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Effect of nonresonant states in near-resonant two-photon ionization of hydrogen
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By numerically solving the three-dimensional time-dependent Schrödinger equation, two-photon ionization
of hydrogen is investigated at the near-resonant frequencies of the 1s-2p transition. Due to the Rabi oscillations
between the 1s and 2p states, the photoelectron energy spectra exhibit the Autler-Townes (AT) doublets and we
focus on the energy spacing and the asymmetry of the doublets. Our results show that the laser frequency for the
minimum energy spacing of AT doublets locates at the resonant frequency of the ac-stark-shifted states, while
the symmetry of the AT doublets is affected both by the ac-stark shift and the nonresonant ionization pathway.
Developing the minimal three-state model including all of the nonresonant (nonessential) states, the effects of
the ac-stark shift and the nonresonant ionization pathway on the AT doublets due to the nonresonant states are
identified. Furthermore, due to the nonresonant ionization pathway, the photoelectron angular distributions are
distinctly different for the lower- and higher-energy peaks in the AT doublets and these angular distributions
sensitively depend on the laser intensity and pulse duration. These results are well reproduced by our minimal
three-state model.
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I. INTRODUCTION

Photoionization is a fundamental process in the light-
matter interaction. It has been extensively studied since the
advent of quantum mechanics. The development of new
laser sources during the last decades, such as high-harmonic
generation and free electron lasers [1–4], has enabled the two-
photon ionization (TPI) and multiphoton ionization (MPI)
[5–7]. The resonance in TPI and MPI has attracted intensive
interest and Rabi oscillations are the prominent features of
resonant TPI and MPI [8–17].

Rabi oscillations are periodic population transitions be-
tween the dressed initial and resonant states induced by a
time-varying field, which result in Autler-Townes (AT) split-
tings in the photoelectron energy spectra [18–23]. The energy
spacing between the splittings equals the Rabi frequency
[10] � = eE0DIR/h̄ (E0, DIR, h̄, and e are the electric-field
amplitude, the transition dipole between the initial and reso-
nant states, the reduced Planck constant, and the elementary
charge, respectively). Recently, Rabi oscillations were ob-
served with intense coherent laser pulses [24–26]. The Rabi
dynamics can be well described in the basis of Floquet
states [27–29]. The concept of the Floquet states (dressed
states) is used to be applied in monochromatic laser field.
However, for the laser pulses with very short duration, the
pulse envelope has a significant impact on the photoionization
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and is important to be taken into consideration [30–32]. For
example, the envelope of the laser pulse could induce the
dynamic interference of photoelectrons in photonionization
by the high-frequency laser [31,33–43].

In recent years, numerous studies related to resonant TPI
and MPI were reported. For instance, it was shown that the
ionization probability deviates obviously from the conven-
tional In scaling when Rabi oscillations occur [25,44,45].
The Rabi frequency in the resonant three-photon ionization
process of potassium atoms was experimentally surveyed with
an 800-nm femtosecond laser [17], and it was shown that the
measured result agrees well with the effective Rabi frequency,
which takes into account the ionization process [46]. The
majority of the previous studies focused on the relatively low
laser intensities and thus only the resonant photoionization
pathway dominates. However, as the laser intensity increases,
the impacts of the nonresonant states become more important
and it is necessary to take into account the effects of these
states. It was shown that, in the TPI process at the near-
resonant frequencies, the nonresonant pathway through the
nonresonant states is significant at the high-laser intensities.
The competition between the resonant and the nonreso-
nant pathways affects the photoelectron angular distribution
(PAD) [47,48]. Additionally, the influence of the ac-stark
shift arising from nonresonant states on the energy split-
ting and the asymmetry of the AT doublets was theoretically
demonstrated [43].

Very recently, with the seeded free-electron laser in the
extreme ultraviolet (XUV) frequency regime, resonant TPI
of He was studied and the AT doublet in the energy spectra
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was observed [49]. It was shown that the doublets were asym-
metric at such high-laser intensity. Theoretical calculations
proved that, due to the intermediate nonresonant states in the
two-photon transition, the nonresonant TPI possesses a giant
effective dipole moment, which resulted in the comparable
contributions of the two-photon ionization from the ground
state (the nonresonant pathway) and the one-photon ionization
pathway from the excited state (the resonant pathway). The
interference of the resonant and nonresonant TPI pathways
gave rise to the asymmetric doublets in the photoelectron
energy spectrum.

