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Abstract: Serving as cavity quantum electrodynamic testbeds at the nanoscale, the past decade
has seen a prosperous rise in strong coupling between metallic nanostructures and semiconductor
excitons. Within the iteration of the delicate plasmonic nanostructures, metal-insulator-metal
(e.g., various nanoparticles-on-mirror) planar structures with highly confined fields and decent
quality factors, come to prominence. Excitons in transition metal dichalcogenides (TMDCs)
emerge as a favored choice of quantum emitters due to their room-temperature performance
and potential integration into optoelectronic devices. In this paper, strong coupling with a Rabi
splitting of 137 meV was achieved by coupling radial breathing mode from a nanoplate-on-mirror
planar nanoantenna with neutral excitons in monolayer WSe2. More importantly, we investigated
the morphology dependence of the coupling in planar nanopatch antennas. It showed that
the efforts taken to change the shapes and sizes of the nanopatch structures (e.g., hexagonal,
triangular, round plates, etc.) can not effectively optimize the coupling. This is because only
the excitons at the edges could contribute to the coupling strength. It is double-edged that, on
the one hand, it sets a limitation for tuning the coupling strength, on the other hand, it prevents
involving more excitons which may degrade the plexcitonic nonlinearity.

© 2025 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

When the energy exchange between two subsystems is faster than their dissipative dynamics, the
interaction steps into a so-called strong coupling regime [1–6]. In this regime, the quasiparticle
behavior of plexcitons (plasmon-exciton hybrids) could help pass the strong nonlinearity from
the excitons to the photons which have purely linear performance [7,8]. In the past decades,
researchers have spared no effort in establishing plexcitonic systems with great Rabi frequencies
[9–24], while simultaneously keeping fewer excitons involved [25–29]. In principle, only
fewer-excitons participated strong coupling can truly reflect quantum mechanical effects. The
strong light-matter interaction in solid-state systems which have potential applications in quantum
computing [30,31], low-threshold lasers [32–34], quantum information storage and processing
[35,36].

Among different structures, the planar nanopatch antennas have aroused great interest due
to the well-defined bottom-up for top-down fabrication, ultrasmall mode volumes, high quality
factors, etc [9–14]. With microscopic metal-insulator-metal features formed by the nanogaps
between the bottom of the nanoparticles (NPs, nanospheres, nanocubes, plates etc.) and the
metal substrate, the antenna could easily concentrate the field into an extremely confined regime
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in the spacer [37]. With the lowest [12–15] or higher [10,17,26] order modes of the antenna, a
lot of efforts have been taken in order to increase the Rabi splitting by optimizing the shapes,
and sizes of the antenna. Yet, the optimization remains limited, there are still no outstanding
improvements being observed.

This paper aims to study and compare the coupling performance of the general nanopatch
antenna with excitons from monolayer TMDCs. The higher order modes were applied in order to
get a simultaneously small mode volume and linewidth, which may benefit the coupling. As for
proof-of-principle demonstration, the radial breathing modes (RBM) of the hexagonal nanoplate
(flat-plate particle) and monolayer WSe2 excitons were coupled, and a Rabi splitting of 137 meV
was achieved. Compared with the previous strong coupling systems between single particle
and monolayer WSe2 [19–22], we have achieved both large splitting energy (> 100 meV) and
large criteria parameter 2g/(Γp + Γ0) = 0.7, satisfying the stricter strong coupling criterion. The
origin and evolution of this breathing mode were clearly revealed in the language of plasmon
hybridization, i.e., bonding octuple-octuple modes. Its evolution with the change the morphology
shows that the breathing modes are robust and independent of the shapes. It would further
degenerate with the l01 antenna modes when the hexagonal plate is reshaped into a round disk.
These results in general give a landscape of general nanopatch-like configurations, and the modes
researchers usually investigate only have non-zero in-plane field around the edges, which won’t
help much with enhancing the Rabi splitting. Instead, the rounding curvature at the corners plays
much significant roles in both boosting Rabi splitting and shrinking down the number of involved
excitons.

2. Radial breathing mode of the planar nanopatch antenna

As a representative of the nanopatch antenna, we composed a synthesized hexagonal Au nanoplate
with an Ag film (HNPoM) spaced by an Al2O3 thin layer (Figs. 1(a),(b)). The flat bottom
facet of the nanoplate and the metallic substrate formed a well-defined metal-insulator-metal
configuration that can support a series of confined nanocavity modes. Instead of using the
fundamental magnetic resonance of the nanopatch antenna, we take advantage of the higher-order
plasmon called radial breathing mode [38–40]. The scattering of the HNPoM was simulated
according to the parameters given by the scanning electron microscope image (Fig. 1(b)): the
length of the nanoplate defined by the distance between parallel edges equals 170 nm, height of
the nanoplate is 40 nm. The nanoplate was covered by CTAB with a thickness of 2-4 nm. See S1
in Supplement 1 for more simulation details.

