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Spin-polarized electron vortices produced in single-photon ionization
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We theoretically investigate a scheme to produce spin-polarized electrons based on the vortex interference
of the photoelectrons in single-photon ionization. A pair of time-delayed counterrotating circularly polarized
pulses are applied to ionize the rare-gas-atom krypton. The results show that the vortex-shaped photoelectron
momentum distributions for the ionization channels of J = 1/2 and J = 3/2, as well as those associated with the
initial p+ and p− orbitals, can be well dislocated in momentum space, leading to the spin polarization exceeding
50%. Furthermore, by modifying the time delay, the wavelength, and the relative phase of the pulse pair, we show
that the kinetic energy as well as the ejection angle of the spin-polarized electrons can be flexibly controlled in
the present scheme.
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I. INTRODUCTION

Spin is an exploitable degree of freedom of electrons [1].
Since its discovery, spin-polarized electrons have been studied
for a wide range of applications, such as exploring the struc-
ture of atoms, molecules, and solids [2]; characterizing and
probing chiral systems [3,4]; and studying the magnetization
profiles in nanostructures [5–7]. Meanwhile, the production
of spin-polarized electrons from photoionization has been an
important topic for decades. Early in the 1960s, Fano the-
oretically proposed that in single-photon ionization of a Cs
atom in a circularly polarized light, spin polarization of the
photoelectrons can be achieved in the vicinity of the Cooper
minima due to the effect of spin-orbit interaction [8]. This
phenomenon attracted further theoretical [9] and experimental
[10,11] interest, and its extension to resonant multiphoton
ionization in the weak-field limit was accomplished by Lam-
bropoulos (see Ref. [12] for a review).

A physically different way to produce spin-polarized pho-
toelectrons is the nonadiabatic tunnel ionization of atoms,
as proposed by Barth and Smirnova in 2013 [13]. It was
predicted [13] and experimentally confirmed [14] that in
circularly polarized fields, the spin polarization of photoelec-
trons arises from the combined effects of spin-orbit interaction
and the selective ejection of p-orbital electrons with different
magnetic quantum numbers from rare gases. Under such a
mechanism, the spin polarization becomes controllable via
manipulation of the electronic dynamics with tailored laser
fields. For example, it was shown that angle-resolved spin
polarization can be achieved by applying attoclock angular
streaking [15]. Meanwhile, orthogonal two-color fields [16]
and bicircular laser pulses [17] have also been used to control
the spin polarization of the photoelectrons. Usually, due to
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fourfold degeneracy of the ionic ground state P3/2 of rare-
gas atoms, the overall spin polarization of photoelectrons is
limited by 50% [13]. In addition to the atomic systems, the
diatomic molecule nitric oxide has been shown to be a promis-
ing candidate for producing highly spin polarized electrons,
enabled by its open-shell orbital structure and the different
ionization rates for π± orbitals in rotating laser fields [18–20].

In 2018, two research groups independently demonstrated
that the above-threshold ionization (ATI) spectra for the ion-
ization channels to the ionic states J = 1/2 and J = 3/2 of
xenon can be well separated in ultraviolet (∼400 nm) laser
pulses, resulting in oscillating spin polarization as a function
of electronic kinetic energy [21,22]. Particularly, the max-
imum of the spin polarization could exceed 50% in their
studies. Such a scheme requires a particular photon energy
that approximately equals twice the ionization potential dif-
ference of two ionization channels of xenon; for other atoms,
one would need to appropriately tune the pulse frequency so
that the spectra for two ionization channels can be separated
as desired.