In this work, we demonstrate the effects of the nonresonant
states in near-resonant TPI at high-laser intensities from two
aspects. One is the ac-stark shifts of the initial, the resonant,
and the continuum states and the other is the nonresonant TPI
pathway from the initial state. We study the TPI of hydrogen
by solving the three-dimensional time-dependent Schrödinger
equation (3D-TDSE) at the near-resonant frequencies. The
obtained photoelectron spectra (PESs) show that the laser
frequency where the minimum energy spacing of AT doublets
locates and the laser frequency where the symmetric AT dou-
blets appears are both blue shifted from the field-free resonant
frequency of 0.375 a.u. Moreover, the laser frequency for
the symmetric AT doublets is both laser-intensity and pulse-
duration dependent, while the frequency for the minimum
energy spacing of AT doublets depends on laser intensity
but not on the pulse duration. Furthermore, the photoelec-
tron angular distributions (PADs) are distinctly different for
the lower- and higher-energy peaks of the AT doublets and
these angular distributions sensitively depend on both the laser
intensity and pulse duration. To understand the above phe-
nomena, a minimal three-state model which takes into account
all the nonresonant states as well as the pulse envelope is
developed. Both the PESs and the photo-electron momentum
distributions (PEMDs) from this model are in good agreement
with the TDSE results. Based on this agreement, the effects of
the ac-stark shifts and the nonresonant ionization pathway due
to the nonresonant states are identified.

II. METHODS

A. Numerically solving the TDSE

The PEMDs are obtained by numerically solving the 3D-
TDSE of the hydrogen atomic system in a velocity gauge. In
this paper, atomic units (a.u.) are used unless otherwise noted.

TDSE is written as

i
∂ψ (r, t )

∂t
= H (r, t )ψ (r, t ), (1)

where

H (r, t ) = −1

2
∇2 − 1

r
− iA(t ) · ∇. (2)

∇ is the gradient operator, A(t ) is the vector potential of laser
field in the dipole approximation, it is written as

A(t ) = A0 sin2

(
ωt

2N

)
sin (ωt )ey, (3)

where A0 is the amplitude of the vector potential, ω is the
angular frequency of laser field, and N is the number of the
optical cycles.

The 3D-TDSE in Eq. (1) is solved in the spherical coor-
dinates, where the wave function ψ (r, t ) is expanded by the
spherical harmonics |l, m〉

|ψ (r, t )〉 =
∑
l,m

Rlm(r, t )

r
|l, m〉. (4)

Here, Rlm(r, t ) is the radial part of the wave function, which
is discretized by the finite-element discrete variable repre-
sentation method [50]. The time propagation of the TDSE is
calculated by the split-Lanczos [51] method with the time step
of �t = 0.01 a.u.

The initial wave function is chosen as the 1s state here
which is prepared by imaginary-time propagation. During
the propagation of the wave function, we split the wave
function ψ (r, t ) into ψin(r, t ) and ψout(r, t ) at some time
points during the TDSE calculations, ψin(r, t ) = ψ (r, t )Fsp

and ψout(r, t ) = ψ (r, t )(1 − Fsp). Fsp is the absorbing mask
function which reads Fsp = 1 − (1 + e(R−Rc )/d )−1. ψin(r, t )
is evolved as TDSE, and ψout(r, t ) is propagated by the
Coulomb-Volkov propagator [52] and then projected to the
scattering state 〈ψk(r)|ψout(r, t )〉 to obtain the ionization am-
plitudes.

In our numerical simulations, the maximal box size Rmax

for radial coordinates is Rmax = 2000 a.u. The absorbing
boundary Rc is 1600 a.u., d = 2 a.u.. The number of partial
waves in Eq. (4) is chosen to be Lmax = 10, which ensures
convergence of the calculations.

B. Minimal three-state model

The time-dependent wave function can be expanded as

|� 〉 = aI (t )e−iEI t |I 〉 + aR(t )e−iERt |R 〉 +
∑∫

n

an(t )e−iEnt |n 〉 +
∫

dεaε(t )e−iEεt |ε 〉, (5)

where |I〉 and |R〉 represent the initial and the resonant states, respectively. |ε〉 represents the continuum states and all the
nonresonant states are labeled by |n〉.

