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Valley-resolved interband excitation and emission in gapped graphene
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We theoretically investigate the electronic dynamics in gapped graphene driven by a bicircular field. The
results indicate that the residual population on the conduction band is obviously asymmetric in the K and K′

valleys. Through analyzing the electron trajectory, we find that the interband transitions are determined by
the compensation of two phases: the dynamic phase and the full dipole phase (including the transition dipole
phase and the Berry phase). When the rates of change of the dynamic phase and the full dipole phase nearby
the ionization time have the inverse signs, the unidirectional interband transition from the valence band (VB)
to the conduction band (CB) results in the constructive interference of the population. In contrast, when they
have the same signs, the bidirectional transition (CB→VB and VB→CB) results in the destructive interference.
The constructive interference and the destructive interference lead to the asymmetric distribution of the CB
population. Moreover, we also investigate the harmonic emission and find that only the 3n + 2 harmonics are
generated in the cutoff region. This phenomenon can be attributed to the asymmetric distribution of the CB
population and the trefoil vector potential of the electric field. Due to the dependence on population distribution,
the harmonics can be a promising optical way to detect the valley excitation of the gapped graphene.
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I. INTRODUCTION

Interaction between ultrafast intense optical pulse and
solids has opened up a platform to study electronic dynamics
in solids. Many fascinating phenomena have been observed
and investigated, such as high-order harmonic generation
(HHG) [1–5] and light-field-driven current [6–10]. Underly-
ing electronic dynamics has been investigated in the context
of strong-field physics. Two mechanisms were proposed to
understand these phenomena: intraband and interband dynam-
ics.

In the strong-field regime, electrons in solids follow the
reciprocal space trajectory determined by the vector potential
of the laser field. When electrons are driven to the regimes
nearby the minimum band gap between the conduction band
(CB) and the valence band (VB), its wave function can be
coherently split: one part of the wave function can experience
an interband transition, whereas the other part remains in
its initial band (intraband motion). This dynamical process
is described by the Landau-Zener (LZ) transition [11,12].
The insight of the electronic dynamics has provided a good
understanding of the CB population distribution and related
physical phenomena [7–10,13–17]. For instance, the interfer-
ence fringes of the CB population in graphene exposed to a
suboptical-cycle light are due to a series of coherent interband
transitions [7,14–16], which is well-known as Landau-Zener-
Stückelberg (LZS) interference [12]. Moreover, the residual
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current induced by linearly polarized driving pulses in
monolayer graphene is sensitive to the electric-field wave
form. This current is due to an asymmetric CB population,
and its dependence on the wave form is related to the LZS
interference [7,9].

The interference of the LZ transitions is determined by the
propagation phases accumulated along the quantum pathway
in reciprocal space. In a symmetric system, the propagation
phase only includes the dynamical phase. But for a system
with broken symmetry, the full dipole phase is non-negligible
and plays a significant role on the interband dynamics during
the evolution of electrons. Although many previous works
have studied the role of the full dipole phase in HHG phe-
nomena [18–22], its role in the underlying dynamical process
is rarely of concern. Here, based on trajectory analysis, we
provide a method to analyze how the full dipole phases affect
the interband transition of electrons and lead to an asymmetric
excitation. In such a method, we can consider the electronic
trajectory and the propagation phases simultaneously, which
makes it an obvious choice to analyze the behaviors of elec-
trons during the whole light-driven process.

We consider the electronic dynamics in gapped graphene,
which is a well-known two-dimensional material with
nonzero Berry curvature. Graphene is also an excellent plat-
form with which to study electronic dynamics driven by an
ultrafast strong field, because of its broadband and ultrafast
optical response, weak screening, and high damage threshold
[23,24]. Recently, HHG has been demonstrated as a promising
tool to probe the electronic structure and the ultrafast dynam-
ics [25–29]. Here, we investigate the properties of harmonic
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FIG. 1. (a) The honeycomb lattice of graphene with two sublat-
tices, A and B. (b) The first Brillouin zone of graphene with two
nonequivalent valleys, K and K′.

emission contributed by two nonequivalent valleys in gapped
graphene.

