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High-order harmonic spectroscopy (HHS), as an emerging technique, provides a way to detect molecular
structures with ångström spatial resolution and ultrafast electron dynamics in molecules on an attosecond
timescale. However, the implementation of HHS still encounters great difficulties due to the coherent av-
erage of single-molecule emissions from different alignment angles. Here, we provide a machine learning
algorithm based on the iterative projection method to fully retrieve the complex single-molecule dipole of a
linear molecule from the harmonic spectra measured at different delays and polarization angles between the
alignment and driving pulses. We demonstrated our algorithm both theoretically and experimentally using
the N2 molecule. The results show that our algorithm can accurately retrieve the complex single-molecule
dipole from the harmonic spectra with good noise stability and robustness. From the retrieved single-molecule
dipole, the contributions of multiple orbitals in high harmonic generation are identified even with a low degree
of alignment.
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I. INTRODUCTION

Probing the structure and internal dynamics of the
molecules is essential for understanding the physics of com-
plex chemical and biological reactions. To this end, a high
spatial resolution of the order of an ångström as well as an
attosecond temporal resolution [1–3] are required. High-order
harmonic generation (HHG) through laser-molecule interac-
tion provides one way to achieve this goal which is usually
called high-order harmonic spectroscopy (HHS). The HHS
relies on a built-in pump-probe process [4,5]: an electron is
first tunnel ionized (pump) by the strong laser field, subse-
quently accelerated in the external electric field, and finally
brought back to recombine with (probe) the parent ion by
releasing its kinetic energy by emitting harmonic photons.
The returning electron acts as an ultrafast “probe” during
recombination, recording information about the molecular
structure and dynamics in the harmonic spectrum. As a result,
the high-harmonic spectrum contains abundant information
on the structure and dynamics of the emitting molecule,
which provides a promising way for detecting the molecular
structure and electron dynamics with both attosecond tem-
poral resolution and ångström spatial resolution in the same
measurement. Up to now, HHS has been used in molecular
orbital tomography [6,7], probing molecular vibration [8], and
proton dynamics in molecules [9], decoding the underlying
attosecond multielectron dynamics [10], probing the structure
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of the excited molecules [11], imaging the attosecond wave
packet [12], and monitoring the attosecond charge migration
in molecules [13,14].

In HHS, the molecular frame information is encoded in
the harmonic emission on the single-molecule level [15–19].
However, in the experiment, the molecules are generally ran-
domly distributed in space, the single-molecule information
will be lost after averaging over the random distribution.
Even if the laser-induced molecular alignment technique was
developed [20–28] to address this issue, the molecular en-
semble can never be perfectly aligned in the experiment.
The measurement is still an average response over the in-
dividual emissions from the molecule directed at different
angles. The average response over the molecular alignment
distribution can deviate the measurement from the actual
single-molecule response, reducing the accuracy or destroying
the fact of reconstruction [14]. Therefore, it is essential to
unravel the internal angular single-molecule information from
the measurement. Previously, the so-called rotational coher-
ence spectroscopy (RCS) used the laser-induced molecular
alignment technique to obtain the time-varying photonic or
electronic signals modulated by a time-dependent molecu-
lar alignment distribution. It can retrieve the single-molecule
information, for example, molecular-frame angular distri-
butions of photoelectrons [29], fixed-in-space tunneling or
multiphoton ionization rates [30–33], and the time depen-
dence of molecular alignment distributions [16,34]. Under
these circumstances, except for [29], the information to be
retrieved is positive real quantities, which is different from the
HHS. In HHS, it encounters significant challenges, primar-
ily because of the coherent nature of HHG [35,36]. In most
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previous studies of HHG from aligned molecules, this internal
coherence is addressed either under the perfect alignment
approximation by ignoring angle dependence [6,7,12,13] (i.e.,
assigning measurements to the response of the molecules with
maximal distribution probability), or by using an incoherent
treatment to ignore the harmonic phases [19,37]. However,
such processing effectively overlooks the most important co-
herent nature of HHG. Recently, the same idea of RCS has
been expanded to fully retrieve the angle-resolved complex
dipole in the molecular frame [38,39], but they all remained
in the theoretical stage. Methods for achieving a true mea-
surement of the single-molecule harmonic response have been
long desired, but are still out of reach. Recently, a machine
learning algorithm has been shown to be very useful in high-
order harmonic spectroscopy for some inverse problems, for
example, retrieving molecular axis distribution [16], detecting
multiple chiral centers in chiral molecules [40], and recon-
structing band structure and pulse waveform for high-order
harmonic spectroscopy in solids [41].