Inserting Eq. (5) into Eq. (1) in the length gauge [H (r, t ) = − 1
2∇2 − 1

r + r · E(t )], we obtain the four-state model

iȧI (t ) = DIR
1

2
E0g(t )eiΔωt aR(t ) + DIR

1

2
E0g(t )ei(−ω−ER+EI )t aR(t )

+
∑∫

n

DIn
1

2
E0g(t )ei(EI −En+ω)t an(t ) +

∑∫
n

DIn
1

2
E0g(t )ei(EI −En−ω)t an(t ), (6a)
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iȧR(t ) = DRI
1

2
E0g(t )e−iΔωt aI (t ) + DRI

1

2
E0g(t )e−i(−ω−ER+EI )t aI (t )

+
∫

dεDRε

1

2
E0g(t )ei(ER−Eε+ω)t aε(t ) +

∫
dεDRε

1

2
E0g(t )ei(ER−Eε−ω)t aε(t )

+
∑∫

n

DRn
1

2
E0g(t )ei(ER−En+ω)t an(t ) +

∑∫
n

DRn
1

2
E0g(t )ei(ER−En−ω)t an(t ), (6b)

iȧn(t ) = DnI
1

2
E0g(t )e−i(EI −En+ω)t aI (t ) + DnI

1

2
E0g(t )e−i(EI −En−ω)t aI (t )

+ DnR
1

2
E0g(t )e−i(ER−En+ω)t aR(t ) + DnR

1

2
E0g(t )e−i(ER−En−ω)t aR(t )

+
∫

dεDnε

1

2
E0g(t )ei(En−Eε+ω)t aε(t ) +

∫
dεDnε

1

2
E0g(t )ei(En−Eε−ω)t aε(t ), (6c)

iȧε(t ) = DεR
1

2
E0g(t )e−i(ER−Eε+ω)t aR(t ) + DεR

1

2
E0g(t )e−i(ER−Eε−ω)t aR(t )

+
∑∫

n

Dεn
1

2
E0g(t )e−i(En−Eε+ω)t an(t ) +

∑∫
n

Dεn
1

2
E0g(t )e−i(En−Eε−ω)t an(t ). (6d)

Here Δω = ω − ωRI (ωi j = Ei − Ej) is the energy detuning, DIR = 〈I|ẑ|R〉, DRε = 〈R|ẑ|ε〉, DnI = 〈n|ẑ|I〉, DnR = 〈n|ẑ|R〉,
and Dnε = 〈n|ẑ|ε〉 are defined as the transition dipole matrix element between the initial and resonant states, the resonant and
the continuum states, nonresonant and initial states, nonresonant and resonant states, and nonresonant and continuum states,
respectively.

As the nonresonant states are far from resonance, they are not significantly populated during the interaction with the laser
field. The amplitudes of these states can be adiabatically eliminated [53]. After integrating Eq. (6c) by parts and omitting small
terms [the g(t ) envelope function evolves much slower than the T0 = 2π/ω time period of the laser], we obtain the expression
for an(t )

an(t ) = DnI
1

2
E0g(t )

e−i(EI −En+ω)t

EI − En + ω
aI (t ) + DnI

1

2
E0g(t )

e−i(EI −En−ω)t

EI − En − ω
aI (t )

+ DnR
1

2
E0g(t )

e−i(ER−En+ω)t

ER − En + ω
aR(t ) + DnR

1

2
E0g(t )

e−i(ER−En−ω)t

ER − En − ω
aR(t )

+
∫

dεDnε

1

2
E0g(t )

e−i(Eε−En−ω)t

Eε − En − ω
aε(t ) +

∫
dεDnε

1

2
E0g(t )

e−i(Eε−En+ω)t

Eε − En + ω
aε(t ). (7)

Inserting Eq. (7) into the coupled differential equations Eq. (6), the four-state model is simplified to the three-state model.
Then, the three-state model is further simplified by using the rotating wave approximation [54] to remove the rapidly oscillating
components. Finally, applying the local approximation [55,56]∫

dεDRε

1

2
E0g(t )eiδt aε(t ) = − i

2
ΓR(t )aR(t ),

∫
dεM̃Iε

(
1

2
E0g(t )

)2

eiδI t aε(t ) = − i

2
ΓI (t )aI (t ), (8)

we obtain the minimal three-state model as

iȧI (t ) =
[

SI (t ) − i

2
ΓI (t )

]
aI (t ) + DIR

1

2
E0g(t )eiΔωt aR(t ), (I)

iȧR(t ) = DIR
1

2
E0g(t )e−iΔωt aI (t ) +

[
SR(t ) − i

2
ΓR(t )

]
aR(t ), (II)

iȧε(t ) = M̃†
Iε

(
1

2
E0g(t )

)2

e−iδI t aI (t ) + DRε

1

2
E0g(t )e−iδt aR(t ) + Sε(t )aε(t ). (III) (9)

Here,

δ = ER − Eε + ω, δI = EI − Eε + 2ω, (10a)
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FIG. 1. The PES as a function of the laser frequency obtained
from the 3D-TDSE. The laser intensity is I = 5 × 1013 W/cm2 and
the pulse durations are N = 60, 300 for (a), (b), respectively. In each
case, the dashed white line corresponds to the photon energy for the
minimum energy spacing of the AT doublet.