Alternatively, as the ATI peaks are essentially the interfer-
ence structure originating from the photoelectron ejected at
each optical cycle, it would be appealing to seek a more flex-
ible way to steer the photoelectron interference in momentum
space and achieve controllable spin polarization. Here, we
turn to the scheme based on electron vortices, which appear
to be a vortex-shaped interference pattern in the photoelec-
tron momentum distribution (PMD) for photoionization by
two time-delayed counterrotating circularly polarized laser
pulses [23–30]. The origin of the electron vortices is the
interference of two time-delayed electronic wave packets with
different magnetic quantum numbers m [31–33]. By analyzing
the vortex-shaped momentum distributions, researchers are
able to extract the electronic displacement in an ultrashort
laser pulse [34], to detect the electronic ring currents asso-
ciated with different quantum states [35], to extract the phase
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distributions of the photoelectron wave packets [36], and so
on. In the present work, we show that the way to produce
electron vortices in single-photon ionization is also a powerful
approach for manipulating spin-polarized photoelectrons. The
underlying mechanism of our scheme relies on the phase
difference between the wave functions of the p± electrons. We
show that, as the phase information is encoded in the vortex-
shaped momentum distribution, the photoelectrons from the
p± orbitals can be separated in momentum space by wave-
packet interference. More importantly, the spectra for the
ionization channels to the ionic states J = 1/2 and J = 3/2
are also well separated in the electron vortices. This ultimately
leads to spin polarization exceeding 50%. Furthermore, our
numerical results show that by adjusting the time delay, the
wavelength, or the relative phase of two time-delayed laser
pluses, the kinetic energy as well as the ejection angle of the
spin-polarized electrons can be flexibly controlled.

II. NUMERICAL METHODS

We numerically solve the two-dimensional time-dependent
Schrödinger equation (TDSE) within the single-active-
electron approximation. In the Coulomb gauge, the TDSE
reads (atomic units are used throughout unless stated other-
wise)

i
∂

∂t
ψ (r, t ) =

[
1

2
[−i∇ + A(t )]2 + V (r)

]
ψ (r, t ), (1)

where r = (x, y) is the two-dimensional coordinate of the
electron. We use a soft-core potential,

V (r) = −1 + 35e−0.456r2

√
r2 + a

, (2)

to represent the core-electron interaction for the Kr atom. Due
to the spin-orbit interaction, the removal of the valence elec-
tron of Kr would lead to the ion being populated in state 2P3/2

or 2P1/2, providing two ionization channels with slightly dif-
ferent ionization potentials. To reproduce this energy-splitting
effect, we adjust the soft-core parameters a = 4.002 and a =
3.922 to match the ionization potentials I

P3/2
p = 0.515 a.u. and

I
P1/2
p = 0.539 a.u., respectively. Similar modeling was also

applied in previous studies [14,21], and it was shown that the
simulation reproduced the experimental results [14].

To form vortex interference patterns in the photoelectron
momentum distributions, two time-delayed counterrotating
laser pulses with a right-handed circularly polarized (RCP)
pulse preceding a left-handed circularly polarized (LCP) pulse
(or, an RLCP pulse pair) are used. The vector potential of
the laser pulse within the dipole approximation is given by
A(t ) = Ax(t )ex + Ay(t )ey, with

Ax(t ) = −E0

ω
f (t ) cos(ωt + �1)

− E0

ω
f (t − td ) cos [ω(t − td ) + �2], (3)

Ay(t ) = E0

ω
f (t ) sin(ωt + �1)

− E0

ω
f (t − td ) sin [ω(t − td ) + �2], (4)
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FIG. 1. The electric field E(t ) and its projections on the x and
y planes as a function of t . The laser parameters are chosen as E0 =
0.05 a.u., ω = 0.7594 a.u. (corresponding to a wavelength of 60 nm),
td = 10 o.c., N = 10, and �� = 0.

where E0, ω, td , and � j ( j = 1, 2) indicate the electric-field
amplitude, the laser frequency, the time delay between two
pulses, and the carrier-envelope phase (CEP) for the jth pulse,
respectively. The relative phase between the two pulses is
defined as �� = �2 − �1. The pulse-envelope function is
given by f (τ ) = sin2[ωτ/(2N )] for 0 � τ � NT , and oth-
erwise, f (τ ) = 0, with T = 2π/ω and N being the optical
period and the number of optical cycles (o.c.) of the full pulse,
respectively. Figure 1 shows the time evolution of the electric
field for the RLCP pulse pair given by E(t ) = −∂A(t )/∂t .