Figure 1(c) presents three prominent nanocavity resonances of the HNPoM at 1.8, 1.6 and
1.1 eV. The charge distributions of each resonance in the inset have one, two, and three pairs
of nodes in the mode profiles, manifesting a dipole-, quadrupole-, and octopole-like resonance,
respectively. To investigate the origin of the RBM, we conducted detailed simulations of a
GHN on an Ag film with various gap thickness in Fig. S2a. To name each resonance based
on a language of plasmon hybridization, in Fig. S2b we also provide detailed simulations of
the simplified structures as nanoparticle dimers. In Fig. 1(c), we show the scattering spectra
of GHNs on an Ag film with a 9 nm thick spacer layer (Al2O3). The magnetic mode (mode I,
near 1100 nm, represented by green triangles) and RBM (mode III, near 700 nm, represented
by red triangles) are bright, while the quadrupole mode (mode II, near 750 nm, represented by
blue triangles) is dark. Figure 1(d) displays the in-plane electric field distribution of the RBM.
The in-plane electric field enhancement of the RBM is much stronger than that of the ordinary
quadrupole mode. And if we compare these three eigenmodes, we can easily see that the in-plane
component of the electric field only situates at the edges of the NPs. It could be easily understood
as analogous to the electric field of a parallel plate capacitor. Therefore, only the excitons which
are near the edge of the nanocavities can be involved in the coupling process.

https://doi.org/10.6084/m9.figshare.28171490
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Fig. 1. The modes analysis of a single nanoplate-on-mirror cavity. (a) Schematic of a
single Au hexagonal nanoplate (GHN) on an Ag film. (b) A typical SEM image of single
nanoplates on the Ag film. (c) Simulated scattering spectra of the Au nanoplate-on-film with
a 9-nm thick Al2O3. Insets are the charge distribution of the magnetic dipole mode (mode I,
green marker), quadrupole mode (mode II, blue marker), and radial breathing mode (RBM)
(mode III, red marker). (d) In-plane electric field distribution of the three modes.

3. Strong coupling between HNPoM and monolayer WSe2: experiments

As a cavity higher-order mode, the RBM resonance can well match the energy of the excitons in
the visible range, such as neutral exciton from monolayer WSe2. The hybrid system consists of
single GHNs on an Ag film separated by monolayer WSe2 and Al2O3, as shown in Fig. 2(a). In the
experiment, the hybrid nanocavities were fabricated using a bottom-up nanoassembly. First, the
Ti/Ag film was deposited by electron-beam evaporation, then the spacer layer of Al2O3 was coated
by atomic layer deposition (ALD). Monolayer WSe2 fabricated by chemical vapor deposition
(CVD) was then transferred with the help of PDMS. The GHNs capped with the residual CTAB
were then sparsely deposited onto the monolayer WSe2 by drop-casting. The size of GHNs ranges
from 130 nm to 180 nm with a thickness of 40 nm. In Fig. 2(a), a scanning electron microscopy
(SEM) image of the hybrid nanocavity further confirms its individual dispersion and polygonal
morphology. Note that single GHNs are generally not standard hexagons, but shapes between
regular hexagons and regular triangles. Thereby, the simulation model is based on non-standard
hexagons.

