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We theoretically demonstrate the effects of quantum interferences among valence electrons with various initial
crystal momenta in the high-order harmonic generation (HHG) in solids. By investigating crystal-momentum-
dependent harmonics from solids in linearly polarized laser fields, some unique radiation characteristics of
the observed overall harmonics are attributed to the consequences of interferences among valence electrons
with different crystal momenta. It is shown that the electron pairs with opposite crystal momenta result in the
destructive interferences of even-order harmonics for a crystal with the inversion symmetry, which eventually
leads to the only odd orders in observed overall harmonic spectra for a semiconductor material because
of the complete pairing of all valence electrons. Additionally, each of the harmonic plateaus in the overall
multiple-plateau harmonic spectrum is identified to be contributed by the valence electrons within different
crystal momentum zones. We also find that the solid-phase HHG in the below-band-gap region is substantially
suppressed due to the collective responses of multiple valence electrons. This work sheds light on the essential
impacts of interferences among crystal-momentum-resolved electrons on the HHG in solids and is helpful to
explore ultrafast coherent processes in condensed matter.
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I. INTRODUCTION

High-order harmonic generation (HHG) [1–5] is one of
the most attracive phenomena induced by the interaction of
intense laser fields with atomic and molecular gases. As a
highly nonlinear optical radiation, HHG is widely recog-
nized as a promising route to generate coherent attosecond
extreme ultraviolet (EUV) and soft x-ray laser pulses [6,7].
The recent experimental observations of HHG from several
crystalline solids [8–10] have extended the target media from
gases to condensed-matter systems. The high conversion ef-
ficiency and low driving laser intensity of solid-phase HHG
make it a potential tool to obtain high-efficiency and com-
pact attosecond light sources. The information of electronic
states and crystallographic structures of solid targets can be
decoded using the high harmonic signals. High harmonic
spectroscopy in solids offers an opportunity to reconstruct the
energy-band structures [11,12], probe crystalline symmetries
[13–16], measure Berry curvatures [17,18], and even to detect
topological phase transitions (TPTs) [19–21]. The solid-phase
HHG opens up a new field of studying attosecond electron
dynamics in condensed materials [22–26].

The periodicity and complexity of solid systems give rise to
some particular properties of solid-phase harmonic radiations
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[27,28]. Compared with gas-phase HHG, the motions of laser-
driven electrons in the solid-phase HHG processes are highly
delocalized over the crystal lattice. Hence the physical mecha-
nisms and radiation characteristics of the solid-phase HHG are
distinctively different from those of the harmonics generated
from atoms and molecules [29,30]. For instance, theoretical
[31,32] and experimental [33] studies have shown that the
high harmonic spectra from solids exhibit multiple-plateau
structures due to the electronic transitions from multiple con-
duction bands to valance bands. It is widely recognized that
HHG in solids is contributed by two major mechanisms: laser-
induced intraband Bloch oscillations and interband dipole
transitions. The generated harmonics from the two mecha-
nisms differ significantly in many respects. For example, it has
emerged that the intraband and interband HHG display fun-
damental different wavelength dependencies in the harmonic
yield and cutoff energy [34,35]. The intraband and interband
HHG dominate the observed harmonic spectrum in the below-
band-gap region and harmonic plateau, respectively, for a
midinfrared (MIR) laser pulse [31].

In many studies, the light-matter interactions in solids are
described by a single active election (SAE) model [31,36–39].
In this model, the solid-phase HHG is attributed to the laser-
induced response of a single valence electron with a specific
crystal momentum (such as the � point) in the valence band.
The neglect of the electrons with other crystal momenta is
effective under certain conditions. Thus the SAE model in
solids provides valuable insights into the HHG process in
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many aspects. However, ultimately, the HHG response in
solids is essentially an ultrafast dynamics involving all valence
electrons with multiple crystal momenta. Some recent works
[40–45] have reported that the contributions from the elec-
trons with different crystal momenta in valence bands play
an important role for the HHG in solids. For instance, Lü
et al. [42] have found an abnormal yield dependence of the
intraband HHG on the laser intensity due to the coherence of
harmonics emitted from multiple valence electrons. The col-
lective excitations of valence electrons and the interferences
among multiple valence electrons in solid-phase HHG have
attracted increasing attention in the strong-field research field.