are the energy detunings and

M̃Iε =
∑

n �=I,�=R

∫ 〈I|z|n〉〈n|z|ε〉
Eε − En − ω (10b)

is the two-photon transition matrix element from the dressed
initial state to the continuum state through the nonresonant
states where

Sε(t ) = Up(t ),

SI (t ) =
∑

n �=I,�=R

∫ (
DIn

1

2
E0g(t )

)2 2ωIn

ω2
In − ω2

= SI0E2
0 g2(t ),

SR(t ) =
∑

n �=I,�=R

∫ (
DRn

1

2
E0g(t )

)2 2ωRn

ω2
Rn − ω2

= SR0E2
0 g2(t ),

(10c)

are the dynamic stark shifts of the continuum, initial, and
resonant states, respectively. The stark shift for the continuum
state approximately equals to the time-dependent ponderomo-

tive shift Up(t ) = E2
0

4ω2 g2(t ) where

ΓR(t ) = 2π |DRε|2
(

1
2 E0g(t )

)2
,

ΓI (t ) = 2π
∣∣M̃Iε

∣∣2( 1
2 E0g(t )

)4
, (10d)

represent the ionization rates from the resonant state |R〉 and
the initial state |I〉, respectively. ΓR(t ) and ΓI (t ) denote the
resonant and the nonresonant ionization pathways, respec-
tively.

III. NUMERICAL RESULTS AND DISCUSSIONS

A. Energy splitting and asymmetry of the AT doublets in PES

Figure 1 shows the photoelectron spectra as a function of
the laser frequency varying from 0.370 to 0.390 a.u., where
the laser intensity is 5 × 1013 W/cm2. The pulse durations are
N = 60 (full width at half maximum, FWHM ∼= 12 fs) and
N = 300 (FWHM ∼= 60 fs) for Figs. 1(a) and 1(b), respec-
tively. The Autler-Townes splitting of the energy spectra is

FIG. 2. (a), (b) The energy spacing of the doublets (W ) as a
function of the laser frequency. (c), (d) The asymmetry of the dou-
blets (A) as a function of the laser frequency. The laser intensities
are 5 × 1013 W/cm2 in (a) and (c), and 1 × 1014 W/cm2 in (b),
(d). The blue dotted, green dashed, and red solid lines represent the
results from TDSE with the pulse durations N = 60, 120, and 300,
respectively.

clearly seen, which is a manifest of Rabi oscillations [8–17].
The sketch of the Autler-Townes splitting as a result of Rabi
oscillations will be explained below (as shown in Fig. 7).
The weak peaks between the doublets are due to the dynamic
interference [31,33–43]. It is shown that the energy spacing of
the AT doublets decreases first and then gradually increases
with the laser frequency. This is more clearly seen in Fig. 2(a).
The heights of the doublets are obviously asymmetric. The
height of the higher-energy peak increases gradually as the
laser frequency increases, while that of the lower-energy peak
decreases gradually.

To quantitatively analyze the energy splitting and the asym-
metry of the doublets, we plot the energy spacing W and the
asymmetry A of doublets as a function of the laser frequency,
as shown in Fig. 2. Here, the asymmetry A is defined as
A = |SL−SH |

S>
, where SL and SH are the heights of the lower-

and higher-energy peaks in the doublets, respectively. S> is
the larger one of SL and SH . The laser intensities are 5 ×
1013 W/cm2 and 1 × 1014 W/cm2 in Figs. 2(a) and 2(c) and
Figs. 2(b) and 2(d), respectively.

At the low-laser intensity region, the resonant ionization
pathway dominates. Previous studies on the near-resonant
TPI were mostly focused on the lower laser intensity region
[36,57]. In that case, the minimum energy spacing of the AT
doublet occurs at the field-free resonant frequency (0.375 a.u.
for H), where the doublets are symmetric. However, as the
laser intensity increases, the effect of the nonresonant states
emerges and the contribution of the nonresonant TPI pathway
becomes visible. As shown in Figs. 2(a) and 2(b), the fre-
quency ωw

m for the minimum energy spacing no longer occurs
at 0.375 a.u. At 5 × 1013 W/cm2 and 1 × 1014 W/cm2, it is
located at 0.380 a.u. and 0.384 a.u., respectively. The value of
the energy spacing increases with the pulse duration, but the
frequency ωw

m is independent on the pulse duration. For the
asymmetry of doublets A, as shown in Figs. 2(c) and 2(d), the
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FIG. 3. The PES at the laser frequency ω = 0.375 a.u. obtained
from the minimal three-state model (red dashed lines) and TDSE
(blue solid lines). The laser intensity is 5 × 1013 W/cm2, and the
pulse durations are N = 60 and 300 in (a), (b), respectively. The
black dashed lines denote the expected kinetic energy (0.25 a.u.) of
a photoelectron absorbing two resonant photons.

frequency ωA
m that minimizes A is blue shifted compared to

the field-free resonant frequency 0.375 a.u. This is consistent
with the recent experiment on TPI of He [49]. The amount of
the blue shift depends on the laser intensity and pulse duration.
The shift is larger for the shorter pulse duration and stronger
intensity.

