are shown in the legend (in
W cm−2). The vertical dashed line marks the energy position at
E=ω−Ip. The photon energy and FWHM of the laser pulses are
53.6 eV and 15 cycles, respectively.
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1015W cm−2, the AC Stark shift of the ground state can be
neglected. Therefore, the photoelectron’s energy spectrum
is a single peak locating at E=ω−Ip=40 eV. For I0=
1×1017W cm−2, the energy shift of the ground state is
significant, and the peaks of the photoelectron energy spectra
in figure 1 shift towards the high energy region. At this laser
intensity, the AC Stark shifts of the ground state are nearly the
same for the linearly and circularly polarized pulses, and thus
their energy spectra are the same. At I0=1×1019W cm−2,
the AC Stark shift is much larger than the lower intensities,
and the shift difference between the linear and circular laser
field is obvious. The dynamic interference fringes shown in
figure 1 originate from this huge energy shift of the ground
state. The phase difference ΔΦ(E) determining the dynamic
interference structure is given by [30]

( ) [ ( ) ( )] ( )
( )

( )

ò
p

DF = - +E E t E t dt
2

, 15
t E

t E

0 0 1
1

2

where ti (i=1, 2) are the solutions of E=ω+E0(t). Note
that the phase contribution π/2 in equation (15) is due to the
caustics ( ) <E t 0d

dt 0 [30]. On account of the distinct differ-
ence in energy shift of the ground state in linearly and
circularly polarized laser pulses, the phase ΔΦ(E) in
equation (15) is different for these two types of polarized laser
pulses. Therefore, the obvious dynamic interference shift in
circularly polarized pulses relative to the linear case originates
from the different AC Stark shift of the ground state. It
indicates that the difference in the AC Stark shifts for the
ground state in circularly and linearly polarized pulses can be
directly observed by these experimentally measurable
dynamic interference fringes.

The physical picture of these different energy shifts in
circular and linear pulses can be qualitatively understood in
the Kramers–Henneberger (K-H) frame. By the unitary

transition operator [ ( ) · ]a=U i t pexp , the Hamiltonian in
equation (2) can be transformed to

[ ( )] ( )a= + +H V tp r
1

2
, 16KH

2

where ( )a t =F(t)/ω2 is the excursion amplitude. For the
linearly polarized pulses, the dressed potential of the H atom
in the laser field is similar to the separated atom limit of a
homo-nuclear diatomic molecule centered around the end-
points, ±α0=±F0/ω

2 [54]. Here, F0 is the amplitude of the
electric field, F(t). For circularly polarized pulses, the dressed
potential is toroidal shaped with a radius of α0=F0/ω

2 [55].
These different laser-induced potentials lead to the different
AC Stark shifts in linearly and circularly polarized pulses.

We compare the energy shifts extracted from the TDSE
calculation and other models in figure 3. The solid lines are
the results extracted from the TDSE calculation at ω=
53.6 eV and τ=40 cycles. The energy shifts for differently
polarized pulses are the same in the low α region. The dif-
ference appears when α>1. The dot-dashed line is the result
from the second-order perturbation theory [26]. In this
approximation, the time-dependent energy of the ground state
is

( ) ( ) ( )d= -E t E t I , 17p p0

where Ep(t)=F(t)2/ω2 is the ponderomotive energy, and
Ip=0.5 a.u. is the binding energy of the ground state for the
H atom. The coefficient δ is [26]

( )d wµ - . 182

Thus, we have

( ) ( ) ( )
w

a+ µ =E t I
F t

. 19p0

2

4
2

Figure 2. The time-dependent energy E0(t) of the ground state. T is
the period of the laser pulse. The laser parameters are the same as
those in figure 1. The inset shows the original data exacted from the
TDSE calculation. The blue and red lines are the results for the
linearly and circularly polarized pulses, respectively. The results
after application of a mean filter tracing the envelope of the pulse are
shown in the figure. The solid and dashed lines are the results for the
linear and circular polarization laser pulses, respectively. The
intensities are shown in the legend (in W cm−2).