In this work, we investigate the effects of quantum inter-
ferences among multiple valence electrons in the HHG from
a band-gap semiconductor. By solving the time-dependent
Schrödinger equation (TDSE) with a series of initial crystal
momenta, some particular features of observed overall har-
monics are found to stem from the interferences among the
valence electrons with various crystal momenta. The involved
radiation characteristics are mainly focused on the selection
rules of the HHG, multiple plateaus of the harmonic spectra,
and the yields of below-band-gap harmonics. Specifically, for
a crystal with inversion symmetry in a linearly polarized (LP)
laser field, the absences of even-order harmonics are attributed
to the destructive interferences between the electron pairs with
opposite crystal momenta. The multiple plateaus of overall
harmonics are contributed by the valence electrons within
different crystal momentum regions. The valence electrons
with crystal momenta farther away from the � point dominate
the higher harmonic plateaus and the corresponding cutoff
energies in the overall harmonic spectra. The contributions
of multiple valence electrons with various crystal momenta
also result in the significant suppression of below-band-gap
harmonics. Our studies illustrate the crucial influence of
field-induced electron dynamics involving multiple crystal
momenta on solid-phase HHG and deepen our understanding
of ultrafast electron dynamics in solids.

This paper is organized as follows. In Sec. II we describe
the adopted theoretical model in this work and present the
numerical method in our simulations. In Sec. III we investi-
gate the selection rules of observed harmonics for a crystal
with inversion symmetry in a LP laser field and clarify the
fact that the disappearance of even-order harmonics is due to
the destructive interference between the electron pairs with
opposite crystal momenta. In Sec. IV we discuss the contri-
butions of valence electrons with different crystal momenta to
the observed overall harmonic plateaus and the corresponding
cutoff energies. In Sec. V a remarkable reduction of harmonic
yields in the below-band-gap region is studied. We summarize
our work in Sec. VI.

II. THEORETICAL MODEL

In our simulations the crystal target is mimicked by a
one-dimensional band-gap semiconductor model. The laser
field is polarized along the crystal axis. The electron dy-
namics induced by laser-crystal interactions are described by
the one-dimensional TDSE within the independent-electron
approximation. The valence bands are initially occupied by
the electrons with various crystal momenta. For the electron

initially lying in band n with an initial crystal momentum k,
the TDSE in the velocity gauge is written as (atomic units are
used throughout this paper unless otherwise stated)

i
∂

∂t
ψnk (x, t ) =

{
[p̂ + A(t )]2

2
+ V (x)

}
ψnk (x, t ), (1)

where ψnk (x, t ) is the time-dependent wave function, p̂ is
the momentum operator, and A(t ) is the vector potential of
the laser field. V (x) is the periodic lattice potential with lat-
tice constant a0, i.e., V (x) = V (x + a0). Herein, we use the
Gaussian-type potential [37,46]

V (x) = −V0e− x2

α (2)

in the unit-cell region of x ∈ [−a0/2, a0/2] with V0 = 1.6 a.u.
and α = 1.2 a.u. The lattice constant is chosen as a0 = 6 a.u.
The dipole approximation is employed because the adopted
wavelengths in our simulations are much larger than the lattice
constant.

According to Bloch’s theorem, ψnk (x, t ) can be decom-
posed in the form of

ψnk (x, t ) = eikxunk (x, t ), (3)

where the wave function unk (x, t ) is periodic with the same pe-
riodicity as the crystal lattice, i.e., unk (x, t ) = unk (x + a0, t ).
By substituting Eq. (3) into Eq. (1), we obtain the motion
equation of wave function unk (x, t ) as

i
∂

∂t
unk (x, t ) = Ĥk (t )unk (x, t ), (4)

where Ĥk is a k-dependent Hamiltonian and is expressed as

Ĥk (t ) = [ p̂ + k + A(t )]2

2
+ V (x). (5)

Consequently, the dynamics of electrons in laser fields can be
completely depicted with the periodic wave function unk (x, t )
under k-dependent Ĥk . Because the crystal momentum k and
vector potential A(t ) are independent of coordinate variables
x, Ĥk still retains the lattice periodicity. Considering the peri-
odicity of unk (x, t ), Eq. (4) can be solved only in the unit-cell
zone of x ∈ [−a0/2, a0/2] with the periodic boundary con-
dition (PBC). Since the crystal momentum k is always a
good quantum number, Eq. (4) can be solved independently
for each k.

We numerically solve Eq. (4) by using the spectral method
with plane-wave bases. Specifically, the time-dependent wave
function unk (x, t ) is expanded as

unk (x, t ) =
m=Nb∑

m=−Nb

cm
nk (t )qm(x) (6)

in the unit-cell zone x ∈ [−a0/2, a0/2] using 2Nb + 1 basis
functions, where cm

nk (t ) is the time-dependent expansion coef-
ficient. In Eq. (6), qm(x) is the expression of the plane-wave
basis and is written as

qm(x) = 1√
a0

exp

(
i
2πmx

a0

)
, (7)

where m is an integer representing the basis index. Hence,
the k-dependent Hamiltonian operator Ĥk can be represented
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FIG. 1. Band structures of the highest valence band VB (n = 2)
and first three conduction bands CB1, CB2, and CB3 (n = 3, 4, 5).
The lowest valence band VB0 (n = 1) is not shown. The valence
band VB is fully occupied with electrons initially for a band-gap
semiconductor.

by a (2Nb + 1)-order square matrix Hk . Hk is calculated as
Hk (t ) = [p + k + A(t )]2/2 + V. p is the momentum matrix
with the matrix element pm′m = 〈qm′ (x)|p̂|qm(x)〉 = 2mπ

a0
δm′m.