II. THEORETICAL MODEL

Graphene has a honeycomb crystal structure made of two
sublattices [23], A and B shown in Fig. 1(a), and its first
Brillouin zone contains two nonequivalent Dirac points K
and K′ [Fig. 1(b)], corresponding to two valleys in energy
dispersion. Pristine graphene is a zero-band-gap material due
to its symmetries. The inversion symmetry can be broken
by changing the external environment like positioning on an
incommensurate substrate [30,31], and a band gap is opened
correspondingly.

In gapped graphene, the electronic dynamics driven by
an untrafast strong field is described as the time-dependent
Schrödinger equation (TDSE):

ih̄
d�

dt
= Ĥ (t )�, (1)

where Ĥ (t ) = Ĥ0 − eF(t ) · r is the Hamiltonian in length
gauge with an applied field F(t ), and Ĥ0 is the intrinsic Hamil-
tonian of the gapped graphene. The second term represents the
interaction of the laser with the graphene. Atomic units are
used in this article unless otherwise stated. In a tight-binding
model, Ĥ0 has the following form [32]:

H0 =
[

�/2 γ f (k)
γ f ∗(k) �/2

]
. (2)

Here, � is the band gap between the CB and the VB, γ =
−3.03 eV is the hopping integral, and f (k) is given by

f (k) = exp

(
i
akx√

3

)
+ 2 exp

(
−i

akx

2
√

3

)
cos

(
aky

2

)
, (3)

where a = 2.46 Å is the lattice constant. The energies of the
CB and the VB are obtained from Ĥ0:

Ec = +
√

γ 2| f (k)|2 + �2

4
,

Ev = −
√

γ 2| f (k)|2 + �2

4
. (4)

When an electric field is applied, electrons undergo both
the intraband motion and the interband transition. The in-
traband motion follows the Bloch acceleration theorem [33],

k(t ) = k0 + e
h̄

∫ t
−∞ F(t )dt , with initial momentum k0, which

determines the trajectories of electrons in reciprocal space.
The corresponding adiabatic wave functions are well-known
Houston functions [34]:

�(H )
m (r, t ) = �

(m)
k(t )(r) exp

[
iφ(D)

m (k(t )) + iφ(B)
m (k(t ))

]
, (5)

where m = c and v is the band index of the CB and the VB.
�

(m)
k(t )(r) are the Bloch-band eigenfunctions in the absence of

the pulse field. φ(D)
m (k(t )) and φ(B)

m (k(t )) represent the dy-
namic phase and the Berry phase [35,36], respectively, and
their expressions are as follows:

φ(D)
m = −1

h̄

∫ t

−∞
Em(k(t ′))dt ′,

φ(B)
m = e

h̄

∫ t

−∞
F(t ′) · dmm(k(t ′))dt ′. (6)

Here, dmm = 〈�m
k |i ∂

∂k |�m
k 〉 is the Berry connection for band

m. The wave function can be expanded in the Houston
functions:

�k0 (r, t ) =
∑

m=c,v

amk0 (t )�(H )
mk0

(r, t ) (7)

By solving the TDSE, one can derive the two level density
matrix equations [3,4,10] as follows:

�̇(k(t )) = −�(k(t ))
T2

+ i	∗(k(t ))w(k(t ))eiS(k(t )),

ṅm(k(t )) = ism	(k(t ))�(k(t ))e−iS(k(t )) + c.c., (8)

where nm is the population of the valence band (m = v) and
the conduction (m = c) band, � is the off-diagonal element
of the density matrix, and w = nv − nc is the population
difference. sm = 1 and −1 for m = v and c, respectively.
	 = F · dcv is the Rabi frequency, dcv = 〈�c

k|i ∂
∂k |�v

k〉 is the
transition dipole [37–39], and S = φ(D)

c (k(t )) − φ(D)
v (k(t )) +

φ(B)
c (k(t )) − φ(B)

v (k(t )) is the accumulated phase during the
nonadiabatic evolution in k space. T2 is the dephasing time in
graphene, and 5 fs is used in our simulations [40–45].