Here, we develop a robust machine learning algorithm
based on the iterative projection method to fully retrieve the
alignment-angle-resolved complex dipole moments of HHG
for linear molecules at the single-molecule level from the har-
monic spectra measured at different delays and polarization
angles between the alignment and driving pulses. Our algo-
rithm is first tested on simulated spectra to verify the accuracy
and noise stability. Then, we apply our algorithm to real spec-
tra measured in the experiment of N2 and successfully retrieve
the single-molecule dipole moments. The results show that
the harmonics in the plateau region are mainly contributed
to by the highest occupied molecular orbital (HOMO) of N2.
While for harmonics near the cutoff region, the contribution
of HOMO-1 is clearly identified even if the alignment degree
is low in our experiment.

II. THEORY

In this section, we present essential elements for retrieving
the single-molecule dipole moment from the harmonic spectra
measured at different delays and polarization angles between
the alignment and driving pulses. These include the physi-
cal model of laser-induced nonadiabatic field-free molecular
alignment, the connection between the single-molecule re-
sponse and angle-resolved time-dependent harmonic spectra,
the reconstruction problem, which is formalized as an opti-
mization problem, and our machine learning algorithm based
on iterative projection.

A. Laser-induced nonadiabatic field-free molecular alignment
and convolution of the single-molecule response

Theories of laser-induced molecular alignment have been
widely studied in the literatures [26–28,42]. Using the rigid

rotor approximation, the rotational motion of the linear
molecule with initial state �JM excited by a short laser pulse
can be described by the time-dependent Schrödinger equation

i
∂�JM (θ, φ, τ )

∂τ
=

[
ηJ2 − E (τ )2

2
(α‖ cos2 θ + α⊥ sin2 θ )

]

× �JM (θ, φ, τ ). (1)

Here, E (τ ) is the electric field of the alignment pulse. η

is the rotational constant of the molecule. α‖ and α⊥ are the
anisotropic polarizabilities in the parallel and perpendicular
directions with respect to the molecular axis, respectively.

The time-dependent molecular axis distribution ρ(θ, φ, τ )
can be written as a weighted average of the modulus square of
the wave function �JM (θ, ψ, τ ),

ρ(θ, ψ, τ ) =
∑
JM

�JM |�JM (θ, ψ, τ )|2, (2)

where �JM is the statistical weight of the initial states. The
initial states are given by the Boltzmann distribution corrected
by the spin statistical weights as the molecules are initially in
thermal equilibrium.

The harmonic signal emitted from aligned molecules can
be expressed as the modules square of the convolution of the
time-dependent molecular axis distribution ρ(θ, φ, τ ) with
the dipole moment of the single-molecule response Dq(�)
[15,43,44]:

Iq(α, τ ) =
∣∣∣∣
∫ 2π

φ=0

∫ π

θ=0
Dq(�)ρ(θ, φ, τ ) sin θdθdφ

∣∣∣∣
2

, (3)

where q is the harmonic order. θ and φ are the polar and
azimuthal angles of the molecular axis with respect to the
polarization of the alignment laser, which is the z axis of the
laboratory coordinate system and the x axis of the laboratory
coordinate system. � is the polar angle in the molecular coor-
dinate system which means the angle between the molecular
axis and the polarization of the driving laser. α is the polariza-
tion angle between the driving laser and the alignment laser.
The delay τ and polarization angle α are scanned to obtain
the harmonic spectra (see Fig. 1). Angle � can be expressed
in the laboratory coordinate system as

cos � = sin θ sin α cos φ + cos θ cos α. (4)

