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Scattering singularities of optical waveguides under complex modulation
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We employ complex index modulation to manipulate light scattering in a waveguide and achieve different
kinds of singularities in the system. The singularities refer to poles or zeros in the scattering and transfer
matrices. By using spatially complex index modulation, we realize unidirectional zero-reflection singularities,
which can be manipulated by adjusting the modulation phase difference between the real and imaginary parts.
Laser-coherent perfect absorber singularities with both diverging reflectance and transmittance are also achieved
by cascading two waveguides with different modulation phases. Meanwhile, bidirectional zero-reflection
singularities with reflectionless light transporting on both sides of the waveguides are also demonstrated.
In addition, we utilize temporally complex modulation to obtain transfer matrix singularities and achieve
nonreciprocal light transmission. The study may find great applications in light amplification, attenuation, and
absorption, as well as constructing nonreciprocal optical devices.
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I. INTRODUCTION

Singularities manifest themselves as unique properties in
non-Hermitian systems [1–5]. One representative example
is the singularities in energy spectrum, i.e., the exceptional
points (EPs), at which two branches of Riemann surface
coalesce [6–10]. EPs have been explored to take on a variety
of effects, such as band repulsion, crossing, bifurcation, and
phase transition [11–13]. In a scattering system, EPs also
appear when both the eigenvalues and eigenvectors of the
scattering matrix coalesce. In this case, the system exhibits
unidirectional or bidirectional invisibility, which refers to
reflectionless light for either side incidence [7–9,14,15]. An-
other example is eigenvalue singularities, i.e., the poles and
zeros of the scattering matrix eigenvalues [16–21]. These
singularities also have physically observable effects: the poles
of scattering matrix may lead to lasing as the system could
generate outgoing waves without external inputs. On the
contrary, the scattering matrix zeros correspond to coherent
perfect absorption (CPA) as the system absorbs appropriate
incoming waves perfectly without reflections, manifesting a
time-reversal process of lasing. By engineering the laser-
CPA singularities, a variety of phenomena can be readily
observed, including super scattering [22] and power oscil-
lation [23,24]. Moreover, near the laser-CPA singularities,
the scattering structure is usually accompanied by giant light
transmittance and reflectance, which can thus be exploited
to manipulate light amplification, attenuation as well as
absorption [20–22,25].

*wangbing@hust.edu.cn
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Most previous research on light scattering singularities fo-
cus on static structures where the refractive index distributions
are constant, such as the realization of laser-CPA singulari-
ties in PT -symmetric structures [18,26,27]. In recent years,
the index-modulated systems have attracted more attention,
especially in the context of nonreciprocal light transmission
[28,29] and chiral mode switches [30,31]. In terms of the
modulation formats, index modulation can be divided into
two groups: spatial modulation and temporal modulation.
The spatial index modulation can impose a modulation wave
vector into the structure and hence can arouse mode cou-
plings with different wave vectors. In contrast, the temporal
modulation can induce mode frequency shift and thus be
exploited to achieve nonreciprocal light transmission. Specifi-
cally, the temporal modulation has been recently introduced
in coupled resonators [32], Mathieu slab [33], and waveg-
uides [34–37] where nonreciprocal gain or amplification and
bidirectional invisibility have been realized. Thanks to the
facility in controlling mode transitions, we are able to intro-
duce modulation approaches to the scattering systems, aim-
ing to provide more functionality to control light scattering
properties.

In this work, we introduce both spatially and temporally
complex modulations to a waveguide system and realize
control over the singularities. First, spatially complex index
modulation is applied on a single waveguide and the uni-
directional zero-reflection singularities are realized, which
manifest reflectionless light transmission. Then we utilize two
cascaded waveguides with different modulation phases and
realize the laser-CPA singularities showing giant transmission
and reflectances as well as bidirectional reflectionless trans-
mission. All these singularities can be readily controlled by
the modulation phase difference of the two waveguides and
waveguide length. Finally, the transfer matrix singularities
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FIG. 1. (a) Schematic of a two-dimensional slab waveguide con-
sisting of silicon core embedded in air cladding. (b) Waveguide dis-
persion diagram, where the solid red and dotted blue curves denote
TE0 and TE1 bands, and the dark region represent the light cone.
The frequencies and wave numbers of the modes �1, � ′