These features are ascribed to the contribution of the non-
resonant states. To understand the role of the nonresonant
states, we resort to the minimal three-state model described
in Sec. II (B) [Eq. (9)]. The PESs calculated by our minimal
three-state model are shown in Fig. 3. The results from our
model are calculated with optimized parameter values that
M̃Iε = −7.5 a.u., SR0 = 2.6 a.u., and SI0 = −0.7 a.u.. The
optimized parameter values are calculated by comparing the
PESs obtained from the three-state model [Eq. (9)] to the
TDSE result at a given laser intensity, and could reproduce
the TDSE results at other laser intensities. The agreement
between the TDSE result and our model is excellent and it
enables us to quantitatively analyze the effect of the nonreso-
nant states.

As revealed in our model [Eq. (9)], the nonresonant states
contribute in two ways. One is the ac-stark shifts of the initial,
the resonant, and the continuum states, which are denoted
as SI , SR, and Sε, respectively. The other is the nonresonant
ionization pathway denoted as M̃Iε. To separately investigate
these two effects of the nonresonant states, we first consider
only the ac-stark shifts by setting M̃Iε = 0 (i.e., with the non-

FIG. 4. (a), (b) The energy spacing of the doublets (W ) as a
function of the laser frequency obtained from the minimal three-state
model. (c), (d) The asymmetry of the doublets (A) as a function of
the laser frequency obtained from the minimal three-state model. The
laser intensities are 5 × 1013 W/cm2 and 1 × 1014 W/cm2 in (a), (c)
and (b), (d), respectively. The solid and dotted lines represent the re-
sults calculated from the minimal three-state model with M̃Iε = −7.5
a.u. and M̃Iε = 0 a.u., respectively. In each case, the gray dashed
line corresponds to the frequency ωA

m or ωW
m obtained from TDSE

(as shown in Fig. 2).

resonant ionization pathway being excluded), as indicated by
the dotted blue lines in Fig. 4. Compared with the field-free
resonant frequency 0.375 a.u., the frequency ωw

m is larger than
0.375 a.u. and the frequency ωA

m is smaller than 0.375 a.u..
To illustrate this, we diagonalize the Hamiltonian of Eq. (9)
I and II (M̃Iε = 0) to obtain the time-dependent eigenenergy
and eigenstates, then the expressions for the effective Rabi
frequency �̃ (i.e., the energy spacing W ) and the amplitude
of the populated continuum state aε(t ) can be written as

�̃(t ) ∼=
√

[DIRE0g(t )]2 +
(

Δω + SI (t ) − SR(t ) − i

2
ΓR(t )

)2

(11)

aε(t ) ∼= 1

i

∫ T

0
dt{ϒ+eiε+t − ϒ−eiε−t }, (12)

where

ϒ± ∼= DεRDRI
[

1
2 E0g(t )

]2

√
2
√

[DRI E0g(t )]2 + [Δω + SI (t ) − SR(t )]2

×

√√√√1 +
(

− 1
2 [Δω + SI (t ) − SR(t )] ± 1

2

√
[DRI E0g(t )]2 + [Δω + SI (t ) − SR(t )]2

DRI
[

1
2 E0g(t )

]
)2

(13)

and

ε± ∼= Eε − EI − 2ω + 1
2Δω + Sε(t )

− 1
2 [SR(t ) + SI (t )] ∓ 1

2 �̃(t ). (14)

As shown in Eq. (11), the minimum energy spacing (i.e.,
line W has a minimum) locates at the frequency ωw

m where
(Δω + SI (t ) − SR(t ) − i

2ΓR(t ) )2 has a minimum. Moreover,
as shown in Eq. (12), the symmetric doublets (i.e., line A
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has a minimum) locates at the frequency ωA
m where ϒ+ = ϒ−

and |ε+| = |ε−|. Therefore, the frequency ωw
m is only related

to SR(t ) − SI (t ) [Eq. (11)], whereas the frequency ωA
m is re-

lated to both SR(t ) − SI (t ) and SR(t ) + SI (t ) − 2Sε(t ) which
are reflected in the prefactors ϒ± and the index factors ε±,
respectively [Eq. (13) and (14)]. Due to the frequency ωw

m and
ωA

m being differently affected by the ac-stark shifts, they shift
differently from the field-free resonant frequency 0.375 a.u.