Figure 3. Energy of the ground state of the H atom as a function of
the excursion amplitude α=F(t)/ω2 at ω=53.6 eV. The solid and
dashed lines are the results extracted from the TDSE and fitting
formula of equation (20), respectively. The dot-solid line and the
symbols are the results from the second-order perturbation theory
[26] and zero-order HFFT [9, 56] for the AC Stark shifts. The
polarization of the laser pulse is shown in the legend. The inset
displays the fitting error of the formula.
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At small α, the result of the second-order perturbation
theory agrees well with the TDSE result. Note that the AC
Stark shift of the ground state is positive due to the fact that
the frequency is much larger than the binding potential of the
ground state, even in the perturbation region. As α increases
(where the laser intensity increases), it deviates significantly
from the TDSE results. This is due to the fact that the high-
order perturbation terms cannot be neglected in this intense
laser pulse.

Figure 3 also shows the results obtained from the zero-
order HFFT [9, 56]. The prediction of the linearly polarized
pulse by the zero-order HFFT coincides with the TDSE
results. However, for the circularly polarized pulse, the zero-
order HFFT breaks down. Moreover, in the zero-order HFFT,
the energy shift of the ground state depends on the photon
energy and laser intensity through α. For a fixed α, the energy
shifts are independent of the photon energy and laser inten-
sity. Here, we show the energy of the ground state as a
function of α for ω=53.6 eV (solid lines) and ω=100 eV
(dashed lines) extracted from the TDSE calculation in
figure 4. Apparently, the energy shift of the ground state
depends on the photon energy of the laser field. The energy
shifts at ω=100 eV are significantly higher than at ω=
53.6 eV. Our numerical results show the same tendency as the
accurate Floquet calculations [57]. It indicates that the zero-
order HFFT is not suitable in such an intense laser pulse. This
frequency-dependent energy shift explains why the zero-order
HFFT cannot fully describe the dynamic interference struc-
tures in the previous work (see figure 8 in [20]).

We use a polynomial

( ) ( )å a= +
=

=

E t I a , 20p
n

n

n
n

0
2

13

to fit the AC Stark shift as the function of α for the ground
state. For the ground state of an atom, the first-order effect is
zero. Thus, the fitting formula is from the α2 term. Our results
show that the polynomial can give a relatively exact result
when n=13, as shown by the dashed lines in figure 3. The

inset shows the fitting error as the function of α. Our fitting
formula can give relatively exact results in the intensity region
at [0, 1.5×1019] Wcm−2, with errors below 2×10−4.
Table 1 displays the coefficients of the fitting formula.

To test the feasibility of our fitting formula, the time-
dependent energy shifts for different pulse duration and laser
intensity are calculated. The results are displayed in figure 5.
The laser intensity is 1×1018 W cm−2, and the pulse dura-
tions for figures 5(a) and (b) are τ=30 cycles and τ=7
cycles, respectively. The solid lines are the results exacted
from the TDSE, and the dashed lines are calculated by the
fitting formula. Obviously, our fitting formula can describe
the time-dependent energy of the ground state rather well.

In principle, the different energy shifts for circularly and
linearly polarized pulses can be observed from the peak
position of the single peak structures in the photoelectron
energy spectrum. However, due to the atomic stabilization,
the maximal probability of ionization does not occur at the
peak of the laser pulses where the energy shift difference
between the circular and linear laser pulses of the ground state
is maximum. It means that the different AC Stark shift of the
ground state is not easy to directly observe from the single
peak structure. To observe this energy shift difference, an
experimentally available dynamic interference structure is a
very promising candidate. The previous work has demon-
strated that the dynamic interference is more evident for a
shorter duration laser pulse and strong enough intensity [30].
To show the differences in the interference structures in dif-
ferently polarized laser pulses more clearly, the energy spectra
for a shorter pulse duration and different photon energies are
calculated. The results are shown in figure 6. The FWHM is
τ=7 cycles, and the photon energy for figures 6(a)–(d) are
100 eV, 53.6 eV, 40.8 eV and 26 eV, respectively. According
to figure 3, the difference in the energy shift between linear
and circular laser pulses is more obvious at larger α (smaller
photon energy). Therefore, the interference fringe’s shift in
the circular pulse relative to the linear case is more evident as
the photon energy decreases. This fringe’s shift in lower
photon energy is advantageous for observing the energy
shift difference for differently polarized laser pulses
experimentally.