1, �2, and �3

are ω1 = ω′
1 = ω3 = 0.8879(2πc/a), ω2 = 1.202(2πc/a) and kz1 =

kz2 = 2.716(2c/a), kz3 = 1.366(2c/a), k′
z1 = −2.716(2c/a), where

a = 1 μm. (c) Spatial profiles of the real (black solid) and imaginary
(green dashed) modulation functions.

in a waveguide under temporally complex modulation are
discussed, where the nonreciprocal light transmission and
mode conversion are observed.

II. RESULTS AND DISCUSSIONS

A. Spatially complex modulation

To start, we investigate light scattering properties in a
waveguide undergoing spatially complex index modulation.
The system structure is depicted in Fig. 1(a), which consists
of a silicon slab waveguide with core permittivity εd = 12.25
and width d = 0.22 μm imbedded in the air with permittivity
ε0 = 1. The central dark area represents the modulated region,
of which the length is denoted by L. As shown by the dotted
blue and solid red curves in Fig. 1(b), the waveguide can
support symmetric (TE0) and antisymmetric (TE1) modes,
respectively. In the presence of the permittivity modulation,
photonic interband or intraband transitions will occur between
the modes. First, we consider a spatially complex modulation
of the core permittivity applied to the modulation region, of
which the modulation profile reads

ε(z) = εd + δε cos(qz + φ) + iδε cos(qz + φ′), (1)

where δε and q are common modulation amplitude and
wavenumber, φ and φ′ are modulation phases of the
real and imaginary parts, respectively. The profiles of the
real and imaginary modulations are plotted in Fig. 1(c),
where we choose q = kz1−(−k′

z1) = 2kz1, such that the
phase-matching condition is satisfied between the for-
ward and backward modes �1 and � ′

1, giving rise to
the coupling between them. The electric-field distribu-
tion in the modulated region is thus the superposition
of �1 and � ′

1, E (x, z, t ) = a1(z)E1(x) exp[i(kz1z−ω1t )] +
a2(z)E1(x) exp[i(−kz1z−ω1t )], where E1(x) and a1,2(z) are
the normalized mode profile and mode amplitudes, respec-
tively. Using slowly-varying envelope approximation [28,29],
we can obtain the coupled-mode equation

i
d

dz

[
a1(z)

a2(z)

]
= H

[
a1(z)

a2(z)

]
=

[
− δε

2π
α −(Ce−iφ+iCe−iφ′

)

Ceiφ+iCeiφ′ δε
2π

α

][
a1(z)

a2(z)

]
, (2)

where C = 1/2ε0ω1 ∫ δεE∗
1 (x)E1(x)dx is the common coupling strength between �1 and � ′

1 induced by the real and imaginary
modulations, respectively. The diagonal term denotes the mode intrinsic loss, as described by α = δnkz1, where δn is the
imaginary part of the effective index modulation amplitude [38]. The solution of Eq. (2) is [a1(z), a2(z)]T = M[a1(0), a2(0)]T,
where M = [M11, M12; M21, M22] is the mode transfer matrix, which is given by

M = 1

B− − B+

[
B−e−iE+z − B+e−iE−z −e−iE+z + e−iE−z

B+B−(e−iE+z − e−iE−z ) −B+e−iE+z + B−e−iE−z

]
, (3)

in which the parameters are

E± = ±
√(

δε · α

2π

)2

− 2iC2 cos(φ − φ′), (4)

B± = − δε·α
2π

− E±
Ceiφ + iCeiφ′ =

(− δε·α
2π

− E±
)
ei(φ+φ′+ π

2 )/2

2 cos
(
φ − φ′ − π

2

) . (5)

From the transfer matrix, we can obtain the scattering
matrix S = [t1, r1; r2, t2], [5,39] with

r1 =−M21

M22
, r2 = M12

M22
, t1 = 1

M22
, t2 =M11− M12M21

M22
,

(6)

where r1,2 and t1,2 are the reflection and transmission coeffi-
cients from the left- and right-side incidences, respectively.
It can be verified that det(M) = 1, such that t1 = t2 = t =
1/M22. The mode reflectance and transmittance are thus given
by R1,2 = |r1,2|2 and T = |t |2.