Next, we reveal how the nonresonant ionization pathway
affects the PES. We obtain the PES from the minimal three-
state model with the nonresonant ionization pathway included
(M̃Iε = −7.5 a.u.). The results are shown by the solid lines
in Fig. 4. The energy spacing W of the AT doublets ob-
tained with M̃Iε = −7.5 a.u. and M̃Iε = 0 a.u. are almost the
same. This is due to the fact that the energy splitting is only
related to the energy shifts, not affected by contribution of
the nonresonant ionization pathway. For the asymmetry A of
the doublets, due to the effect of M̃Iε, the frequency ωA

m is
significantly right-shifted, which is consistent with TDSE re-
sults. In conclusion, both the nonresonant ionization pathway
and the ac-stark shifts arising from the nonresonant states
affect the asymmetry of the doublets, but the contribution of
the nonresonant ionization pathway dominates. For this rea-
son, a slight blue-shift is always required to obtain symmetric
doublets in the experiment.

In terms of the laser intensity dependence of the frequen-
cies ωW

m and ωA
m, we note that both the frequencies ωW

m and
ωA

m move further away from 0.375 a.u. as the laser intensity
increases, regardless of whether the nonresonant ionization
pathway M̃Iε is included or not. It is because the parameters
SI , SR, Sε, and M̃Iε that determine the location of ωW

m and ωA
m

are all proportional to E2
0 , that is, the effects of the energy

shifts and ionization pathway are both enhanced with the laser
intensity increasing.

Finally, the pulse duration dependence of the frequency
ωA

m revealed in TDSE results is also reproduced by the min-
imal three-state model. As is shown in Figs. 4(c) and 4(d),
the frequency ωA

m approaches 0.375 a.u. with the increase
of the pulse duration. This type of behavior is supported by
the TDSE simulations (Fig. 2). To explain this, we inspect
the laser pulses in the frequency domain. The spectrum of the
laser field in the frequency domain becomes sharper as the
pulse duration becomes longer. So, a much smaller blue-shift
of the frequency could lead to a significant increase in the
ionization rates. Consequently, the required blue-shift for the
symmetric doublets decreases with increasing pulse duration.

B. Angular distributions for the AT doublets in PEMDs

Figure 5(a) shows the PEMD obtained from TDSE.
The laser frequency, intensity, and pulse duration are ω =
0.375 a.u., I = 1 × 1014 W/cm2, and N = 60, respectively.
Two rings appear in the PEMD and their angular distributions
are different. The node of the four-lobe structure for the outer
ring is much less visible than that of the inner ring. This is
different from the previous study at the relatively low laser
intensity where the angular distributions of the doublets are
almost the same [57]. The photoelectron angular distribution

FIG. 5. (a) The PEMD in the polarization plane with the laser
frequency ω = 0.375 a.u. The laser intensity is 1 × 1014 W/cm2 and
the pulse duration is N = 60. (b) The asymmetry parameters βn of
PEMDs as a function of the laser frequency. Dashed lines represent
the asymmetry parameters βn of the inner ring in the PEMDs and
solid lines represent βn of the outer ring. The asymmetry parameters
β0 of the inner and outer rings overlap.

can be described by

I (θ ) = |AsY00(θ, ϕ) + AdY20(θ, ϕ)|2
= β0P0(θ ) + β2P2(θ ) + β4P4(θ ), (15)

where Pn are the Legendre polynomials, ϕ is the azimuthal
angle, and θ is the angle between the laser polarization and
the electron velocity vector. βn are the asymmetry parameters
[47,58], which are written as

β0 = 1

4π
[|As|2 + |Ad |2],

β2 = 1

4π

[
10

7
|Ad |2 + 2

√
5|As||Ad | cos (φs − φd )

]

β4 = 1

4π

18

7
|Ad |2, (16)

with As and Ad being the amplitudes of S and D partial waves,
φs and φd being the phases of S and D partial waves.

The obtained asymmetry parameters βn as a function of
the laser frequency are shown in Fig. 5(b), where the laser
intensity and pulse duration are the same as in Fig. 5(a). The
dashed and solid lines represent the parameters βn obtained
from the inner and outer rings of doublets in the PEMDs,
respectively. For the inner ring, the parameters β2 and β4 are
always higher than β0 and change little as laser frequency
increases. For the outer ring, however, β2 and β4 decrease
noticeably and even become lower than β0. This indicates
that the contribution of the D partial wave keeps dominant
for the inner ring, while the contribution of the S partial wave
increases for the outer ring as laser frequency increases.