V is the potential matrix with the matrix element Vm′m =
〈qm′ (x)|V (x)|qm(x)〉. Thus Eq. (4) can be solved with the
matrix form

i
∂

∂t
Cnk (t ) = Hk (t )Cnk (t ), (8)

where Cnk (t ) is a column matrix composed of a sequence of
coefficients cm

nk (t ).
The energy-band structures and time-independent wave

functions of the crystals are obtained by solving the eigen-
value equation of the field-free Hamiltonian matrix H0,k . H0,k

is calculated as H0,k = (p + k)2/2 + V. Figure 1 shows the
calculated energy-band structures using the diagonalization
method. One can see clearly that four bands (n = 2, 3, 4, 5)
are presented and are denoted as VB, CB1, CB2, and CB3,
respectively. The minimum band-gap energy between the va-
lence band VB and the first conduction band CB1 at the
� point (i.e., k = 0) is Eg = 3.67 eV. Since the lowest va-
lence band VB0 (n = 1) is extremely flat and deeply bound,
the HHG responses involving the electrons in VB0 are negli-
gible. Thus our model only focuses on the valence band VB
(n = 2) and ignores the contributions from valence band VB0.
As a band-gap semiconductor, the valence band VB is initially
fully occupied across the whole Brillouin zone (BZ) by the
crystal-momentum-resolved electrons as shown in Fig. 1.

Equation (8) is propagated using the Crank-Nicolson (CN)
algorithm [47]

Cnk (t + �t ) = 1 − i �t
2 Hk

(
t + �t

2

)
1 + i �t

2 Hk
(
t + �t

2

)Cnk (t ). (9)

In our simulations, the time step is chosen as �t = 0.02 a.u.
The laser wavelength adopted in our all calculations is
3200 nm. The laser intensity is 4×1011 W/cm2 for all cal-
culations unless otherwise stated. The total duration of the
laser pulse is eight optical cycles. We adopt the sine-squared

envelope for all laser pulses except those used in Sec. III.
The basis parameter Nb is adopted as 100. The laser-induced
current from the valence electron initially lying in the given
band n with crystal momentum k is calculated as [44]

jnk (t ) = 〈unk|p̂ + k + A(t )|unk〉 = C†
nk[p + k + A(t )]Cnk .

(10)

The observed overall harmonic spectrum is the coherent su-
perposition of the harmonics emitted by all electrons in the
valence bands. Hence the total current is calculated by sum-
ming jnk over the band indices n and crystal momenta k as

jtotal(t ) = 1

Nka0

∑
nk

jnk (t ), (11)

where Nk is the number of BZ sample points. We adopt the
equally spaced k meshes in the reduced BZ [−π/a0, π/a0].
The crystal momentum step is fixed as 2π/(a0Nk ), where Nk is
chosen as 121. The high harmonic spectra are obtained by the
Fourier transform of the corresponding laser-induced current.
A Hanning window [32,36] is used to improve the signal-
to-noise ratio before applying the Fourier transformation. It
should be noted that our model cannot cover the electron
correlation effects and only includes the interference effects of
independent multiple valence electrons in solid-phase HHG.
Many studies [48–50] have reported that the Coulomb inter-
actions between electrons have a very weak effect on the HHG
in the general solids and therefore can be neglected.

III. SELECTION RULES OF HHG

The selection rule of the high harmonic spectrum is a fun-
damental issue of common concern in the field of strong-field
physics. In gas-phase HHG, the selection rule is completely
determined by the invariance of the full time-dependent
Hamiltonian under an N-fold dynamical symmetry transfor-
mation [51,52]. Based on this, the allowed harmonic orders
in the gas-phase harmonic spectrum can be intuitively judged
by the associated rotational symmetry (ARS) of the atomic
or molecular target and the driving laser field [53–55]. Like-
wise, the selection rule of the solid-phase HHG has attracted
extensive attention and is also revealed to be determined by
the dynamical symmetry of the laser-matter system in some
recent works [14,56–58]. Just as the case of gas-phase HHG,
when a crystal with inversion symmetry is irradiated by a
monochromatic LP laser field, only odd-order harmonics can
be observed [8,59]. By investigating the allowed orders of the
solid-phase harmonic spectra from the valence electrons with
various crystal momenta, we confirm that the suppression of
even-order harmonics is caused by the destructive interfer-
ences between harmonics emitted from valence electron pairs
with opposite crystal momenta for a crystal with inversion
symmetry in a LP laser field. Considering that the electrons
initially fully occupy the whole BZ in valence bands, the
complete paired matching of all valence electrons results in
the disappearances of even orders in the observed overall
harmonic spectra.