The split-operator spectral method [37] on a Cartesian
grid is used to numerically solve the two-dimensional TDSE.
The Cartesian grid ranges from −120 to 120 a.u. for both
directions with grid steps of �x = �y = 0.12 a.u. To ob-
tain the initial wave functions of 4p± orbitals with m = ±1,
we first calculate the |ψ4px 〉 and |ψ4py〉 states by imaginary-
time propagation [38] under symmetry conditions. The |ψ4p±〉
states are given by |ψ4p±〉 = (|ψ4px 〉 ± i|ψ4py〉)/

√
2. In real-

time propagation, the time step of propagation is chosen
as δt = 0.015 a.u. Every 30 time steps, the electron wave
function is smoothly split into the inner and outgoing parts
with an absorption function [39]. The inner wave function is
propagated under the full Hamiltonian, while the outgoing one
representing the ionizing part is analytically propagated under
the Volkov Hamiltonian [40]. To calculate the PMD, the out-
going wave function split at each moment is transformed from
coordinate space to momentum space, and then it is propa-
gated to the end of the pulse under the Volkov Hamiltonian.
By superposing all outgoing wave functions in momentum
space at the end of the propagation, we can eventually obtain
the PMD for the interaction [41].

III. RESULTS AND DISCUSSION

To obtain the spin polarization of the photoelectrons in
the frame of TDSE, let us recall the relationship between
the nonrelativistic orbitals pm (m = 0,±1) and the relativistic
spin orbitals p jmj . Here, j and mj denote the total angular
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quantum number and the corresponding magnetic quantum
number, respectively. According to [13,17,21], the orbitals
p jmj can be expanded in the basis of the products of orbitals

pm via Clebsch-Gordan coefficients C
jmj

lm,sms
as follows:

w
p jm j

(
p; I

Pj
p

) =
∑
m,ms

∣∣C jmj

1m, 1
2 ms

∣∣2
wpm

(
p; I

Pj
p

)
, (5)

where w(p) and I
Pj
p represent the PMDs of different orbitals

and the ionization potential for the ionization channel that
leaves the ion in the 2Pj state, respectively. Specifically, we
have

w
p 1

2
± 1

2
(
p; I

P1
2

p
) = 2

3wp±
(
p; I

P1
2

p
) + 1

3wp0
(
p; I

P1
2

p
)
, (6)

w
p 3

2 ± 1
2
(
p; I

P3
2

p
) = 1

3wp±
(
p; I

P3
2

p
) + 2

3wp0
(
p; I

P3
2

p
)
, (7)

w
p 3

2 ± 3
2
(
p; I

P3
2

p
) = wp±

(
p; I

P3
2

p
)
. (8)

As the magnetic quantum numbers m and ms are restricted by
m + ms = mj , the spin-resolved PMD can be calculated by

w↑,↓(p) = wp±
(
p; I

P3
2

p
) + 2

3wp∓
(
p; I

P1
2

p
)

+ 1
3wp∓

(
p; I

P3
2

p
)
, (9)

where w↑(p) [w↓(p)] is the PMD for the spin-up (spin-down)
orbitals. The contribution from the p0 orbital is omitted in
Eq. (9) since the ionization for m = 0 is significantly sup-
pressed. Then, the spin polarization is finally expressed as

χ (p) = w↑(p) − w↓(p)

w↑(p) + w↓(p)

= 2

3

wp+
(
p; I

P3
2

p
) − wp−

(
p; I

P3
2

p
)

wall (p)

+ 2

3

wp−
(
p; I

P1
2

p
) − wp+

(
p; I

P1
2

p
)

wall (p)

= 2

3

wp+
(
p; I

P3
2

p
) − wp+

(
p; I

P1
2

p
)

wall (p)

+ 2

3

wp−
(
p; I

P1
2

p
) − wp−

(
p; I

P3
2

p
)

wall (p)
. (10)

From Eq. (10), one can see that the momentum-resolved spin
polarization of the photoelectrons depends on two aspects: (i)
the contrast between the PMDs for the p+ and p− orbitals un-
der the same ionization potential and (ii) the contrast between
the PMDs for the p+ (and p−) orbital under two ionization
potentials. In the following discussion, we will see that the
electron vortices produced by the counterrotating pulse pair
fulfill both conditions.