3.2. Non-dipole effect in dynamic interference

In the very intense laser field, the non-dipole effect can be
important. In the low frequency, the non-dipole correction
induces a contrary momentum shift for linearly and circularly
polarized pulses due to the recollision in the linearly polarized
pulse [58–63]. Very recently, the non-dipole effect on
dynamic interference in linearly polarized pulses for high
photon energy has been investigated [50]. The momentum
shift still exists, and it mainly comes from the non-dipole
correction of the Volkov phase. Here, we examine the non-
dipole effect on the circular laser pulse. Figure 7 shows the
PEMDs in the pz-py plane (px=0) for py>0. The intensity
of the laser pulse is 1×1019W cm−2, and the photon energy
is ω=53.6 eV with pulse duration τ=7 cycles. The upper
panels display the results in the dipole approximation, and the

Figure 4. Energy of the ground state of the H atom as functions of α
at ω=53.6 eV(solid lines) and ω=100 eV (dashed lines). The
polarization of the laser pulses is shown in the legend.
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bottom panels are the results with non-dipole correction. The
left (figures 7(a) and (c)) and right (figures 7(b) and (d))
panels are the results for the circularly and linearly polarized
pulses, respectively. In the dipole approximation, the inter-
ference fringes do not change with θ. Whereas, when the non-
dipole effect is considered, the momentum for the maxima of

the interference structures decreases with θ. This observation
coincides with a previous report on the momentum shift
towards the opposite direction of the laser propagation due to
the non-dipole effect [50]. In figure 8, we show a scheme to
illustrate this momentum shift. In the dipole approximation,
the momenta for the maxima of the dynamic interference
distribute on the ring centered at the origin point o, as shown
by the solid line. Thus, the momentum for the maxima of the
dynamic interference does not change with θ. With non-
dipole correction, the center of the ring shifts Δp towards the
opposite direction of the laser propagation to o′, as shown by
the dot-dashed line. Therefore, the momentum for the maxima
of the dynamic interference decreases with θ. In this simple
geometry, the relation between the momentum and θ with
non-dipole correction can be given by

· ( )q= + D - Dp p p p p2 sin , 210
2 2 2

where p0 is the radius of the ring structure, and p is the
momentum for the maxima of the interference fringes. The
symbols in figure 9(a) show the maxima of the interference
fringe in figures 7(c) and (d) (the black solid lines). We fit
these data with equation (21) to obtain the radius p0 of the
interference ring and the momentum shift Δp due to the

Table 1. The coefficients in equation (20).

Coefficient Linear Circular Coefficient Linear Circular

a2 0.122922 0.118 041 a8 −0.158248 −0.327789
a3 −0.235654 −0.172880 a9 0.092 061 7 0.140 407
a4 0.780403 0.498 736 a10 −0.0269380 −0.0361517
a5 −1.03103 −0.464452 a11 4.508 638×10−3 5.638 64×10−3

a6 0.548 375 −0.0610084 a12 −4.12126×10−4 −4.92937×10−4

a7 2.150 83×10−3 0.400 532 a13 1.602 99×10−5 1.859 34×10−5

Figure 5. The time-dependent energy E0(t) of the ground state. The
solid and dashed lines are the results extracted from the TDSE and
calculated by the fitting formula of equation (20). The laser intensity
is 1×1018 W cm−2, and the pulse durations for (a) and (b) are
τ=30 cycles and τ=7 cycles, respectively. The polarization of the
laser pulses is shown in the legend.

Figure 6. The photoelectron energy spectrum for the ground state
of the H atom at four different photon energies: (a) ω=100 eV,
(b) ω=53.6 eV, (c) ω=40.8 eV and (d) ω=26 eV. The pulse
duration and the laser intensity are τ=7 cycles and I0=1×
1019 W cm−2. The dashed and solid lines are the results for the
circularly and linearly polarized pulses, respectively. The yellow
dot-solid lines mark the energy position at E=ω−Ip.