Figure 2(a) shows the mode reflectances R1, R2

and transmittance T as functions of the modula-
tion phase difference φ−φ′ between the real and
imaginary modulations for different modulation lengths
L = π and L = 2π , respectively. For visualization purposes,
the modulation amplitude is fixed at δε = 0.2 such that the
effect could be observed with a relatively short waveguide.
Experimentally, the real and imaginary modulations may be

033818-2



SCATTERING SINGULARITIES OF OPTICAL … PHYSICAL REVIEW A 101, 033818 (2020)

0 0.51 0.5 1

0.5

1

0
2 30 1 4

1

2

0

3

4

5

' (units of )π L/ (μm)π

( )=0.5' πL=π
L=2π T

R1 R2

T

R1

R2

(b)(a)

Simulation
Theory

x
)

mμ(

0.5
0

0.5

(c)

(d)

Input

Modulation region

2 30 1 4

1

2

0

3

4

5

L/ (μm)π

( )= 0.5' π

T

R1

R2

Simulation
Theory

0 1 2 3 5 6 71 4
z (μm)

(e)
1

0

x
)

mμ(

0.5
0

0.5 Input

Modulation region

0 1 2 3 5 6 71 4
z (μm)

FIG. 2. (a) Left and right incidence reflectances R1, R2 and transmission T as functions of the modulation phase difference φ−φ′ between
real and imaginary parts for different modulation lengths of L = π and L = 2π , respectively. (b),(c) Mode reflectance and transmittance as
functions of the modulation lengths for fixed modulation phase differences φ−φ′ = ±π/2. The solid and circle curves represent the theoretical
and simulated results, respectively. (d),(e) Electric-field distributions from the left incidence of �1 with φ−φ′ = −π/2 and right incidence
with φ−φ′ = π/2. In (d) and (e), the white solid arrow indicates light incident direction and the while dashed arrow denotes the length of
modulation region.

implemented by adding Si layers and Ge/Cr structures [38,40–
42], respectively. The coupling strength and attenuation
constant are calculated to be C = 0.0833 μm−1 and
α = 0.164 μm−1. For each choice of modulation length,
there always exist two reflection singularities with R1 = 0 at
φ−φ′ = −π/2 and R2 = 0 at φ−φ′ = π/2. Meanwhile, the
transmittance goes to unity with T = 1 at each singularity.
Since the reflectance vanishes at each singularity, the system
thus exhibits unidirectional invisibility or transparency
[43,44], i.e., the mode incident from either side of the
waveguide can transmit the modulated region without being
reflected. More specifically, the eigenvalues and eigenvectors
of the scattering matrix are simultaneously degenerate
to λ±

s = t ± (r1r2)1/2 = t and [0, 1]T at the singularities,
manifesting the signature of EPs. In this regard, the EPs and
the zero-reflection singularities can coincide with each other.
Also note that the degenerate eigenvalue t is real, the mode
thus exhibits no net energy amplification and dissipation in
the modulation region. Figures 2(b) and 2(c) show the mode
reflectance and transmittance as functions of the modulation
length L at the two singularities of φ−φ′ = ±π/2. The
theoretical results (solid curves) calculated from Eq. (6) agree
well with numerical ones (circle curves) from finite-element
simulations with COMSOL Multiphysics [45]. One sees

that R1 (R2) increases monotonously while R2 (R1) = 0
and T = 1 keep unchanged as L increases. So in the
vicinity of each singularity, the reflectance is insensitive
to the change of waveguide parameter, indicating the robust
reflection singularities. In Figs. 2(d) and 2(e), we simulate the
electric-field evolutions at the singularities of φ−φ′ = ±π/2
and L = 2π by injecting the mode �1 from the left and right
sides, respectively. In both cases, the mode can go through the
modulated region with negligible reflectance, which further
validates above theoretical analysis.