To understand the angular distribution, we return to the
four-state model described by Eq. (6). It is possible to redefine
the amplitudes aI and aε as ãI e−iS̃I (t )t and ãεe−iS̃ε (t )t (S̃I and
S̃ε change slowly over time) [35,43]. For the photoelectron
with energy near the peak of the doublets, we can simplify the
equation into a two-state model

i ˙̃aI (t ) =
∫

dεMIε

(
1

2
E0g(t )

)2

eiδ̃I t ãε(t ),

i ˙̃aε(t ) = M†
Iε

(
1

2
E0g(t )

)2

e−iδ̃I t ãI (t ). (17)
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Here,

MIε =
∑

m

∫ 〈I|z|m〉〈m|z|ε〉
Eε − Em − ω + iΓm

(18)

is the two-photon transition amplitude, where the index m
contains both the resonant state |R〉 and the nonresonant states
|n〉. δ̃I is the energy detuning

δ̃I = EI + S̃I (t ) − S̃ε(t ) − Eε + 2ω, (19)

where

S̃I (t ) = SI (t ) + Sresonant (t ),

S̃ε(t )=
∫

dε
∑

m

∫ (
Dεm

1

2
E0g(t )

)2 2(Eε − Em + iΓm)

(Eε − Em + iΓm)2 − ω2
,

(20)

are the energy shift of initial state |I〉 and the ac-stark shift of
the continuum state, respectively. S̃I (t ) contains the contribu-
tion of the nonresonant states SI (t ), and the energy splitting
induced by the resonant state Sresonant (t ). Γm is the ionization
rate from the state |m〉. S̃ε(t ) approximately equals to Up(t ).
Note that Eq. (17) is valid only for δ̃I ≈ 0.

Equations (17) and (18) indicate that the angular dis-
tribution can be simply understood from the conventional
two-photon transition amplitude though Rabi oscillations oc-
cur during the two-photon ionization. To check the accuracy
of Eq. (18), we separately calculate the two-photon transition
amplitudes for the S and D partial waves at the energy Eε

equaling to inner and outer rings of the AT doublets. For the
two-photon transition amplitude in Eq. (18), the infinite sum-
mation in the radial part is evaluated with the Dalgarno-Lewis
method [59]. The obtained ratio between the S and D partial
waves as a function of the laser frequency is shown in Fig. 6
(the dashed lines). It agrees well with the TDSE results, both
for the inner and the outer rings.

To intuitively understand the distinct angular distribution
and its intensity and pulse duration dependence, we rewrite
Eq. (18) as (δ̃I = 0)

MIε =
∑

m

∫ 〈I|z|m〉〈m|z|ε〉
EI + S̃I (t ) − S̃ε(t ) − Em + ω + iΓm

. (21)

It indicates that MIε is just the two-photon transition amplitude
of the atom but with the initial energy shifted by S̃I (t ) − S̃ε(t ).
To reveal the energy shift S̃I (t ), we redefine the amplitudes
aI and aR in Eqs. (9)(I) and (II) as ãI e−i(SI (t )− i

2 ΓI (t ))t and
ãRe−i(SR (t )− i

2 ΓR (t ))t to obtain the general solution of ãI (t ) from
Eqs. (9)(I) and (II) [35,43], and then redefine them back to
obtain the expression for aI (t ). Finally, we have

iȧI (t ) ∼=
[

SI (t ) +
(

−1

2
[Δω + (SI (t ) − SR(t )] − i

2
[ ΓI (t ) + ΓR(t ) ] ± 1

2
�̃′(t )

)
− i

2
ΓI (t )

]
aI (t ), (22)

where

�̃′(t ) ∼=
√

[DIRE0g(t )]2 +
(

Δω + SI (t ) − SR(t ) − i

2
[ΓI (t ) + ΓR(t )]

)2

(23)

is the effective Rabi frequency. Comparing with Eq. (11)
(i.e., the case without considering the nonresonant ionization
pathway), the Rabi frequency here has taken into account the
ionization rate of the initial state |I〉 due to the nonresonant
ionization pathway. Equation (22) indicates that

S̃I (t ) = SI (t ) + Sresonant (t ) = SI (t )

+ ( − 1
2 {Δω + [SI (t ) − SR(t )]} ± 1

2 �̃′(t )
)
. (24)

So, the shift S̃I can be understood as follows. The nonresonant
states induce an energy shift SI . The Rabi oscillations between
the shifted initial and the shifted resonant states induce the
splitting of �̃′(t ). The detuning is responsible for the further
energy shift − 1

2 [Δω + SI (t ) − SR(t )]. The sketch of the en-
ergy shift and splitting is shown in Fig. 7.