In Fig. 2, we demonstrate the PMDs for four pm(IPj
p )

orbitals of the Kr atom ionized by the RLCP pulse pair illus-
trated in Fig. 1. In general, all the four PMDs show the vortex
structures, and the number of spiral arms is two. On the one
hand, by comparing the PMDs for the orbitals possessing the
same angular momentum but different ionization potentials,

i.e., p+(I
P3

2
p ) vs p+(I

P1
2

p ) [Figs. 2(a) and 2(c)] and p−(I
P3

2
p ) vs
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FIG. 2. The PMDs for four pm(I
Pj
p ) orbitals of the Kr atom ion-

ized by the RLCP pulse pair. The parameters of the RLCP pulse
pair are the same as in Fig. 1. The dashed red rings indicate the

momentum at pr =
√

2(ω − I
Pj
p ).

p−(I
P1

2
p ) [Figs. 2(b) and 2(d)], one can see that the electron

vortices for the p(I
P1

2
p ) orbitals are generally distributed at

a relatively smaller momentum compared with the p(I
P3

2
p )

orbitals due to their deeper ionization potential and thus lower
kinetic energy. On the other hand, by comparing the PMDs
for the orbitals with the same ionization potential but different

angular momenta, i.e., p+(I
P3

2
p ) vs p−(I

P3
2

p ) [Figs. 2(a) and

2(b)] and p+(I
P1

2
p ) vs p−(I

P1
2

p ) [Figs. 2(c) and 2(d)], we find a
rotational offset between the vortex structures for the p+ and
p− orbitals.

The vortex-shaped interference patterns on the PMDs in
Fig. 2 can be explained by the coherent superposition of
two time-delayed photoelectron wave packets with different
magnetic quantum numbers m. When the photoelectrons are
released separately by two time-delayed counterrotating laser
pulses, the superimposed wave packets of the photoelectrons
from the p± orbitals can be expressed as [32,42]

�±(φ, K ) =
∑
j=1,2

Mj (φ, K )ei[mj (φ+�φ± )−K (t−t j )+� j ],

(11)

where φ is the angle between the photoelectron momentum
direction and the horizontal axis on the polarization plane;
K = p2/2 is the kinetic energy of the photoelectron; and
Mj (φ, K ), mj , and t j are the amplitude, the angular quantum
number, and the time when the photoelectron wave packet is
generated, respectively. The subscript j indicates the quantity
for the jth pulse. Note that the global phase � j introduced
by the CEP has been taken into account. �φ± represents
the overall angular rotation of the wave function due to the
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FIG. 3. (a) and (c) PEDs in the direction of φ = 0 and (b) and

(d) PADs cut at pr =
√

2(ω − I
Pj
p ) for different pm(I

Pj
p ) orbitals. The

black dashed lines and numbers indicate the locations of the peaks.

nonadiabatic interactions between the rotating pulses and the
p± orbitals with opposite nonzero angular momenta. The in-
terference distribution contributed by these two photoelectron
wave functions is thus written as

|�±(φ, K )|2 = |M1|2 + |M2|2 + 2M1M2

× cos [�m(φ + �φ±) − K�t + ��], (12)

with �m = m2 − m1, �t = t2 − t1, and �� = �2 − �1. For
the single-photon ionization under the RLCP pulse pair in
the present case, we have �m = −2 [24]. Thus, the two-arm
electron vortices in Fig. 2 satisfy the c2n rotational symmetry,
which is consistent with previous studies [29–33]. In addition,
since the photoelectron will most likely be released at the
maximum of the electric field, �t is related to the time delay
td between the two pulses. Furthermore, the nonzero quantity
�φ± related to the initial orbitals in Eq. (12) means that the
overall interference patterns will be rotated differently for p+
and p− orbitals. This explains the rotational offset we found
in Fig. 2.