B. Spatially imaginary modulation

In this section, we further consider the situation where
two cascaded modulation regions are included, as shown in
Fig. 3(a). Specifically, we focus on a system where only
the imaginary index modulation, i.e., gain-loss modulation
is present. For the sake of simplicity, we consider the two
regions have the same length L and attenuation constant
α, each of which is modulated with a common modulation
amplitude δε = 0.2 but different modulation phases φ′

1 and
φ′

2. The modulation profiles are illustrated in Fig. 3(b). In each
region, the coupling matrix is given by

H1,2 =
[

− δε
2π

α −iCe−iφ′
1,2

iCe−iφ1,2 δε
2π

α

]
, (7)

each of which corresponds to a transfer matrix

M1,2 = 1

B− − B+

[
B−e−iE+z − B+e−iE−z −e−iE+z + e−iE−z

B+B−(e−iE+z − e−iE−z ) −B+e−iE+z + B−e−iE−z

]
, (8)
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FIG. 3. (a) Schematic of the slab waveguide with two modulation regions. Each region has a length of L. (b) Spatial profiles of the
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where

E± = ±
√(

δεα

2π

)2

+ C2, (9)

B± = −
δεα
2π

+ E±
iCeiφ′

1,2
. (10)

So the total mode transfer matrix is M = M2M1. It can also
be confirmed that det(M) = 1, and the matrix elements satisfy
the following relation:

M11 = M∗
22, M12 = −M∗

21. (11)

So the reflectances from the left- and right-side incidences
become equal to each other R1 = R2 = R = |M12|2/|M22|2,
and T = 1/|M22|2. It is worth noting that the relation in
Eq. (11) is different from that in PT -symmetric structure,
M12(21) = −M∗

12(21) [18,46]. It will be discussed below that

our structure shares some similarities compared to the PT -
symmetric structures.

Figures 3(c)–3(f) show the logarithmic plot of the transfer
matrix elements as functions of the length L and modulation
phase difference 
φ′ = φ′

2 − φ′
1 between the two modulation

regions. As shown in Fig. 3(c), there are two singularities
with |M11(22)| = 0 at L = 3π , 
φ′ = 0.04π and L = 9π ,

φ′ = −0.04π . The variation of |M12(21)| is also depicted in
Fig. 3(d), which possesses a pair of zeros. Since the two sets
of zeros do not coincide with each other in positions, we can
obtain both infinite reflectance and transmittance R1 = R2 =
|M12|2/|M22|2 = ∞ and T = 1/|M22|2 = ∞ at the |M11(22)|
zeros, as denoted in Figs. 3(e) and 3(f). The simultaneous
infinite reflectance and transmittance means that the gain-loss
modulated regions can generate outgoing waves without ex-
ternal input waves, corresponding to the laser operation con-
ditions [16,19]. To gain more insight on the physical meaning
of the |M11(22)| singularities, we also analyze the scattering
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matrix eigenvalues. The two scattering matrix eigenvalues
are λs

± = t ± (r1r2)1/2, which constitute a nonunimodular
inverse conjugate pair satisfying λs

± = 1/(λs
∓)∗. At the

|M11(22)| zeros, we have λ+
s = 0 and λ−

s = ∞, of which the
former corresponds to the CPA, while the latter is a signature
of the laser operation. Due to the simultaneous realization
of CPA and laser, the system manifests itself as a CPA
laser at the two zeros, which can be referred to laser-CPA
singularities [18].