Equations (8) describe the interband dynamics between the
CB and the VB and can be solved numerically. Apparently, 	

and S determine the interband transition together; we define
their product as the ionization rate [3,4]: χ = 	e−iS = |	|eiS′

,
with S′ = φD + φT + φB, where φT = arg{F · dcv} is the tran-
sition dipole phase (TDP) extracted from 	, and φD and φB

are the dynamic phase and the Berry phase (BP), respectively.
Note that both the TDP and the BP are not gauge-invariant
individually. Hence, we focus on their joint role and refer to
their summation as the full dipole phase in this article, i.e.,
φF = φB + φT . It can be demonstrated that the rate of change
of the summation is a gauge-invariant quantity following
Ref. [46], i.e., ∇tφ

F = F · (dcc − dvv ) − F · ∇kφ
T . It should

be noted that the joint full dipole phase stems from the broken
inversion symmetry of gapped graphene. In this article, we
adopt a common gauge in the tight-binding description of
gapped graphene to show its effect on the interband transition.

According to the LZS interference [12], in a periodic elec-
tric field, electrons repeatedly traverse the transition zone
nearby the minimum band-gap, where a series of transition
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events happen. The interference of these transition events
leads to the residual CB population.

We also calculate the interband current and the interband
harmonic emission, and the harmonic spectrum is obtained
from the Fourier transform of the current. Their expressions
are as follows:

Jer (t ) = d

dt

[ ∑
k0∈BZ

�k0 pcv (k(t )) + c.c.

]
,

Her (ω) = |FT {Jer (t )}|2, (9)

Here, pcv (k) is the momentum matrix element between the
CB and the VB, calculated by pcv (k) = 〈c, k|∇kH |v, k〉.

III. RESULTS AND DISCUSSION

In our simulations, a multicycle bicircular field composed
of a fundamental-frequency light and a frequency-doubling
light is applied. The vector potential is given by

A = E0 f (t )√
2ω

{[
cos(ωt ) + 1

2
cos(2ωt + ϕ)

]

ex

+
[

sin(ωt ) − 1

2
sin(2ωt + ϕ)

]

ey

}
, (10)

where E0 is the peak electric field strength, and f (t ) is the
temporal envelope with a sine squared shape. ϕ is the relative
phase, and the orientation of the trefoil vector potential is
adjustable by changing ϕ. The calculation is performed with
the following laser pulse parameters: the peak intensity of the
laser is I0 = 0.8 TW/cm2, the wavelength of the fundamental-
frequency light is 3.5 μm, the duration is set as ten optical
cycles of the fundamental-frequency light, and the relative
phase is ϕ = −π/2.

Figure 2 shows the normalized CB population after ex-
citation. For the pristine graphene [0 eV, Fig. 2(a)], the
distribution of the CB population in the K and K′ valleys
is almost same. For the small-gap graphene [1 and 2 eV,
Figs. 2(b) and 2(c)], the asymmetric population appears, and
the asymmetry is enhanced with an increase of the band gap.
When the band gap is 3 eV [Fig. 2(d)], the asymmetry peaks
with the CB population occurring in the opposite zones of
two valleys. For the K′ valley, the population occurs inside the
black boundary [Fig. 2(d)]; but for the K valley, the population
occurs outside the black boundary. Besides, it is worth noting
that the population in the K and K′ valleys depends on both
the helicity and the orientation of the vector potential.

To understand the mechanism of this phenomenon intu-
itively, we draw a schematic diagram shown in Fig. 3. The
formation of the CB population depends on the interference
of the electron trajectories. For clarity, we choose the elec-
tron trajectories with initial momenta at A1, A2, B1, and
B2 [shown in Fig. 3(a)]. A1 and B2 represent the regions
with nonzero CB population, and A2 and B1 stand for the
regions with vanishingly small CB population. We have con-
firmed that other points in each region have similar dynamical
properties.