By adjusting the thickness of the Al2O3 layer to 9 nm, the resonance energy of the RBM matches
the exciton energy well. A typical dark-field scattering spectrum and the photoluminescence
(PL) spectrum of monolayer WSe2 with a peak at 710 nm are plotted in Fig. 2(c). Dark-field
scattering spectra were measured at the single particle level on an upright optical microscope
(Olympus, BX53) equipped with a spectrometer (Andor, 303i) as shown in Fig. S3 [13]. Several
nanoplates of different sizes were measured, and the scattering spectra are displayed in Fig. 2(d).
It can be seen that a fixed dip appeared at the exciton energy of monolayer WSe2. The RBM
progressively varied from high to low energies, crossing the exciton transition energy at 1.75
eV. The mode splitting occurs in all scattering spectra. Additionally, the scattering spectra of
the hybrid nanocavities are simulated to understand the coupling mechanism. In the simulation,
the permittivity of the WSe2 is anisotropic with the in-plane components modeled as a Lorentz
oscillator. By tuning the size of nanoplate, similar scattering spectra can be obtained as shown in
Fig. 2(d). This variation trend is generally in agreement with that observed in our experiments.
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Fig. 2. Strong coupling between HNPoM and monolayer WSe2. (a) Schematic of the hybrid
nanocavity with monolayer WSe2 integrated into the gap region of the HNPoM structure.
The pink triangle represents the monolayer WSe2. (b) SEM image of the hybrid nanocavity.
The darker grey areas correspond to WSe2, and the lighter ones to Ag film. Inset shows the
enlarged hexagonal Au nanoplate. (c) Dark-field scattering spectra of HNPoM, and the PL
spectra of monolayer WSe2. (d) Measured and simulated scattering spectra of the hybrid
nanocavities acquired from different nanoplates. The light blue areas denote the exciton
energy position. (e) Dispersion curves of hybrid nanocavities as a function of detuning.
Blue and red dots denote the spectral peaks extracted from experimental scattering spectra.
The solid lines represent the fitting results obtained from the coupled oscillator model. (f)
Hopfield coefficients for the HEB and LEB.

Further, we extract the energy peaks from the measured scattering spectra and plot the
dispersion diagram, showing the anti-crossing curve in Fig. 2(e). The mixed states can be
described using the coupled oscillator model [15–19]

⎛⎜⎝
Ep − iΓp/2 g

g E0 − iΓ0/2
⎞⎟⎠ ⎛⎜⎝
α

β

⎞⎟⎠ = E±
⎛⎜⎝
α

β

⎞⎟⎠ (1)

where Ep, E0 are the plasmon and exciton energies; Γp, Γ0 are the linewidths of the plasmon and
PL; g is the coupling strength; E± is the intrinsic energy. α, β are the Hopfield coefficients for
the plasmon and exciton contributions, respectively, that satisfy condition |α |2 + |β |2 = 1. They
account for the linear combination of the plasmonic and excitonic states. Solving the Eq. (1), we
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could obtain the expression for intrinsic energy E± as [18]

E±=
1
2
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where δ = Ep − E0 is the detuning, referring to the energy difference between the plasmon
and exciton. The energy peaks above the exciton energy are called the high energy branch
(HEB), while those below the exciton energy are called the low energy branch (LEB). The
energy difference between the HEB and LEB is named as vacuum Rabi splitting (ℏΩ), when
Ep = E0. We fit the experimental data in the dispersion curves by Eq. (2). Rabi splitting in our

experiment is calculated as ℏΩ =
√︃

4g2 −
(︂
Γp−Γ0

2

)︂2
=137 meV. The plasmon linewidth of HNPoM

was extracted to be Γp =125 meV and the exciton linewidth was found to be Γ0= 72 meV (Fig.
S4). Thus, it satisfies the stricter strong coupling criterion, ℏΩ ≥ (Γp + Γ0)/2 [4,9,18]. Moreover,
the Hopfield coefficients are calculated to estimate the components of the excitons and plasmons
in the strong coupling system. As shown in Fig. 2(f), when δ<0, the HEB is primarily due to the
energy contribution of excitons, while the LEB is mainly attributed to the energy contribution of
plasmons. Conversely, when δ>0, the energy contributions are reversed. Specifically, at zero
detuning, the Hopfield coefficients of HEB and LEB are close to 0.5, indicating that the plasmon
and exciton states are coupled to form new hybrid states.

For comparison, Ag nanocubes (100 nm in edge length) and Au spheres (160 nm in diameter)
instead of Au nanoplates are used to construct the NCoM and NPoM nanocavities and form the
typical magnetic modes. Thus, the coupling between MIM and monolayer WSe2 is studied at
room temperature. The experimental results are shown in Fig. S5 and S6. By measuring several
NPs of different sizes, scattering spectra with mode splitting are obtained, and the anti-crossing
curve is also plotted. After fitting the experimental data, the splitting energy is estimated to
be 100 meV and 127 meV respectively for nanocubes and nanospheres, which are less than the
splitting used nanoplates. It is worth noting that the magnetic modes of NCoM and NPoM have
a larger linewidth than the RBMs of HNPoM. So to more accurately compare these coupled
systems, we can use the parameter 2g/(Γp + Γ0). The values are calculated as 0.70, 0.42 and 0.57
for nanoplates, nanocubes, and nanospheres, respectively. Thus, the experimental data indicates
the RBM in HNPoM is more suitable for strong coupling investigation. The detailed reasons for
the larger coupling strength with RBM than that with nanocubes and nanospheres need to be
further studied.