Then, we discuss the zero-reflection singularities (EP)
|M12(21)| = 0 at L = 3π , 
φ′ = −0.96π as shown in
Fig. 3(d). Since M12 = M21 = 0, we have R1 = R2 = 0, the
system will manifest bidirectional invisibility, i.e., under the
same parameters, the mode incident from either the left or
right side of a waveguide can go through the modulated
region without being reflected [33]. Note that bidirectional
invisibility requires the simultaneous vanishing R1 and R2,
which is different from the unidirectional invisibility case
realized in Fig. 2(a), where either R1 or R2 vanishes but they
cannot vanish simultaneously. At the singularities, we also
have T = 1, meaning that there is no net energy amplification
and dissipation in the modulation region from either left and
right side incidences. It is also referred to the anisotropic
transmission resonance satisfying |T −1| = (R1R2)1/2, as pre-
viously achieved in PT -symmetric structures [46]. In terms of
the scattering matrix eigenvalues, they will become degener-
ate λ±

s = t ± (r1r2)1/2 = t at the bidirectional zero-reflection
singularities.

In Figs. 4(a)–4(c), we choose a fixed modulation length
L = 3π and plot the transfer matrix elements, mode

reflectance R1 (or R2) and transmittance T as the functions
of the modulation phase difference 
φ′ = φ′

2 − φ′
1 between

the two modulation regions. It is shown in Fig. 4(a) that
|M11(22)| = 0 at 
φ′ = 0.04π . Meanwhile, as shown in the
dotted blue and solid red curves in Fig. 4(b), M11(22) undergoes
an abrupt phase jump at these laser/CPA singularities, which
further validates the singularity nature for the zeros [14]. As
shown by the dashed black and dashed dotted green curves
in Fig. 4(b), this π -phase jump is also applicable to the
bidirectional zero-reflection singularities with |M12(21)| = 0.
Figure 4(c) shows the mode reflectances and transmittance
as functions of the modulation phase difference 
φ′. The
inset figures in Fig. 4(c) show both the minimum and maxi-
mum values of reflectance, corresponding to the bidirectional
zero-reflection and laser-CPA singularities, respectively. In
Figs. 4(d) and 4(e), we simulate the electric-field distributions
at the bidirectional zero-reflection and laser-CPA singularities
with R1,2 = 0 and R1,2 = ∞. Here the black arrows represent
the direction of energy flow in the structure. For the zero-
reflection singularity as shows in Fig. 4(d), the energy flow
in the forward direction dominates while in the backward
direction it is negligible. On the contrary, the energy flow
in the backward direction dominates over that in the forward
direction, as shown in Fig. 4(e), which is a clear signature for
the laser-CPA singularity.

C. Temporally complex modulation

In above sections, we focus on spatial index modula-
tion where the mode couplings between the forward and
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backward propagating modes can be induced. In this section,
we take a step further to study temporal index modulation and
then realize nonreciprocal light propagation. It is interesting
to compare the spatial and temporal index modulation: the
former can induce the coupling between modes with same
frequency but different wave vectors, while the later can
arouse mode couplings with different frequencies but the same
wave vectors. In this regard, the spatial modulation can be
described by the scattering matrix, which is inapplicable for
the temporal modulation [18,33,36]. However, both situations
can be described by the mode transfer matrix. In this section,
we investigate the singularities, i.e., the zeros in the transfer
matrix elements for the temporal modulation and then exploit
these singularities to achieve nonreciprocal light propagation.
Specifically, we assume the waveguide core permittivity is
subject to a temporally complex modulation

ε(x, t ) = εd +δεsgn(x) cos(�t +φ)+iδεsgn(x) cos(�t + φ′),
(12)

where � = ω1−ω2 is chosen to match the frequency spacing
between �1 and �2, which gives rise to the direct inter-
band transitions between them [28,29]. Note that sgn(x) is a
transverse modulation profile chosen to reach the maximum
coupling strength. The corresponding coupled-mode equation
reads

i
d

dz

[
a1(z)

a2(z)

]
=

[
0 Ce−iφ+iCe−iφ′

Ceiφ+iCeiφ′
0

][
a1(z)

a2(z)

]
.