We first investigate the situation that the valence elec-
trons are located at neither � point nor Bragg plane, i.e.,
k �= 0 and k �= ±π/a0. The selection rules of high harmonic
spectra from the valence electrons at high-symmetry points

033104-3



LIU, LI, LIU, ZHU, ZHANG, AND LU PHYSICAL REVIEW A 103, 033104 (2021)

100

105

H
H

G
yi

el
d

ar
b

un
its

(
.

)

10-5

100

105

H
H

G
yi

el
d

ar
b

un
its

(
.

)

0 5 10 15 20 25 30 35

Harmonic order

10-5

100

H
H

G
yi

el
d

ar
b

un
its

(
.

)

(a)

(b)

(c)

FIG. 2. High harmonic spectra contributed by valence electrons
with various crystal momenta: (a) k = ±π/(2a0), (b) |k| = π/(2a0),
and (c) k ∈ [−π/a0, π/a0].

will be discussed in detail later. The valence electrons with
crystal momenta k = ±π/(2a0) are chosen as the examples.
Figure 2(a) shows the calculated harmonic spectra from the
valence electrons with k = −π/(2a0) and k = π/(2a0). In
order to obtain clear and sharp radiation peaks in the harmonic
spectra, we adopt a trapezoidal laser envelope with a total
duration of eight optical cycles (two-cycle linear ramps and
four-cycle constant centers) for all laser pulses in this section.
As shown in Fig. 2(a), the harmonics emitted from these
two valence electrons highly coincide with each other. More
importantly, both of these two harmonic spectra contain both
odd and even orders. We further investigate the selection rule
of the total harmonic spectrum from these two electrons with
opposite crystal momenta. Figure 2(b) shows the obtained
harmonic spectrum by considering two electrons with k =
±π/(2a0). One can see clearly that only odd-order harmonics
appear in the synthetic harmonic spectrum. As mentioned
above, the even-order harmonics can be observed for an indi-
vidual valence electron with k = −π/(2a0) or k = π/(2a0).
Hence the destructive interferences between the electrons with
k = −π/(2a0) and k = π/(2a0) result in the disappearances
of even-order harmonics in the synthetic harmonic spectrum.

Similarly to the gas-phase HHG, the allowed harmonic
orders can be interpreted by the inversion symmetry of k-

dependent free-field Hamiltonian

Ĥ0,k = ( p̂ + k)2

2
+ V (x). (12)

Specifically, considering the inversion symmetry of the crys-
tal, i.e., V (−x) = V (x), Ĥ0,k becomes Ĥ0,−k under the
inversion transformation P̂ = (x → −x), i.e., P̂Ĥ0,k = Ĥ0,−k .
Accordingly, the inversion operator P̂ turns the periodic wave
function uk (x) into u−k (x). These results indicate that the in-
version symmetries of the systems composed of two electrons
with opposite crystal momenta should be treated in pairs as
in Ref. [60]. The two electrons with opposite crystal mo-
menta are the inversion symmetric partners to each other. The
paired symmetric partners permit the inversion symmetries of
the systems because of P̂ (Ĥ0,k, Ĥ0,−k ) = (Ĥ0,k, Ĥ0,−k ). The
inversion symmetries of paired inversion symmetric partners
lead to the vanishing even-order components of the synthetic
currents contributed by corresponding valence electrons. This
is the reason why the even harmonics disappear for two elec-
trons with opposite crystal momenta as shown in Fig. 2(b).
When only a single valence electron (k �= 0 and k �= ±π/a0)
is considered, the unpaired symmetric partner results in the
broken inversion symmetry of the system. Thus even har-
monics appear as shown in Fig. 2(a). The observed overall
harmonics are contributed by all electrons in valence bands.
Because the electrons initially fully occupy the whole BZ, all
valence electrons with positive and negative crystal momenta
can be completely matched in pairs. Thus only odd-order
harmonics are observed in the overall harmonic spectrum.
Figure 2(c) shows the calculated harmonic spectrum con-
tributed by all valence electrons with k ∈ [−π/a0, π/a0] in
the VB. One can see that only odd-order harmonics emerge
in the overall harmonic spectrum. This result is in good ac-
cordance with our conclusion. Owing to the pair matching
between two electrons with opposite crystal momenta in sign,
the total contribution from the electron pair with −k and k is
denoted as |k| in this paper.