In Figs. 3(b) and 3(c), we show the TDP and the differ-
ence of the Berry curvature between the VB and the CB,
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FIG. 2. The normalized CB population after excitation with dif-
ferent band gaps: 0 eV (a), 1 eV (b), 2 eV (c), and 3 eV (d). The white
dashed line shows the boundary of the first Brillouin zone with the K
and K′ points indicated. The black solid lines in panel (d) show the
boundary of the population.

respectively. One can see that the TDP and the BP are on
the left-hand side and the right-hand side around the K′ point,
respectively, and opposite around the K point. Note that their
relative magnitudes during the evolution depend on the pa-
rameters of the electric field. Here we assume the magnitude
of the TDP is larger than that of the BP, and thus a residual
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FIG. 3. (a) The residual CB population in the K and K′ valleys.
A1, A2, B1, and B2 are initial points in k space selected for the
corresponding regions. (b) The phase of the x component of tran-
sition dipole elements dcv . Arrows show the helicity of the phase.
The phase of dy has the same helicity. (c) Difference of the Berry
curvature between the VB and the CB. According to the Stokes
theorem, the inverse helicity of the Berry phase around the K and
K′ points is deduced (shown with arrows). (d) The transition dipole
amplitude and the trajectories of A1, A2, B1, and B2 shown as the
red or black dashed lines.
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FIG. 4. (a) The CB population (red line) and the modules of 	

(purple line) normalized by the peak field strength along the electron
trajectory of A1 and B2. (b) Total phase S′ (blue line) and ∇t S′ (solid
red line) with the minimum band gap indicated with a horizontal
dashed red line. (c) Full dipole phase including the TDP and the BP.

full dipole phase is expected to have the same helicity as the
TDP as shown in Fig. 3(d).

Note that the transition from π to −π is smooth. The
extracted TDP (φT ) has the same helicity compared to the
phase of dcv nearby the K and K′ points, which can be deduced
from a derivation of 	 or a numerical verification. In Fig. 3(d),
the electron trajectories for A1, A2, B1, and B2 are shown
with the red or black dashed lines. When electrons with initial
momenta A1 and B2 traverse the transition zone near the
minimum band gap, the full dipole phase decreases (marked
as red sign “−”). On the contrary, when electrons with initial
momenta A2 and B1 traverse the transition zone, the full
dipole phase increases (marked as black sign “+”).

As mentioned above, the interband transition can be de-
scribed by χ = |	|ei(φT +φD+φB ). In the following, we show
how one can analyze the interband transition with the inter-
ference of the electron trajectories.

Figure 4 describes the trajectories of electrons initially
located at A1 and B2. In Fig. 4(a), the red line shows the
time-dependent CB population, and the purple line shows
the modules of 	 normalized with the peak field strength
E0. We can see that the transition events occur only when
|	| = |F · dcv| is maximum. For convenience, one of the tran-
sition events is chosen and marked with the vertical dashed
black lines. In Figs. 4(b) and 4(c), the time-dependent total
phase and the full dipole phase are displayed respectively.
Note that the dynamic phase always increases because of a
positive band gap. During the transition event, we can see
that the total phase [blue line in Fig. 4(b)] shows a nonmono-
tonic behavior: almost static near the peak of |	|. For clarity,
∇t S′ = Ec − Ev + F · (dcc − dvv ) + ∇tφ

T (solid red line) is
calculated to describe the behavior of the total phase.

We can see that ∇t S′ < Eg (minimum band gap) and close
to zero at the ionization time. It is due to the decreasing
full dipole phase (∇tφ

F < 0) as clearly seen in Fig. 4(c). In
Fig. 4(c), the TDP (yellow line) and the BP (blue line) are
plotted separately to show their individual contributions to

FIG. 5. (a) The CB population (red line) and the modules of 	

(purple line) normalized by the peak field strength along the electron
trajectory of A2 and B1. (b) Total phase S′ (blue line) and ∇t S′ (solid
red line) with the minimum band gap indicated with a horizontal
dashed red line. (c) Full dipole phase including the TDP and the BP.

the full dipole phase in the present gauge we adopted. As a
composition, the full dipole phase (pink line) has a negative
rate of change. Within the transition, the full dipole phase
changes: �φF ≈ −π/2. Due to the compensation of the dy-
namic phase and the full dipole phase, the total phase only
changes: �φD + �φF ≈ π . Apparently, the slowly varying
total phase leads to the unidirectional transition (VB→CB,
or CB→VB) and the accumulation of the CB population
(constructive interference).

A similar analysis is performed for A2 and B1. Figure 5
describes the trajectories of electrons initially located at A2
and B1. Differently, the total phase is monotonic during the
transition, and ∇t S′ > Eg. This is due to the increasing full
dipole phase (∇tφ

F > 0) [Fig. 5(c)]. Within the transition, the
full dipole phase changes �φF ≈ π/2, and hence the total
phase changes a lot: �φD + �φF ≈ 2π . The rapidly vary-
ing total phase leads to the switch between the increase and
the decrease of the CB population (bidirectional transition:
VB→CB and CB→VB) and a small residual CB population
(destructive interference).