To show quantitatively the differences among the PMDs
illustrated in Fig. 2, we calculate the photoelectron energy
distributions (PEDs) in the direction of φ = 0, as well as the
photoelectron angular distributions (PADs), for four differ-
ent pm(IPj

p ) orbitals. Figures 3(a) and 3(c) show the PEDs

calculated from the initial p(I
P3

2
p ) orbital and p(I

P1
2

p ) orbital,
respectively. Instead of a Gaussian-like distribution, the PEDs
are modulated and exhibit peaks and valleys because of the
wave-packet interference. In particular, due to the deeper

ionization potential for J = 1/2, the p(I
P1

2
p )-orbital electrons

dominate at a relatively lower kinetic energy compared with

the p(I
P3

2
p )-orbital electrons. Meanwhile, for a given J , we can

see the PED peaks for p+ and p− orbitals are dislocated. As
indicated by the vertical dashed lines in Figs. 3(a) and 3(c),
there is an energy separation of around 0.025 a.u. between the
PED peaks for the p+ and p− orbitals.
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FIG. 4. The momentum-resolved spin polarization χ (p) of the
photoelectrons produced by (a) the RLCP pulse pair, (b) RRCP pulse
pair, (c) RCP pulse, and (d) LCP pulse.

In Figs. 3(b) and 3(d), we illustrate the PADs which are cut

at the momentum radius given by pr =
√

2(ω − I
Pj
p ) (marked

as red dashed rings in Fig. 2). The PADs appear as a cosinelike
oscillating curve with a period of π due to the c2 rotational
symmetry. As indicated by the vertical dashed lines, there is
a phase shift of about 110◦ between the PADs for the p+ and
p− orbitals, while there is insignificant difference between the
PADs for the ionization channels of J = 1/2 and J = 3/2.

So far, we have shown that the photoelectron spectra for the
ionization channels of J = 1/2 and J = 3/2, as well as the p+
and p− photoelectrons, can be well separated via the vortex
interference in the RLCP pulse pair. Next, let us recall the
physical mechanism responsible for producing spin-polarized
electrons from rare-gas atoms [13]. Suppose we have created
the ion in the P1/2 state, which is twofold degenerate: the elec-
tron removed from the p− (p+) orbital will end up with spin
up (down) due to the interplay of electron-ion entanglement.
Thus, the separation of the p+ and p− photoelectrons would
lead to possibly 100% spin polarization in the ionization
channel of J = 1/2. The case for the channel with J = 3/2
is similar, but the upper limit of spin polarization is 50% due
to the fourfold-degenerate ion state. Therefore, the ability to
separate the p+ and p− photoelectrons and the photoelectron
spectra corresponding to the ionization channels into P3/2 and
P1/2 states will be the key to achieving a high degree of spin
polarization of coherent electron beams.

In the following, we calculate the momentum distribu-
tions for the spin-up and spin-down photoelectrons according
to Eq. (9), and the momentum-resolved distribution of spin
polarization χ (p) is shown in Fig. 4. Note that, for better
visibility, χ (p) has been set to zero when the total yield
distribution [w↑(p) + w↓(p)] is too low, specifically lower
than 0.58% of the maximum value of the yield distribution.
Figure 4(a) demonstrates the momentum-resolved χ (p) of
photoelectrons produced by the RLCP pulse pair. One can
see that the distribution of χ (p) also shows a vortex like
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FIG. 5. (a) The energy distribution at φ = 0 and (b) the angular
distribution at pr = 0.7 a.u. of spin-up and spin-down electrons pro-
duced by the RLCP pulse pair; the solid curves in (c) and (d) are
the corresponding distributions of Ã. The dashed, dotted, and dash-
dotted curves in (c) and (d) are the distributions of Ã in the ionization
of the RRCP pulse pair, only the RCP pulse, and only the LCP pulse,
respectively.