We then investigate the selection rules of high harmonic
spectra from valence electrons at high-symmetry points, i.e.,
k = 0 or k = ±π/a0. It is noted that the electron at the
high-symmetry point is its own inversion symmetric partner.
Thus, the inversion symmetry of the system is preserved for
a single electron at the high-symmetry point, which results in
that only odd-order harmonics are observed. Figures 3(a) and
3(b) show the obtained harmonic spectra from the electrons
at the � point k = 0 and Bragg plane k = ±π/a0, respec-
tively. One can see that both of these harmonic spectra exhibit
only odd-order harmonics. These results agree well with our
conclusions. The allowed orders of the harmonic spectra con-
tributed by the valence electrons at high-symmetry points are
consistent with those of the overall harmonic spectra, which
is the reason why the �-point-only SAE model can accurately
reproduce the pure odd orders of the observed harmonic spec-
trum in previous studies. Our results further verify that the
selection rules of solid-phase HHG stem from the symmetries
of the laser-matter systems.

IV. HARMONIC PLATEAUS AND CUTOFFS

The emergence of the multiple plateaus is a unique
characteristic of the harmonic spectrum in solids. The
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FIG. 3. High harmonic spectra contributed by the valence elec-
trons at high-symmetry points: (a) � point k = 0, (b) Bragg plane
k = ±π/a0.

multiple-plateau harmonic spectra stems from the elec-
tron transitions from the multiple conduction bands to
valence bands in solids. The solid-phase HHG in harmon-
ics plateaus can be described by the k-space semiclassical
picture [27,31,34,39,44]. For completeness, we first revisit
the k-space semiclassical picture for the multiple independent
electrons as introduced in Ref. [44]. The first two harmonic
plateaus are considered in our model.

As shown in Fig. 4(a), for the given electron pair with
arbitrary |k0| (for the sake of simplicity, k0 � 0) in the VB, the
laser-driven electrons are first accelerated to � point (as indi-
cated by the dashed cyan arrow) and further tunnel into CB1
(as indicated by the solid cyan arrow). Then the laser-driven
electrons oscillate periodically in CB1 under the external laser
field and further tunnel into CB2 when the instantaneous band
gap between CB2 and CB1 reaches a minimum. Simultane-
ously, the occurrences of vertical transitions of laser-driven
electrons from CB1 and CB2 to VB are responsible for the
first and second harmonic plateaus in the harmonic spectrum,
respectively. The laser-driven electrons in CB1 and CB2 sat-
isfy the semiclassical motion equation

k(t ) = k(0) + A(t ), (13)

where k(t ) is the instantaneous crystal momentum of the laser-
driven electron, and k(0) is the initial crystal momentum at
time t = 0. For the electron pairs with initial crystal momenta
k(0) = ±k0 in CB1, the oscillating electrons are restricted in
the region of k ∈ [±k0 − A0,±k0 + A0], as indicated by the
pink-filled zones in Fig. 4(a), where A0 is the amplitude of
the vector potential. Thus the instantaneous band gap between
CB1 and the VB reaches the maximum when k = ±k0 ± A0,
as indicated by the solid yellow arrows in Fig. 4(a). Consid-
ering the symmetry of the energy band, i.e., E (k0 + A0) =
E (−k0 − A0), the maximal instantaneous band gaps are the

FIG. 4. (a) k-space semiclassical picture for the electron pair
with arbitrary crystal momenta |k0|. (b) Harmonic spectrum con-
tributed by the electron pair with |k| = π/(2a0). (c) Harmonic
spectra from the electron pair with |k| = π/(2a0) for the vector
potentials A0 = 0.25 a.u., 0.26 a.u., and 0.27 a.u. The relation of
A0 + |k| = π/a0 exactly holds for A0 = 0.26 a.u. in plane (c).

same for electrons with +k0 and −k0. Therefore the cutoff
energy of the first plateau contributed by the electron pair with
|k0| is determined by

E1 = ECB1(k0 + A0) − EVB(k0 + A0), (14)

where ECB1 and EVB are the band dispersion relations of
CB1 and VB, respectively. Similarly, the instantaneous band
gap between CB2 and VB reaches the maximum when k =
±k0 ∓ A0, as indicated by the solid purple arrows in Fig. 4(a).
Thus the cutoff energy of the second plateau contributed by
the electron pair with |k0| is calculated as