From the discussion above, we can see that the role of the
full dipole phase in the interband transition is significant when
the rate of change of the full dipole phase is comparable to
the rate of change of the dynamical phase at the ionization
time. To figure out how the TDP and the BP act on the
interband transition as a whole, we furthermore calculate the
same situation but discard the full dipole phase manually. Note
that the results of discarding one of the TDP or the BP are
only valid for the certain gauge adopted in this paper due to
their individual dependence on a gauge choice. In Fig. 6(a),
when both the TDP and the BP are discarded, the residual
CB population is small and similar in K and K′ valleys. In
Figs. 6(b) and 6(c), either the TDP or the BP is discarded, both
the K and K′ valleys are excited strongly, and the opposite CB
population appears for these two cases. In Fig. 6(d), when both
of them are included, the population distribution is similar to
that in Fig. 6(b), but the population is smaller.
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FIG. 6. The residual CB population under the situations: (a) Both
the TDP and the BP are discarded. (b) Only BP is discarded. (c) Only
the TDP is discarded. (d) Both the TDP and the BP are included.

In Fig. 7, part of the dynamical process of A1 and B2 under
the four situations of Fig. 6 is shown. The dashed line marks
the time tp of the peak of |	|. When one of the TDP or the
BP is included (blue and green lines), the total phases are
quite different near tp, and the amplitude of the transition with
only the TDP is much larger than the case with only the BP.
When both of them are included (red line), the total phase
is almost stationary near tp. Correspondingly, the amplitude
of the transition is smaller than that of the case with only
the TDP, which can explain the smaller CB population in
Fig. 6(d). These results indicate that a negative or positive rate
of change of the full dipole phase plays an opposite role in the
interband transition for a certain initial point.

Next we show how the asymmetric excitation of the two
valleys affects the harmonic emission. Following Eqs. (9),

FIG. 7. (a) The time-dependent CB population of A1 and B2
under the different situations, the same as those in Fig. 6. (b) The
corresponding total phase.

FIG. 8. (a) The harmonic spectra obtained from the different
zones: the full Brillouin zone (green area), the K′ valley (blue line),
and the K valley (orange line). (b) The harmonic spectra obtained
from the selected zones shown in panel (c): the full Brillouin zone
(green area), the outside zone of the K′ valley (blue line), and the
outside zone of the K valley (orange line). (c) The selected zones
between two concentric circles (i.e., inner black circles and outer
white circles) in the K and K′ valleys. (d) A schematic diagram for
harmonic emission. The contour lines describe the k-dependent band
gap: Eg = Ec − Ev . The red lines represent the trajectories of the
corresponding initial points (red points).

we obtain the interband current and the HHG spectra. In
Fig. 8(a), one can see two regions in the total HHG spectra: the
plateau region (<33 harmonics) and the cutoff region (about
33–60 harmonics). The former has both the 3n + 1 and 3n + 2
harmonics, but the latter has only the 3n + 2 harmonics. It
is an interesting phenomenon that has not been discussed
before. To understand the underlying reason, we separate the
total harmonic spectrum into the contributions from the K′
(blue line) and K (orange line) valleys. Apparently, for the
plateau region, the K and K′ valleys contribute to the 3n + 1
and 3n + 2 harmonics, respectively [47–50]. However, for the
cutoff region, only the K′ valley contributes to the 3n + 2
harmonics. Furthermore, in Fig. 8(b), we calculate the HHG
spectra contributed by the different zones of the K and K′
valleys. We can see that the outside zone [seen in Fig. 8(c),
the zone between the two concentric circles] of the K′ valley
contributes to the 3n + 2 harmonics in the cutoff region. How-
ever, the outside zone of the K valley only contributes to the
low-order harmonics in the plateau region.