Figure 7. The PEMDs in the pz-py plane (px=0) for py>0. The
intensity of the laser pulse is 1×1019 W cm−2 with photon energy
at ω=53.6 eV and τ=7T. Here, θ and p are the polar angle and
photoelectron momentum, respectively. The upper panels are the
results for the dipole TDSE calculation and the bottom panels are the
results for the non-dipole TDSE calculation. The left ((a) and (c))
and right ((b) and (d)) panels are the results for the circularly and
linearly polarized pulses, respectively.
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non-dipole effect. The results are

( ) ( )

( ) ( )
( )

D =  = 

D =  = 

p p

p p

0.059 0.005 1.827 0.001 Circular,

0.054 0.005 1.816 0.001 Linear.

22

0

0

The obtained momentum shifts Δp are the same for the cir-
cularly and linearly polarized pulses in the confidence inter-
val, and they coincide with the results in the previous work
[50]. It indicates that the shifts in PEMDs caused by the non-
dipole effect are similar in the differently polarized pulses.

For the radius p0, the data in the circular pulse is a little
larger than the case in the linear pulse. This indicates that the
dynamic interference shift between the circular and linear
laser pulses still exists when the non-dipole effect is con-
sidered. We extract the time-dependent energy of the ground
state from the TDSE calculation, and the results are shown in
figure 9(b). The dashed and solid lines are the results obtained
with and without non-dipole correction, respectively.
Apparently, the non-dipole interaction does not change the
energy of the ground state for both the linear and circular laser
pulses.

4. Conclusion

In conclusion, we have investigated the dynamic interference
of the H atom in circularly and linearly polarized pulses. The
dynamic interference structures in circularly polarized pulses
shift towards high energy relative to the linear case. By
extracting the time-dependent energy of the ground state, we
find that the AC Stark shift in circularly polarized pulses is

larger than the linear case. The second-order perturbation
theory and zero-order HFFT cannot fully describe the energy
shift of the ground state in such an intense laser pulse, and a
polynomial is raised to fit this energy shift in differently
polarized pulses. This energy shift difference between
the linearly and circularly polarized laser pulses leads to the
interference fringe shift in the circular pulse relative to the
linear case. It indicates that the experimentally available
dynamic interference can be used to observe the energy dif-
ference in the ground state in linearly and circularly polarized
pulses. Moreover, we demonstrate that the momentum shifts
in PEMDs due to the non-dipole effect are similar for linearly
and circularly polarized pulses. The AC Stark shift difference
in the ground state in circularly and linearly polarized pulses
is not changed by the non-dipole correction for the present
laser intensities.
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Figure 8. A schematic illustration of the non-dipole effect of the
PEMD. The solid circle centered on o represents the momentum
distribution with dipole approximation, and the dot-solid circle
centered on o′ is the momentum distribution with non-dipole
correction. Here, Δp is the momentum shift due to the non-dipole
effect, and θ is the angle between the photoelectron emission
direction and the z axis. Figure 9. (a) The momentum of the interference maximum in

figures 7(c) and (d). The symbols are extracted from the TDSE
calculation and the solid lines are the fitting results by equation (21).
(b) The time-dependent energy E0(t) of the ground state. The laser
parameters are the same as those in figure 7. The solid and dashed
lines are the results for the dipole and non-dipole TDSE calculation,
respectively. The polarization of the laser pulses is shown in the
legend.
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Appendix. Matrix elements of the Hamiltonian

In equation (5), we give the lowest-order non-dipole Hamil-
tonian. For the laser pulse polarized in the x-z plan and pro-
pagating along the positive y axis, the Hamiltonian in the
spherical coordinates is written as
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The first three terms are the field-free Hamiltonian of the
H atom. The matrix elements of these terms in the repre-
sentation of spherical harmonics are given by
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They are diagonal matrices. The forth and fifth terms are the
electron–laser interaction Hamiltonian in the dipole approx-
imation, and the matrix elements of these two terms are given by
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When the laser is polarized along the z−axis, the magnetic
quantum number m is conserved. Whereas, the component of
the laser in the x axis allows the transition between the states
with different magnetic quantum numbers.

The rest of the terms are the non-dipole correction of the
electron–laser interaction. The matrix elements of the sixth
term are given by
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This term only permits the transitions between states of
adjacent angular and magnetic quantum numbers. The matrix
elements of the last two terms are given by
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Compared to other terms, these two terms not only allow the
transition between adjacent angular and magnetic quantum
number states but also the states differing by two quantum
numbers. Moreover, the last two terms contain the operator
ri∂/∂r. This operator is not Hermitian, but the following
operator is Hermitian
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In the above equations, the coefficients al,m and bl,m are
given by

( )
( )( )

( )=
+ -
+ +

a
l m

l l

1

2 1 2 3
, A.9l m,

2 2

and

( )( )
( )( )

( )=
+ + + +

+ +
b

l m l m

l l

1 2

2 1 2 3
, A.10l m,

respectively.