E2 = ECB2(k0 − A0) − EVB(k0 − A0), (15)

where ECB2 is the band dispersion relation of CB2.
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We take the valence electron pair with |k| = π/(2a0) as an
example to verify the above-mentioned semiclassical picture.
Figure 4(b) shows the calculated harmonic spectrum con-
tributed by the electron pair with |k| = π/(2a0). One can see
clearly that two plateaus are evident, as presented in Fig. 4(b).
The cutoff energies of the first and second plateaus calculated
by Eqs. (14) and (15) are E1 = 22.48 eV and E2 = 43.01 eV,
respectively. In Fig. 4(b), E1 and E2 are indicated by the solid
black arrows. It can be seen clearly that the positions of E1

and E2 agree very well with the cutoff energies of the first
and second plateaus, respectively. It is worth noting that the
intensities of the first and second plateaus are nearly the same
when the oscillating electron can exceed the Bragg plane,
i.e., |k| + A0 > π/a0. At this moment, the first and second
plateaus merge with each other. Figure 4(c) shows the har-
monic spectra with A0 = 0.25 a.u., 0.26 a.u., and 0.27 a.u. for
the electron pair with |k| = π/(2a0). Herein, A0 = 0.26 a.u.
exactly satisfies A0 + |k| = π/a0. One can see clearly that
the differences of harmonic intensities between the first and
second plateaus gradually disappear when A0 + |k| progres-
sively exceeds π/a0. The merging of these two plateaus is
attributed to the fact that the oscillating electrons in CB1 can
reach the Bragg planes and tunnel into CB2 at the positions
when |k| + A0 > π/a0. At the band edges, the band gaps
between CB2 and CB1 are the global minimum. Thus the
second harmonic plateau is significantly enhanced because of
the high tunneling probability.

The observed overall harmonic signals are contributed
by the coherent summation of currents induced by all
independent valence electrons within the whole BZ. The col-
lective dynamics of all individual electrons described by the
k-space semiclassical picture result in the observed overall
harmonic radiations. Thus the interferences among multi-
ple valence electrons with various crystal momenta should
have an important influence on the harmonic plateaus and
corresponding cutoff energies. By expanding the considered
crystal momentum interval asymptotically, we confirm that
each harmonic plateau in the observed overall harmonic spec-
trum is mainly contributed by the valence electrons located at
different crystal momentum zones. Specifically, the valence
electrons close to the � point (|k| is relatively little) dom-
inate the primary plateaus in the overall harmonic spectra,
whereas the valence electrons far away from the � point (|k|
is relatively great) dominate the latter plateaus in the overall
harmonic spectra.

For the sake of discussion, the crystal momenta of all
electrons in the VB are sectionalized as shown in Fig. 5(a).
Herein, 	1, 	2, and 	3 represent the crystal momentum
intervals of [−π/(4a0), π/(4a0)], [−π/(2a0), π/(2a0)],
and [−3π/(4a0), 3π/(4a0)], respectively. Figure 5(b) shows
calculated harmonic spectra contributed by the electrons
at/within the � point, 	1, 	2, and 	3. Meanwhile, the
observed overall harmonic spectrum is calculated by
considering all electrons within the whole BZ and is presented
in Fig. 5(b) using the red-filled image. The laser intensity is
4×1011 W/cm2. In Fig. 5(b) one can see that the harmonic
plateau from the electron at only the � point significantly
differs from that of the overall harmonic spectrum. When the
electrons within 	1 = [−π/(4a0), π/(4a0)] are considered,
the first harmonic plateau is close to that of the overall

FIG. 5. (a) The sectionalization of crystal momenta for the
electrons in VB. 	1, 	2, and 	3 correspond to the crystal mo-
mentum intervals of [−π/(4a0), π/(4a0)], [−π/(2a0), π/(2a0)],
and [−3π/(4a0), 3π/(4a0)], respectively. (b) Harmonic spectra con-
tributed by the electrons at or within only � point, 	1, 	2, 	3 and
the whole BZ. (c) Harmonic spectra from a single electron at � point
and the electron pairs with |k| = π/(4a0), π/(2a0), and 3π/(4a0).
The laser intensity is 4×1011 W/cm2 in panels (b) and (c).

harmonic spectrum. Herein, the intensities of second
harmonic plateaus from the electrons at/within the �

point and 	1 are too low to be seen in Fig. 5(b). When
the crystal momentum interval is further expanded as
	2 = [−π/(2a0), π/(2a0)], it is seen that the second plateau
of the harmonic spectrum from 	2 emerges and is very close
to that of the overall harmonic spectrum. Compared with the
case of electrons within 	1, the first plateau from electrons
within 	2 is closer to that of the overall harmonic spectrum.
The two harmonic plateaus from the electrons within
	3 = [−3π/(4a0), 3π/(4a0)] are almost exactly the same
with the overall harmonic spectrum. These results suggest
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that the first and second plateaus of the overall harmonic
spectrum are mainly contributed by the electron pairs with
|k| ∈ [0, π/(4a0)] and |k| ∈ [π/(4a0), π/(2a0)], respectively.
The valence electrons with |k| ∈ [π/(2a0), π/a0] only have
a minor effect on the overall harmonic spectrum. It should
be noted that the sectionalization of crystal momenta for the
valence electrons shown in Fig. 5(a) is just a chosen example.
The sectionalization is not necessarily strict in our discussion.