pattern in the RLCP pulse pair, indicating that both energy-
and angle-resolved spin polarization can be achieved. The
value of χ (p) ranges between −0.86 and 0.69, which already
exceeds 50% spin polarization even though both ionization
channels with J = 1/2 and J = 3/2 have been integrated.
Meanwhile, we show in Fig. 4(b) the momentum-resolved
χ (p) of photoelectrons produced by the corotating pulse pair,
which is a right-handed circularly polarized pulse preceding a
right-handed circularly polarized pulse (RRCP). In this case,
although the spin polarization can be achieved as well, χ (p)
oscillates only in the radial direction, and the degree of spin
polarization is lower than that in the RLCP pulse pair. In addi-
tion, under a single LCP or RCP pulse, there is no interference
structure for χ (p), and the degree of spin polarization is also
relatively lower, as shown in Figs. 4(c) and 4(d).

Furthermore, we show the energy spectra at φ = 0 and
the angular distributions at pr = 0.7 a.u. of the spin-up and
spin-down photoelectrons produced by the RLCP pulse pair
in Figs. 5(a) and 5(b), respectively, where we can see that the
spectrum peaks for spin-up and spin-down electrons are well
separated. Correspondingly, we evaluate the yield asymmetry
for the spin-up and spin-down electrons using the normalized
yield asymmetry parameter [17,21]

Ã(p) = w↑(p) − w↓(p)

max[w↑(p) + w↓(p)]
. (13)

This parameter can give us an impression not only of the
asymmetry between the spin-up and spin-down electrons but
also of the yield of the spin-polarized electrons. The asym-
metry Ã as a function of the kinetic energy and the emission
angle of the photoelectrons is shown in Figs. 5(c) and 5(d),
respectively. The solid curves represent the case using the
RLCP pulse pair. Significant oscillation of the spin asym-
metry can be seen with the variation of the kinetic energy
and the emission angle. In contrast, the asymmetry parameter
in the case of only one single RCP (dotted curves) or LCP
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FIG. 6. (a) The energy distribution at φ = 0 and (b) the angular
distribution at pr = 0.7 a.u. of Ã for different time delays td ; the other
parameters of the RLCP pulse pair are the same as in Fig. 1.

(dash-dotted curves) pulse is much less pronounced. This
indicates that each pulse of the RLCP pulse pair is not able
to achieve significant spin polarization but the vortex inter-
ference between the electronic wave packets created by two
time-delayed counterrotating pulses will “squeeze” spin-up
and spin-down electronic wave packets at a certain kinetic
energy and emission angle, leading to the significant and
oscillating spin polarization in the spectra. For comparison,
we also illustrate the results under the RRCP pulse pair with
dashed curves in Figs. 5(c) and 5(d). They show that although
Ã oscillates with the photoelectron energy under the RRCP
pulse pair as well, the oscillation amplitude is much smaller
than that under the RLCP pulse pair. This is because the PMDs
of p+ and p− orbitals with the same ionization potential are
not well separated under the corotating pulse pair. Note that
spin polarization relies on the yield difference in the PMDs of
p+ and p− orbitals [see Eq. (10)]. On the other hand, we also
see that the spin asymmetries Ã for RRCP are identical at dif-
ferent angles, as two time-delayed photoelectron wave packets
carry the same angular momentum in the corotating pulse
pair and thus the interference along the angular distribution
vanishes.

As analyzed above using Eq. (12), the nonadiabaticity-
induced phase difference between p± orbitals plays the key
role in squeezing the spin-polarized electronic wave packets.
Meanwhile, we can also see that the interference term given in
Eq. (12) depends on the photoelectron kinetic energy as well
as the time delay between two pulses. Therefore, we further
investigate the dependence of the energy- and angle-resolved
spin asymmetry Ã on the laser parameters of the RLCP pulse
pair.
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FIG. 7. (a) The energy distribution in the φ = 0 direction and
(b) the angular distribution at pr of Ã for different laser wavelengths;
the other parameters of the RLCP pulse pair are the same as in
Fig. 1. Note that for laser wavelengths of 40, 50, 60, and 70 nm,
pr = 1.1, 0.9, 0.7, and 0.5 a.u., respectively, where the yield of
[w↑(pr ) + w↓(pr )] reaches the maximum.