ORCID iDs

Yueming Zhou https://orcid.org/0000-0001-7772-4566

References

[1] Fuchs M et al 2015 Anomalous nonlinear x-ray Compton
scattering Nat. Phys. 11 964

[2] Stöhr J and Scherz A 2015 Creation of x-ray transparency of
matter by stimulated elastic forward scattering Phys. Rev.
Lett. 115 107402

[3] Guetg M W, Lutman A A, Ding Y, Maxwell T J, Decker F J,
Bergmann U and Huang Z 2018 Generation of high-power
high-intensity short x-ray free-electron-laser pulses Phys.
Rev. Lett. 120 014801

[4] Lam R K et al 2018 Soft x-ray second harmonic generation as
an interfacial probe Phys. Rev. Lett. 120 023901

[5] Young L et al 2010 Femtosecond electronic response of atoms
to ultra-intense x-rays Nature 466 56

[6] McNeil B W J and Thompson N R 2010 X-ray free-electron
lasers Nat. Photonics 4 814

[7] Eberly J H and Kulander K C 1993 Atomic stabilization by
super-intense lasers Science 262 1229

[8] Gavrila M 2002 Atomic stabilization in superintense laser
fields J. Phys. B At. Mol. Opt. Phys. 35 R147

[9] Pont M and Gavrila M 1990 Stabilization of atomic hydrogen
in superintense, high-frequency laser fields of circular
polarization Phys. Rev. Lett. 65 2362

[10] Dörr M, Potvliege R M and Shakeshaft R 1990 Tunneling
ionization of atomic hydrogen by an intense low-frequency
field Phys. Rev. Lett. 64 2003

[11] Su Q and Eberly J H 1990 Stabilization of a model atom in
superintense field ionization J. Opt. Soc. Am. B 7 564

[12] Kulander K C, Schafer K J and Krause J L 1991 Dynamic
stabilization of hydrogen in an intense, high-frequency,
pulsed laser field Phys. Rev. Lett. 66 2601

[13] Askeland S, Sørngård S A, Pilskog I, Nepstad R and Førre M
2011 Stabilization of circular Rydberg atoms by circularly
polarized infrared laser fields Phys. Rev. A 84 033423

[14] deBoer M P, Hoogenraad J H, Vrijen R B, Noordam L D and
Muller H G 1993 Indications of high-intensity adiabatic
stabilization in neon Phys. Rev. Lett. 71 3263

[15] deBoer M P, Hoogenraad J H, Vrijen R B, Constantinescu R C,
Noordam L D and Muller H G 1994 Adiabatic stabilization
against photoionization: an experimental study Phys. Rev. A
50 4085

[16] van Druten N J, Constantinescu R C, Schins J M,
Nieuwenhuize H and Muller H G 1997 Adiabatic
stabilization: observation of the surviving population Phys.
Rev. A 55 622

[17] Liu H et al 2012 Low yield of near-zero-momentum electrons
and partial atomic stabilization in strong-field tunneling
ionization Phys. Rev. Lett. 109 093001

[18] Toyota K, Tolstikhin O I, Morishita T and Watanabe S 2007
Siegert-state expansion in the Kramers-Henneberger
frame: interference substructure of above-threshold
ionization peaks in the stabilization regime Phys. Rev. A
76 043418

[19] Toyota K 2016 Spatiotemporal interference of photoelectron
wave packets and the time scale of nonadiabatic transitions
in the high-frequency regime Phys. Rev. A 94 043411

[20] Toyota K, Tolstikhin O I, Morishita T and Watanabe S 2008
Interference substructure of above-threshold ionization
peaks in the stabilization regime Phys. Rev. A 78 033432

[21] Tolstikhin O I 2008 Siegert-state expansion for nonstationary
systems. IV. Three-dimensional case Phys. Rev. A 77
032712