We investigate the cutoff energies of harmonic spectra
generated by the electron pair with the given |k| to further
verify our conclusions. Figure 5(c) shows the harmonic spec-
tra contributed by a single electron at the � point and the
electron pairs with |k| = π/(4a0), π/(2a0) and 3π/(4a0). In
Figs. 5(b) and 5(c), the cutoff energies of the first plateau for
the harmonic spectrum from the electrons within/at whole BZ
and |k| = π/(4a0) are indicated by ΔE1 and E1, respectively.
The corresponding cutoff energies of the second plateau are
indicated by ΔE2 and E2. Considering that the first plateau of
the overall harmonic spectrum is mainly contributed by the
electron pairs with |k| ∈ [0, π/(4a0)], E1 and ΔE1 should be
approximately equal. From Figs. 5(b) and 5(c), one can see
clearly that E1 and ΔE1 are in good agreement with each other
as guided by the vertical gray dashed line. Similarly, E2 should
be very close to ΔE2, which is also validated in Figs. 5(b) and
5(c). The accordance between ΔE1 and E1 (or ΔE2 and E2)
verifies the fact that the multiple plateaus and corresponding
cutoff energies of the observed overall harmonic spectra stem
from the contributions of valence electrons located at different
crystal momentum zones.

We also choose an example with other laser intensities to
demonstrate the interference effects among various valence
electrons on overall harmonic plateaus. Figure 6(a) shows cal-
culated harmonic spectra contributed by the electron at/within
the � point, 	1, 	2, 	3, and whole BZ. The laser intensity is
6×1011 W/cm2. One can see clearly that, as the chosen crystal
momentum interval is gradually expanded, the obtained first
harmonic plateau begins to agree with the first plateau of the
overall harmonic spectrum when 	1 is considered. Similarly,
the obtained second harmonic plateau begins to agree with
the second plateau of the overall harmonic spectrum when
	2 is considered. Figure 6(b) shows the harmonic spectra
contributed by a single electron at the � point and the elec-
tron pairs with |k| = π/(4a0), π/(2a0) and 3π/(4a0). It is
noted that the first and second plateaus completely merge for
the harmonic spectra from the electron pairs with π/(2a0)
and 3π/(4a0) because |k| + A0 > π/a0, as illuminated in
Fig. 4(c). Similar to the results shown in Figs. 5(b) and 5(c),
E1 and E2 are respectively close to ΔE1 and ΔE2, as indicated
by vertical gray dashed lines in Figs. 6(a) and 6(b). These
results further confirm the fact that each plateau in the overall
multiple-plateau harmonic spectrum cannot be recognized as
the contribution only from the individual valence electron (or
electron pair). The observed plateaus in the overall harmonic
spectra are the consequences of collective responses involv-
ing multiple valence electrons with various crystal momenta.
Each plateau of the overall harmonic spectrum is identified
to be contributed by the valence electrons within the spe-
cific crystal momentum zones. We notice that the effects of
multiple valence electrons on the harmonic plateaus are also
discussed in a recent work in Ref. [40].
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FIG. 6. (a) Harmonic spectra contributed by the electrons at or
within only the � point, 	1, 	2, 	3 and the whole BZ. (b) Harmonic
spectra from a single electron at � point and the electron pairs
with |k| = π/(4a0), π/(2a0), and 3π/(4a0). The laser intensity is
6×1011 W/cm2.

V. BELOW-BAND-GAP HARMONICS

Many studies [31–36,61] suggest that the first plateau of
the harmonic spectrum starts from the minimum band gap be-
tween the first conduction band and valence band when a solid
is irradiated by an intense mid-infrared laser pulse. The har-
monics below the minimum band gap are mainly contributed
by intraband currents induced by the Bloch oscillations in
conduction bands, whereas the harmonics above the mini-
mum band gap are mainly contributed by interband transitions
between conduction bands and valence bands. The effects
of quantum interferences among valence electrons with var-
ious crystal momenta on the below-band-gap harmonics are
investigated in this work. Our results show that the contribu-
tions from multiple valence electrons result in the significant
decreases of harmonic yields in below-band-gap regions for
the observed overall harmonics. The remarkable suppression
of below-band-gap harmonics originates from the collective
dynamics of multiple valence electrons with various crystal
momenta and thus cannot be interpreted by the �-point-only
SAE model.