To check the accuracy of Eq. (24), we calculate the two-
photon transition amplitudes for the S and D partial waves
with Eq. (21) [59]. Here, we neglect the time dependence
of S̃ε(t ), SI (t ), and SR(t ). This means that S̃ε(t ), SI (t ), and
SR(t ) are roughly equivalent to Up0 = E2

0 /4ω2, SR0 = 2.6E2
0 ,

and SI0 = −0.7E2
0 , respectively. The obtained results also

agree well with TDSE results, as shown in Fig. 6 (the dotted
lines).

The results above indicate that the angular distributions of
the doublets can be understood from the two-photon transition
amplitude due to the significant contribution of the nonreso-
nant pathway. In the relatively low laser intensity, the resonant
ionization pathway dominates, and thus the angular distribu-
tion is determined from the one-photon transition amplitude
(from the resonant state to the final state). In the one-photon
transition, the relative contribution of the S and D partial
waves changes slowly with the final photoelectron energy, and
thus the angular distributions of the doublets are almost the
same [57]. In the two-photon transition, the relative contri-
bution of the S and D partial waves oscillates quickly with
the photoelectron energy (or laser frequency) [47,48,60,61].
Consequently, the angular distributions are different for the
two peaks in the doublets. The two-photon transition ampli-
tude should be calculated for the splitted and energy-shifted
initial state. The energy splitting and shifting both depend on
the laser intensity and pulse duration. Therefore, the angular
distributions of the doublets depend on these parameters of
the driving laser pulses.
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FIG. 6. The percentages of the S (red S lines) and D (green
D lines) partial waves as a function of laser frequency. The solid,
dashed, and dotted lines represent the results obtained from TDSE,
Eq. (18), and Eq. (21), respectively. (a)–(d) The results for the outer
ring in PEMDs and (e,f) the results for the inner ring. The pulse dura-
tions for the left and right columns are N = 60 and 300, respectively.
The laser intensities are 5 × 1013 W/cm2 in (a), (b), (e), and (f) and
1 × 1014 W/cm2 in (c), (d).

IV. CONCLUSION

We theoretically investigate the TPI of hydrogen atoms in
the near-resonant strong-field regime by numerically solving
the 3D-TDSE. The PESs show that the asymmetry and the
energy spacing of the AT doubles are both affected by the
nonresonant states. The effects of the nonresonant states are
demonstrated from two aspects. One is the ac-stark shifts of
the initial, the resonant, and the continuum states. The other is
the nonresonant ionization pathway from the initial state. To
identify these two effects, a minimal three-state model con-
taining all the nonresonant states is developed. We find that
the laser frequency ωw

m where the minimum energy spacing
of AT doublets locates and the laser frequency ωA

m where the
symmetric AT doublets appears are both blue-shifted from
the field-free resonant frequency of 0.375 a.u. The shift of the

frequency ωw
m is due to the ac-stark shifts of the initial and

the resonant states. The shift of the frequency ωA
m is attributed

to both the ac-stark shifts of the initial, the resonant and
the continuum states and the contribution of the nonresonant
ionization pathway. Furthermore, the shifts of frequencies ωA

m
and ωw

m increase with the laser intensity because the effects of
the energy shifts and nonresonant ionization pathway are both
enhanced with the increasing laser intensity.

The PADs are also affected by the nonresonant states.
Owing to the nonresonant ionization pathway, the PADs for
the lower- and higher-energy peaks in the AT doublets are sig-
nificantly different. The angular distribution can be described
with the conventional two-photon transition amplitude with
the energy shifting and splitting of the initial (final) state being
considered.

Studying the effect of nonresonant states in near-resonant
TPI of more complicated multielectronic target are natural
extensions of our work. As long as the two-photon transition
amplitude from the initial state via the nonresonant states is
comparable with the one-photon transition amplitude from
the resonant state, the effects of the nonresonant states could
always survive. Inspecting how electron correlation affect the
role of the nonresonant states in multielectronic atomic target
[40,46,47,62–65], and how electron correlation and nuclear
motion affect the role of the nonresonant states in molecular
target [66–68] is an intriguing subject which is yet to be
explored.
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FIG. 7. The sketch of the energy shift and the splitting in the near-resonant laser field. The ac-stark shifts SR(t ), SI (t ), Sε (t ) as well as the
photon energy detuning Δω affect the splitting and shift of the energy levels.
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