[22] Demekhin P V and Cederbaum L S 2012 Dynamic interference
of photoelectrons produced by high-frequency laser pulses
Phys. Rev. Lett. 108 253001

[23] Demekhin P V and Cederbaum L S 2012 Coherent intense
resonant laser pulses lead to interference in the time domain

9

J. Phys. B: At. Mol. Opt. Phys. 53 (2020) 095601 J Liang et al

https://orcid.org/0000-0001-7772-4566
https://orcid.org/0000-0001-7772-4566
https://orcid.org/0000-0001-7772-4566
https://orcid.org/0000-0001-7772-4566
https://doi.org/10.1038/nphys3452
https://doi.org/10.1103/PhysRevLett.115.107402
https://doi.org/10.1103/PhysRevLett.120.014801
https://doi.org/10.1103/PhysRevLett.120.023901
https://doi.org/10.1038/nature09177
https://doi.org/10.1038/nphoton.2010.239
https://doi.org/10.1126/science.262.5137.1229
https://doi.org/10.1088/0953-4075/35/18/201
https://doi.org/10.1103/PhysRevLett.65.2362
https://doi.org/10.1103/PhysRevLett.64.2003
https://doi.org/10.1364/JOSAB.7.000564
https://doi.org/10.1103/PhysRevLett.66.2601
https://doi.org/10.1103/PhysRevA.84.033423
https://doi.org/10.1103/PhysRevLett.71.3263
https://doi.org/10.1103/PhysRevA.50.4085
https://doi.org/10.1103/PhysRevA.55.622
https://doi.org/10.1103/PhysRevLett.109.093001
https://doi.org/10.1103/PhysRevA.76.043418
https://doi.org/10.1103/PhysRevA.94.043411
https://doi.org/10.1103/PhysRevA.78.033432
https://doi.org/10.1103/PhysRevA.77.032712
https://doi.org/10.1103/PhysRevA.77.032712
https://doi.org/10.1103/PhysRevLett.108.253001


seen in the spectrum of the emitted particles Phys. Rev. A 86
063412

[24] Yu C, Fu N, Zhang G and Yao J 2013 Dynamic stark effect on
XUV-laser-generated photoelectron spectra: numerical
experiment on atomic hydrogen Phys. Rev. A 87 043405

[25] Artemyev A N, Müller A D, Hochstuhl D, Cederbaum L S and
Demekhin P V 2016 Dynamic interference in the
photoionization of He by coherent intense high-frequency
laser pulses: direct propagation of the two-electron wave
packets on large spatial grids Phys. Rev. A 93 043418

[26] Baghery M, Saalmann U and Rost J M 2017 Essential
conditions for dynamic interference Phys. Rev. Lett. 118
143202

[27] Ning Q-C, Saalmann U and Rost J M 2018 Electron dynamics
driven by light-pulse derivatives Phys. Rev. Lett. 120 033203

[28] Demekhin P V and Cederbaum L S 2013 Ac Stark effect in the
electronic continuum and its impact on the photoionization
of atoms by coherent intense short high-frequency laser
pulses Phys. Rev. A 88 043414

[29] Wang N and Liu A 2019 Interference effect of photoionization
of hydrogen atoms by ultra-short and ultra-fast high-
frequency chirped pulses Chin. Phys. B 28 083403

[30] Jiang W-C and Burgdörfer J 2018 Dynamic interference as
signature of atomic stabilization Opt. Express 26 19921

[31] Chini M, Zhao B, Wang H, Cheng Y, Hu S X and Chang Z
2012 Subcycle ac Stark shift of helium excited states probed
with isolated attosecond pulses Phys. Rev. Lett. 109 073601

[32] Chu S-I and Telnov D A 2004 Beyond the Floquet theorem:
generalized Floquet formalisms and quasienergy methods
for atomic and molecular multiphoton processes in intense
laser fields Phys. Rep. 390 1

[33] Yu C and Madsen L B 2016 Sequential and nonsequential
double ionization of helium by intense XUV laser pulses:
revealing ac Stark shifts from joint energy spectra Phys. Rev.
A 94 053424

[34] Sussman B J 2011 Five ways to the nonresonant dynamic Stark
effect Am. J. Phys. 79 477