The harmonic spectrum contributed by all valence elec-
trons within the whole BZ is shown in Fig. 7(a) with a
red-filled image. The position of the minimum band gap be-
tween CB1 and the VB is indicated by the vertical gray dashed
line. In Fig. 7(a), as shown in the laurel-green-shaded area,
one can see clearly that the observed overall harmonic spec-
trum presents an evident dip in the below-band-gap region.
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FIG. 7. (a) Harmonic spectra contributed by valence electrons at
or within the only � point and the whole BZ. (b) Harmonic yield S
as the function of |k| for third, fifth, seventh, and the first plateau
harmonics. (c) Harmonic intensity ratio η as the function of |k|
for the third-, fifth-, and seventh-order harmonics. η represents the
intensity ratio between nth-order harmonic and the first harmonic
plateau. In plane (a), the vertical gray dashed line indicates the
positions of minimum band gap between CB1 and VB, i.e., Eg. In
plane (b), the horizontal gray dashed line indicates the value of Splateau

when |k| = 1.

The yields of below-band-gap harmonics are about one or
two orders of magnitude lower than those of the first plateau
harmonics. The harmonic spectrum contributed by a single
electron at the � point is also presented in Fig. 7(a). The subsi-
dence of yields in the below-band-gap harmonic region cannot
be observed in the �-point-only SAE model. Hence, the van-
ishing of below-band-gap harmonics in yields is not caused by
an individual electron with a specific crystal momentum. The
significant suppression of overall below-band-gap harmonics
stems from the coherences among multiple valence electrons
with different crystal momenta.

In order to explain the suppression effects, we further
quantificationally investigate the yields of below-band-gap

harmonics by expanding the crystal momentum interval grad-
ually. For a given |k|, the intensity of the nth-order harmonic
contributed by the valence electrons within crystal momentum
interval [−|k|, |k|] is denoted as Sn(|k|). Similarly, the inten-
sity of the first harmonic plateau is denoted as Splateau(|k|).
Splateau(|k|) is calculated by integrating the harmonic spectrum
from 4 to 9 eV. The third-, fifth-, and seventh-order harmonics
are considered because only these three order harmonics are
located at the below-band-gap region, except for the funda-
mental frequency field as shown in Fig. 7(a). Figure 7(b)
shows the calculated Sn (n = 3, 5, 7) and Splateau as a function
of |k|. One can clearly see that both of Sn and the Splateau
decrease monotonically with increasing |k|. However, there
are some subtle differences between the tendencies of Sn and
Splateau. Specifically, Sn descends rapidly with increasing |k|
in the whole BZ. Splateau first decreases rapidly when |k| is
relatively little, then remains nearly constant when |k| is great
enough, as indicated by the horizontal dashed asymptotic line
in Fig. 7(b). The different tendencies of Sn and Splateau suggest
that the below-band-gap harmonics in the overall harmonic
spectra are contributed by all valence electrons within the
whole BZ, whereas the first plateau harmonics in the overall
harmonic spectra are mainly contributed by only the valence
electrons close to the � point. In fact, the latter opinion has
been verified in Sec. IV. The nearly negligible contributions
of the valence electrons far away from the � point to the
first plateau harmonics in the overall harmonic spectra result
in the slow decay of Splateau when all valence electrons are
considered. Hence, compared with the slow decay of Splateau,
the rapid drop of Sn results in the low relative yields of below-
band-gap harmonics. The relative yield of the below-band-gap
harmonic is calculated by the intensity ratio between Sn(|k|)
and Splateau(|k|) as

ηn(|k|) = Sn(|k|)
Splateau(|k|) . (16)

Figure 7(c) shows the calculated harmonic intensity ratio
ηn as a function of |k| for third-, fifth-, and seventh-order
harmonics. One can see that ηn increases firstly, reaches the
maximum at about |k| = 0.1π/a0, and rapidly decreases with
the further increasing of |k| for these three-order harmonics.
From a global perspective, ηn exhibits a distinct descending
trend when |k| increases. Eventually, ηn reaches the minimum
when all valence electrons are considered, i.e., |k| = π/a0.
Our results suggest that the interferences among multiple va-
lence electrons with different crystal momenta significantly
suppress the generation of below-band-gap harmonics in the
overall harmonic spectra.

VI. CONCLUSION

In summary, the interference effects of multiple valence
electrons on solid-phase HHG are studied for a band-gap
semiconductor in a LP laser pulse. By solving TDSE for
the electrons with various crystal momenta, we demonstrate
the fact that the dynamics of multiple independent electrons
in valence bands result in some unique radiation character-
istics of observed harmonic spectra in solids. Our results
suggest that the disappearances of even-order harmonics in
overall harmonic spectra are the consequences of destructive
interferences between the electron pairs with opposite crystal
momenta in sign for a crystal with inversion symmetry. It
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turns out that each plateau in the overall multiple-plateau har-
monic spectrum is mainly contributed by the valence electrons
located at different crystal momentum regions. The higher
harmonic plateaus are dominated by the valence electrons
farther away from the � point. The significant suppression of
the harmonic yields in the below-band-gap region is observed
and is further explained by the interferences among multiple
valence electrons. Our work is helpful to gain insight into the
ultrafast electron-hole dynamics of multiple valence electrons
in solids.
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