To understand these results, we draw a schematic diagram
in Fig. 8(d), the contour lines describe the k-dependent band
gap: Eg = Ec − Ev , the red lines represent the trajectories of
the corresponding initial points (red points A and B) in the
outside zones. We can see that the trajectory of A passes the
Brillouin zone with a large band gap, but the trajectory of B
passes the Brillouin zone with a small band gap.
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FIG. 9. (a) The harmonic spectra obtained from the single point
A (blue line) and the single point B (orange line). (b) The black
dashed line shows the time-dependent band gap along the trajectory
of point A, and the maximum band gap is marked with a white dashed
line. The time-frequency spectrogram (color map) is for point A. The
maximum values are normalized to 1 for clarity. A logarithmic color
scale is used. (c) The same as panel (b), but for point B.

In Fig. 9(a), we show the harmonics contributed by the
single point A (blue line) and the single point B (orange line),
respectively, and all the harmonics exist for a single point.
Point A has a higher cutoff (∼H35) than point B (∼H25).
In Figs. 9(b) and 9(c), the time-dependent band gap Eg(t ) =
Ec(k(t )) − Ev (k(t )) and the time-frequency spectrogram are
shown for points A and B, respectively. As we know in the
three-step model [3], the electron-hole pair emits a photon ω

with energy equal to the that of the band gap at the momen-
tum of recombination. Along the electronic trajectories, the
maximum band gaps of points A and B are 35h̄ω0 and 25h̄ω0,
respectively, which is consistent with the maximum harmonic
energy in the time-frequency spectrogram, i.e., the cutoff.

As mentioned above, most of the electrons in the K′ valley
have a cutoff energy higher than that in the K valley. There-
fore, the trajectories’ interference of the electrons in K′ valley
leads to the 3n + 2 harmonics with a higher cutoff, whereas
the electrons in the K valley contribute to the 3n + 1 harmon-
ics with a lower cutoff. As a result of the superposition of
the 3n + 1 and 3n + 2 harmonics, only the 3n + 2 harmonics
are left in the cutoff region. Clearly, it is the nonequivalent
band structure of two valleys and the trefoil vector potential
that lead to the difference of the harmonic emission of the two
valleys together.

We also calculate the HHG spectra with different orienta-
tions of the trefoil vector by changing the relative phase of
the bicircular field in Fig. 10. Note that a change of 2π in the
relative phase corresponds to a 120◦ rotation in the orientation
of the electric field. It can be seen that the intensity of the
3n + 1 and 3n + 2 harmonics in the cutoff region depends on
the orientation of the trefoil vector. Clearly, the orientation of
the trefoil vector determines the maximal emission energy of
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FIG. 10. The relative-phase-resolved intensity of the harmonics
in the cutoff region. A logarithmic color scale is used.

electrons in the two valleys by modulating the electronic tra-
jectories. Due to the dependence of electronic excitation and
emission on the electronic trajectories, both the CB population
and the interband emission are dependent on the orientation
of the trefoil vector. It can be a promising way to control the
electronic excitation in the CB and detect its distribution with
the HHG spectra.

IV. CONCLUSION

We theoretically investigate the electronic dynamics in
gapped graphene driven by a bicircular field and analyze
the formation of the asymmetric CB population in the K
and K′ valleys. Through analyzing the electron trajectory,
we demonstrate the important role of the full dipole phase
on the interband transition. The full dipole phase and the
dynamic phase determine the transitions in a coupled manner:
when their rate of change have the opposite signs, a slowly
varying total phase leads to the constructive interference of
the population. In contrast, when their rates of change have
the same signs, a rapidly varying total phase leads to the
destructive interference of the population. We also investigate
the harmonic emission in gapped graphene, we find that only
the 3n + 2 harmonics are generated in the cutoff region. This
phenomenon is due to the asymmetric distribution of the CB
population in the K and K′ valleys and the trefoil vector of the
bicircular field. Further calculations indicate that the CB pop-
ulation distribution and the intensity of the 3n + 1 and 3n + 2
harmonics in the cutoff region depend on the orientation of the
trefoil vector. Due to the dependence, the harmonics can be a
promising optical way to detect the CB population distribution
in gapped graphene.
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Severin, J. P. Rabe, C. Ropers, A. Knorr, and T. Elsaesser, Phys.
Rev. B 83, 153410 (2011).

[42] E. Malic, T. Winzer, E. Bobkin, and A. Knorr, Phys. Rev. B 84,
205406 (2011).