[35] Mi K et al 2020 Perturbed ac Stark effect for attosecond
optical-waveform sampling Phys. Rev. Applied 13 014032

[36] Reed V C and Burnett K 1991 Role of resonances and
quantum-mechanical interference in the generation of above-
threshold-ionization spectra Phys. Rev. A 43 6217

[37] Wickenhauser M, Tong X M and Lin C D 2006 Laser-induced
substructures in above-threshold-ionization spectra from
intense few-cycle laser pulses Phys. Rev. A 73 011401(R)

[38] Freeman R R, Bucksbaum P H, Milchberg H, Darack S,
Schumacher D and Geusic M E 1987 Above-threshold
ionization with subpicosecond laser pulses Phys. Rev. Lett.
59 1092

[39] Jones R R 1995 Interference effects in the multiphoton
ionization of sodium Phys. Rev. Lett. 74 1091

[40] Korneev P A et al 2012 Interference carpets in above-threshold
ionization: from the Coulomb-free to the Coulomb-
dominated regime Phys. Rev. Lett. 108 223601

[41] Tan J et al 2020 Resolving strong-field tunneling ionization
with a temporal double-slit interferometer Phys. Rev. A 101
013407

[42] Liang J et al 2019 Low-energy photoelectron interference
structure in attosecond streaking Opt. Express 26 37736

[43] Kylstra N J, Worthington R A, Patel A, Knight P L,
Vázquez de Aldana J R and Roso L 2000 Breakdown of
stabilization of atoms interacting with intense, high-
frequency laser pulses Phys. Rev. Lett. 85 1835

[44] Popov A M, Tikhonova O V and Volkova E A 2003 Strong-
field atomic stabilization: numerical simulation and
analytical modelling J. Phys. B At. Mol. Opt. Phys. 36 R125

[45] Førre M, Selstø S, Hansen J P and Madsen L B 2005 Exact
nondipole Kramers-Henneberger form of the light-atom
Hamiltonian: an application to atomic stabilization and
photoelectron energy spectra Phys. Rev. Lett. 95 043601

[46] Emelin M Y and Ryabikin M Y 2014 Atomic photoionization
and dynamical stabilization with subrelativistically intense
high-frequency light: magnetic-field effects revisited Phys.
Rev. A 89 013418

[47] Emelin M Y, Smirnov L A and Ryabikin M Y 2017 Tailoring
the pulse shape to efficiently populate atomic electron
metastable states in a relativistically intense high-frequency
laser field Phys. Rev. A 96 043420

[48] Simonsen A S and Førre M 2015 Magnetic-field-induced
enhancement of atomic stabilization in intense high-
frequency laser fields Phys. Rev. A 92 013405

[49] Staudt A and Keitel C H 2006 Two-electron ionization and
stabilization beyond the dipole approximation Phys. Rev. A
73 043412

[50] Wang M-X, Liang H, Xiao X-R, Chen S-G, Jiang W-C and
Peng L-Y 2018 Nondipole effects in atomic dynamic
interference Phys. Rev. A 98 023412

[51] Jiang W-C, Chen S-G, Peng L-Y and Burgdörfer J 2019 Two-
electron interference in strong-field ionization of He by a
short intense XUV laser pulse Phys. Rev. Lett. 124 043203

[52] Rescigno T N and McCurdy C W 2000 Numerical grid
methods for quantum-mechanical scattering problems Phys.
Rev. A 62 032706

[53] Jiang W-C and Tian X-Q 2017 Efficient split-Lanczos
propagator for strong-field ionization of atoms Opt. Express
25 26832

[54] Pont M, Walet N R, Gavrila M and McCurdy C W 1988
Dichotomy of the hydrogen atom in superintense, high-
frequency laser fields Phys. Rev. Lett. 61 939

[55] Pont M 1989 Atomic distortion and ac-Stark shifts of H under
extreme radiation conditions Phys. Rev. A 40 5659

[56] Pont M, Walet N R and Gavrila M 1990 Radiative distortion of
the hydrogen atom in superintense, high-frequency fields of
linear polarization Phys. Rev. A 41 477

[57] Dörr R, Potvliege M, Proulx D and Shakeshaft R 1991
Multiphoton processes in an intense laser field. V. the high-
frequency regime Phys. Rev. A 43 3729