First, Fig. 6(a) illustrates the energy distribution of Ã at
different time delays td . It can be seen that the interval be-
tween the peaks of each curve of Ã decreases with increasing
td . This is because the energetic separation of adjacent vortex
arms is given by δK = 2π/�t , according to Eq. (12). When
td increases, there will be more interference maxima in the
energy spectrum of the photoelectron, leading to a higher
oscillating frequency of Ã, as shown in Fig. 6(a). For the
angular distributions, Fig. 6(b) illustrates that Ã is modified by
td insignificantly, as the angular distribution at a given kinetic
energy is not directly associated with td .

Second, the dependence of Ã on the laser wavelength is
illustrated in Fig. 7. The photoelectrons tend to gain less
kinetic energy as the wavelength increases. Since we have
set td = 10 o.c., the longer wavelength indicates a larger
time delay, which, as discussed above, leads to the higher
oscillation frequency of the asymmetry Ã for longer wave-
lengths [Fig. 7(a)]. Both Figs. 6(a) and 7(a) show that the
squeezing of the spin-up and spin-down electrons in the spec-
tra leads to a relatively higher spin asymmetry as the time
delay increases to some extent. In addition, as demonstrated
in Fig. 7(b), when the wavelength increases, the angular dis-
tribution of Ã is shifted, and the oscillation amplitude of Ã
also increases.

Finally, considering that the vortex-shaped interference
patterns originate from the phase difference between the time-
delayed photoelectron wave functions, the CEPs of two laser
pulses are expected to have an impact on the vortex structures

0 60 120 180 240 300 360
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FIG. 8. (a) The energy distribution in the φ = 0 direction and
(b) the angular distribution at pr = 0.7 a.u. of Ã for different relative
phases ��; the other parameters of the RLCP pulse pair are the same
as in Fig. 1.

and thus the spin polarization. Figure 8 shows the distributions
of Ã for varying ��. It is clear that the modulation of the
energy and angular distributions of Ã can be modified by
changing the relative phase between two pulses. The varying
modulation shown in Fig. 8 indicates that we will be able to
adjust the kinetic energy of the spin-polarized electrons to
some extent and control their ejection angles by tuning the
CEPs of the pulses.

From Figs. 6–8, one can see that the present scheme to
produce spin-polarized electrons via the vortex-shaped in-
terference patterns is valid over a certain range of laser
conditions. More importantly, the distributions of the spin-
polarized electrons on the kinetic energy and the ejection
angle can be flexibly controlled by modifying the time de-
lay, the wavelength, or the relative phase of the RLCP
pulse pair.

IV. CONCLUSION

In conclusion, due to the energy splitting between the
ionization channels with J = 1/2 and J = 3/2 together with
the phase difference between the photoelectron wave packets
from the p+ and p− orbitals, the vortex-shaped photoelectron
momentum distributions for different pJ

m orbitals are well sep-
arated in the RLCP pulse pair. The dislocation of the spin-up
and spin-down photoelectrons in the momentum space leads
to momentum-resolved spin polarization, which exceeds 50%
in the present scheme. Additionally, we also show that the
kinetic energy and the ejection angle of the spin-polarized
electrons can be flexibly controlled by modifying the time
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delay, the wavelength, or the relative phase of the RLCP
pulse pair. Although the single-photon ionization process was
considered in the present study, it is expected that the under-
lying mechanism will hold for the few-photon ionization as
well. Meanwhile, as the shape of the vortex interference can
be modified by changing the pulse parameters, our scheme
will work not only for krypton but also for other noble-gas
atoms and molecules carrying valence electrons with nonzero
angular momenta.
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