[43] D. Brida, A. Tomadin, C. Manzoni, Y. J. Kim, A. Lombardo, S.
Milana, R. R. Nair, K. S. Novoselov, A. C. Ferrari, G. Cerullo
et al., Nat. Commun. 4, 1987 (2013).

[44] I. Gierz, J. C. Petersen, M. Mitrano, C. Cacho, I. E. Turcu, E.
Springate, A. Stöhr, A. Köhler, U. Starke, and A. Cavalleri, Nat.
Mater. 12, 1119 (2013).

[45] A. Tomadin, D. Brida, G. Cerullo, A. C. Ferrari, and M. Polini,
Phys. Rev. B 88, 035430 (2013).

[46] J. Li, X. Zhang, S. Fu, Y. Feng, B. Hu, and H. Du, Phys. Rev. A
100, 043404 (2019).

[47] M. Mrudul, Á. Jiménez-Galán, M. Ivanov, and G. Dixit, Optica
8, 422 (2021).

[48] A. Fleischer, O. Kfir, T. Diskin, P. Sidorenko, and O. Cohen,
Nat. Photonics 8, 543 (2014).

[49] O. Neufeld, D. Podolsky, and O. Cohen, Nat. Commun. 10, 405
(2019).

[50] T. Huang, L. Li, J. Li, X. Zhu, P. Lan, and P. Lu, J. Physics B:
Atomic, Mol. Opt. Phys. 55, 095601 (2022).

043505-7

https://doi.org/10.1103/PhysRevLett.113.073901
https://doi.org/10.1103/PhysRevLett.122.193901
https://doi.org/10.1103/PhysRevLett.127.223201
https://doi.org/10.1038/nature11567
https://doi.org/10.1038/nature23900
https://doi.org/10.1038/nphys674
https://doi.org/10.1103/PhysRevLett.121.207401
https://doi.org/10.1364/OE.426593
https://doi.org/10.1098/rspa.1932.0165
https://doi.org/10.1016/j.physrep.2010.03.002
https://doi.org/10.1103/PhysRevB.100.115431
https://doi.org/10.1103/PhysRevB.87.115201
https://doi.org/10.1364/OPTICA.3.001358
https://doi.org/10.1103/PhysRevB.91.045439
https://doi.org/10.1364/JOSAB.35.000958
https://doi.org/10.1038/s41566-019-0516-1
https://doi.org/10.1038/s41467-018-03397-4
https://doi.org/10.1038/s41566-020-00717-3
https://doi.org/10.1103/PhysRevB.102.134115
https://doi.org/10.1103/PhysRevB.100.134301
https://doi.org/10.1103/RevModPhys.81.109
https://doi.org/10.1021/ph400147y
https://doi.org/10.1038/nature14517
https://doi.org/10.1103/PhysRevB.91.064302
https://doi.org/10.1126/science.1260311
https://doi.org/10.1126/science.aam8861
https://doi.org/10.1103/PhysRevLett.128.027401
https://doi.org/10.1103/PhysRevLett.115.136802
https://doi.org/10.1166/jnn.2011.5001
https://doi.org/10.1103/PhysRevB.79.113406
https://doi.org/10.1007/BF01339455
https://doi.org/10.1103/PhysRev.57.184
https://doi.org/10.1098/rspa.1984.0023
https://doi.org/10.1103/RevModPhys.82.1959
https://doi.org/10.1103/PhysRevLett.52.2111
https://doi.org/10.1103/PhysRevB.95.035405
https://doi.org/10.1103/PhysRevB.90.245205
https://doi.org/10.1103/PhysRevB.77.195412
https://doi.org/10.1103/PhysRevB.83.153410
https://doi.org/10.1103/PhysRevB.84.205406
https://doi.org/10.1038/ncomms2987
https://doi.org/10.1038/nmat3757
https://doi.org/10.1103/PhysRevB.88.035430
https://doi.org/10.1103/PhysRevA.100.043404
https://doi.org/10.1364/OPTICA.418152
https://doi.org/10.1038/nphoton.2014.108
https://doi.org/10.1038/s41467-018-07935-y
https://doi.org/10.1088/1361-6455/ac65c7