4. Effect of the nanoparticle morphology on strong coupling

NPs with various shapes have been used to form different nanocavities for achieving strong
coupling, such as triangles, hexagons, and disks. However, the mechanism of nanoparticle
morphology on the coupling is still unclear. Here, within the nanoparticle-on-mirror planar
configurations, we investigate the dependence of the modes and the coupling on different
morphology. In Figs. 3(a) and (b), we gradually vary a triangle-shaped nanoparticle into a
150 nm hexagonal shape by gradually cutting the angles. From an experimental point of view,
synthesized Au nanoplates can easily have both shapes and transitional shapes in between. From
the scattering (Fig. 3(a)) and absorption (Fig. 3(b)) spectra, one bright (RBM, red markers) and
one dark (quadruple-quadruple mode, blue markers) were observed. Due to the decrease in the
particle size, the two modes are overall blue-shifted with different "speeds". However, no matter
how the shape changes, these modes can always exist, and no new mode was induced. Likewise,
we reshaped the 150 nm hexagonal nanoplate into a nanodisk by changing the rounding of the
corners (Figs. 3(c) and (d)). Interestingly, the scattering and absorption spectra do not change
with the shape variance and the RBM mode degenerates into well-known l01 mode in the end.
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Again, this infers that exhausting all possibilities of shapes of the nanoparticle may not strikingly
improve the strong coupling.

Fig. 3. Nanoparticle-on-mirror planar structures with different morphology. Scattering (a,
c) and absorption (b, d) cross-sections of nanocavities consisted with a hexagon changing to
a triangle (disk). The gap is set as a 9-nm-thick Al2O3.

To prove that, we explored the influence of morphology on the Rabi splitting. Three kinds of
nanoplates are studied: a standard hexagon, a triangle, and a polygon between the triangle and
the hexagon. In the simulation, the nanoplate thickness, rounded corner radius, and nanogap
thickness (a 9-nm Al2O3 on an Ag film) are set to the same. By tuning the nanoplate size,
the RBMs of three nanoplates are tuned to 750 nm, matching the exciton energy of monolayer
WSe2. Figure 4(a) shows the calculated scattering spectra of the three nanoplates coupling with
monolayer WSe2. All spectra have Rabi splitting features, and the splittings appear to be similar
to each other. In general, Rabi splitting is not sensitive to morphological deformation, which
means that the influence of particle shape on the coupling can be ignored. To further compare
the coupling performance of different NP morphologies with TMDCs, we extract data from a
large number of published works [10,12–17,19–22,26,27,41–54] and perform a statistical review,
as shown in Fig. 4(b). The detailed data are presented in Table S1. To account for the inclusion
of different TMDCs, the material-related parameter of the exciton transition dipole moment, µ,
is used as the denominator of the ordinate. It can be observed that the coupling performance
does not depend on NP morphology, whether for single NPs or MIM nanocavities. The 2g/µ
values are mostly concentrated in the range of 5-20. The overall coupling strength is dropping
with the physical dimensions due to the increase of mode volume. It indicates the mode volume
(proportional to area and perimeter) plays a more significant role, although larger cavities mean
more excitons involved in the coupling process. Furthermore, the statistical results reveal that the
gap plasmon mode from MIM nanocavity has a better coupling performance compared with the
single NPs due to their more localized electric field. Thus, efforts to achieve a stronger coupling
through changes in the nanoparticle morphology can be limited.
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Fig. 4. (a) Rabi splitting in the scattering spectra of three kinds of nanoplates coupled with
monolayer WSe2. (b) Coupling performance of TMDCs coupled with various plasmonic
nanostructures. Color means different morphologies of NPs . For individual NPs, the cross
sections of NPs are used as characteristic dimensions, while for the MIM nanocavities, the
perimeters of NPs are used.

5. Conclusion

We demonstrated that the strong coupling between Au hexagonal NPs (RBM) and monolayer
WSe2 (excitons) at room temperature leads to approximately 137 meV Rabi splitting. In
addition, research has found that changing the morphology of nanoplates does not effectively
tune the coupling splitting of the plexcitonic system. This is because, for a metal-insulator-metal
nanocavity coupling with monolayer TMDC excitons, the effective coupling region is always
near the boundary where the nanocavity has the in-plane vacuum field.
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