[58] Brennecke S and Lein M 2019 Strong-field photoelectron
holography beyond the electric dipole approximation: a
semiclassical analysis Phys. Rev. A 100 023413

[59] Hartung A et al 2019 Magnetic fields alter strong-field
ionization Nat. Phys. 15 1222

[60] Smeenk C T L 2011 Partitioning of the linear photon
momentum in multiphoton ionization Phys. Rev. Lett. 106
193002

[61] Haram N et al 2019 Relativistic nondipole effects in strong-
field atomic ionization at moderate intensities Phys. Rev.
Lett. 123 093201

[62] Chelkowski S, Bandrauk A D and Corkum P B 2014 Photon
momentum sharing between an electron and an ion in
photoionization: from one-photon (photoelectric effect) to
multiphoton absorption Phys. Rev. Lett 113 263005

[63] Ludwig A, Maurer J, Mayer B W, Phillips C R,
Gallmann L and Keller U 2014 Breakdown of the dipole
approximation in strong-field ionization Phys. Rev. Lett. 113
243001

10

J. Phys. B: At. Mol. Opt. Phys. 53 (2020) 095601 J Liang et al

https://doi.org/10.1103/PhysRevA.86.063412
https://doi.org/10.1103/PhysRevA.86.063412
https://doi.org/10.1103/PhysRevA.87.043405
https://doi.org/10.1103/PhysRevA.93.043418
https://doi.org/10.1103/PhysRevLett.118.143202
https://doi.org/10.1103/PhysRevLett.118.143202
https://doi.org/10.1103/PhysRevLett.120.033203
https://doi.org/10.1103/PhysRevA.88.043414
https://doi.org/10.1088/1674-1056/28/8/083403
https://doi.org/10.1364/OE.26.019921
https://doi.org/10.1103/PhysRevLett.109.073601
https://doi.org/10.1016/j.physrep.2003.10.001
https://doi.org/10.1103/PhysRevA.94.053424
https://doi.org/10.1119/1.3553018
https://doi.org/10.1103/PhysRevApplied.13.014032
https://doi.org/10.1103/PhysRevA.43.6217
https://doi.org/10.1103/PhysRevA.73.011401
https://doi.org/10.1103/PhysRevLett.59.1092
https://doi.org/10.1103/PhysRevLett.74.1091
https://doi.org/10.1103/PhysRevLett.108.223601
https://doi.org/10.1103/PhysRevA.101.013407
https://doi.org/10.1103/PhysRevA.101.013407
https://doi.org/10.1364/OE.27.037736
https://doi.org/10.1103/PhysRevLett.85.1835
https://doi.org/10.1088/0953-4075/36/10/201
https://doi.org/10.1103/PhysRevLett.95.043601
https://doi.org/10.1103/PhysRevA.89.013418
https://doi.org/10.1103/PhysRevA.96.043420
https://doi.org/10.1103/PhysRevA.92.013405
https://doi.org/10.1103/PhysRevA.73.043412
https://doi.org/10.1103/PhysRevA.98.023412
https://doi.org/10.1103/PhysRevLett.124.043203
https://doi.org/10.1103/PhysRevA.62.032706
https://doi.org/10.1364/OE.25.026832
https://doi.org/10.1103/PhysRevLett.61.939
https://doi.org/10.1103/PhysRevA.40.5659
https://doi.org/10.1103/PhysRevA.41.477
https://doi.org/10.1103/PhysRevA.43.3729
https://doi.org/10.1103/PhysRevA.100.023413
https://doi.org/10.1038/s41567-019-0653-y
https://doi.org/10.1103/PhysRevLett.106.193002
https://doi.org/10.1103/PhysRevLett.106.193002
https://doi.org/10.1103/PhysRevLett.123.093201
https://doi.org/10.1103/PhysRevLett.113.263005
https://doi.org/10.1103/PhysRevLett.113.243001
https://doi.org/10.1103/PhysRevLett.113.243001

	1. Introduction
	2. Theoretical methods
	3. Results and discussion
	3.1. Dynamic interference in dipole approximation
	3.2. Non-dipole effect in dynamic interference

	4. Conclusion
	Acknowledgments
	Appendix. Matrix elements of the Hamiltonian
	References