(13)

The solution can also be expressed by mode transfer matrix
M = [M11, M12; M21, M22]. Based on this, we can then define
the mode conversion efficiency |Mi, j |2(i, j = 1, 2), indicating

the intensity ratio between the output mode �i to the incident
� j , which reads

|M11|2 = |M22|2 = e2η

4
+ e−2η

4
+ cos2(η) − 1

2
,

|M12|2 =
√

1 − sin(φ − φ′)
1 + sin(φ − φ′)

(
e2η

4
+ e−2η

4
− cos2(η) + 1

2

)
,

(14)

|M21|2 =
√

1 + sin(φ − φ′)
1 − sin(φ − φ′)

(
e2η

4
+ e−2η

4
− cos2(η) + 1

2

)
,

where η = Cz[cos(φ−φ′)]1/2. In general, for φ−φ′ �= nπ (n ∈
Z ), we can obtain |M12| �= |M21|, which indicates the nonre-
ciprocal frequency conversion between the two modes: when
�1 is incident from the left side, the intensity of output mode
�2 (|M21|2) will be different from the intensity of output
�1 (|M12|2) as �2 is incident from the right side. Specifi-
cally, for φ−φ′ = −π/2, we have η = 0, |M11| = |M22| = 1,
|M12| = 2Cz, and |M21| = 0. In the forward and backward
directions, the antisymmetric mode �2 will convert to the
symmetric mode �1, while the inverse conversion process is
inhibited. For φ−φ′ = π/2, we have η = 0, |M11| = |M22| =
1, |M12| = 0 and |M21| = 2Cz, thus �1 will convert to �2

and the inverse conversion process is inhibited. The phase
differences φ−φ′ = ±π/2 correspond to the singularities in
Eq. (14), manifesting the one-way nonreciprocal conversion.

The one-way nonreciprocal conversion between modes �1

and �2 can also be verified by COMSOL Multiphysics [45].
Figure 5 shows the distribution of electric field Ez and the
corresponding relative intensity of two modes when �1 or �2

is injected. The phase difference is set as φ−φ′ = −π/2. As
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we input a Gaussian pulse in the symmetric mode �1, shown
in Fig. 5(a), the field is uniform along the z direction without
mode conversion. The intensity of �1 keeps invariable while
�2 keeps zero, plotted in Fig. 5(c). As the antisymmetric
mode �2 is injected from the right side, mode conversion
happens, shown in Figs. 5(b)–5(d). The intensities of �1(z)
and �2(z) calculated by simulated results (solid and dashed
curves) are consistent with the analytical results (circles) by
Eq. (14).

Thus we have realized the nonreciprocal frequency con-
version, which cannot be achieved in a single waveguide
under just real modulation. For the structure without gain-loss
modulation, it needs at least two segments and a central un-
modulated region having a width different from the modulated
waveguides to realize the nonreciprocity property [29]. It
should be mentioned that the nonreciprocity will disappear
once the temporal modulation is changed to spatial modu-
lation, for example, the conversion between �1 and �3 in
Fig. 1(b). The coupled-mode equation and the corresponding
transfer matrix are not altered as shown in Eqs. (13) and
(14). The difference is that the modulation phases φ and φ′
will reverse sign as the propagation direction is changed in
the spatially modulated waveguide. For example, as �1 is
incident from the left side, the amplitude of output �3 will
be |M21(φ, φ′)|. As �3 is incident from the right side, the
intensity of output �1 will be |M12(−φ, −φ′)|. According
to Eq. (14), we can get that |M21(φ, φ′)| = |M12(−φ, −φ′)|,
meaning a reciprocal conversion.

III. CONCLUSIONS

In summary, we have investigated the singularities of scat-
tering and transfer matrices for light propagating in optical
waveguides under spatial and temporal modulations. For spa-
tial modulation applied on the waveguide, the unidirectional
invisibility is realized at the singularity of EP. The reflectance
along the opposite direction of propagation vanishes and the
transmission becomes unitary. Bidirectional invisibility can
also be achieved by modulating two regions of the waveguide.
The reflectance on both directions becomes zero. Meanwhile,
giant reflectance and transmission are realized at the sin-
gularities of laser and CPA. For temporal modulation, the
one-way and nonreciprocal frequency conversion is realized
at the singularity of transfer matrix, which is controllable by
adjusting the modulation length and phase. The study provides
a promising approach for manipulating light amplification,
attenuation, and absorption, and possibility for nonreciprocal
optical devices, such as optical isolators.
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