Since perfect alignment cannot be achieved in the ex-
periment. The measured signal Iq(α, τ ) will deviate from
the single-molecule response Dq(�). Therefore, it is essen-
tial to disentangle the internal angular coherence from the
measurements.

B. Problem formalization

To retrieve the single-molecule dipole from the averaged harmonic signal, we have to deal with an inverse problem of
Eq. (3). It is difficult to solve this inverse problem directly because of the nonlinearity and ill-posedness of Eq. (3). In our
reconstruction, we first rewrite Eq. (3) to deal with the nonlinearity of the problem. Considering that the molecular axis
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FIG. 1. Schematic diagram of our experiment. The alignment pulse polarized along the z axis is first applied at τ = 0 to align the molecules.
The high-order harmonics are measured by scanning the delay and the polarization direction of the driving pulse in the x-z plane. ρ(θ, τ ) is the
time-dependent molecular axis distribution after the alignment pulse interacting with the molecules. Iq(α, τ ) is the harmonic signal generated
by the driving pulse.

distribution is independent of φ in the linearly polarized alignment laser, Eq. (3) can be expanded as

Iq(α, τ ) =
∫ π

θ=0

∫ 2π

φ=0
Dq(θ, φ, α)dφρ(θ, τ ) sin θdθ (

∫ π

θ=0

∫ 2π

φ=0
Dq(θ, φ, α)dφρ(θ, τ ) sin θdθ )∗

=
∫ π

θ1=0

∫ π

θ2=0

∫ 2π

φ1=0

∫ 2π

φ2=0
Dq(θ1, φ1, α)D∗

q(θ2, φ2, α)dφ1dφ2ρ(θ1, τ )ρ(θ2, τ ) sin θ1 sin θ2dθ1dθ2. (5)

Here, we define

Mq,α (θ1, θ2, φ1, φ2) ≡ Re
[
Dq(θ1, φ1, α)D∗

q(θ2, φ2, α)
]
, (6)

ρ(θ1, θ2, τ ) ≡ ρ(θ1, τ )ρ(θ2, τ ) sin θ1 sin θ2. (7)

Then Eq. (5) becomes

Iq(α, τ ) =
∫ π

θ1=0

∫ π

θ2=0

∫ 2π

φ1=0

∫ 2π

φ2=0
Mq,α (θ1, θ2, φ1, φ2)dφ1dφ2ρ(θ1, θ2, τ )dθ1dθ2. (8)

Note that the imaginary part of Dq(θ1, φ1, α)D∗
q(θ2, φ2, α) vanishes after convolution because of its asymmetry upon the

exchange of θ1, θ2 and φ1, φ2, thus is left out in Eq. (6).
By discretizing Eq. (8) and writing it in matrix form, we can obtain a linear relationship between Mq,α (θ1, θ2, φ1, φ2) and

Iq(α, τ ),

Iq,α = PMq,α, (9)

with

Iq,α ≡

⎛
⎜⎝Iq,α (τ1)

...

Iq,α (τK )

⎞
⎟⎠, (10)

P ≡ dθ1dθ2

⎛
⎜⎜⎜⎝

ρ
(
θ1

1 , θ1
2 , τ1

) · · · ρ
(
θ1

1 , θN
2 , τ1

)
ρ
(
θ2

1 , θ1
2 , τ1

) · · · ρ
(
θ2

1 , θN
2 , τ1

) · · · ρ
(
θN

1 , θN
2 , τ1

)
ρ
(
θ1

1 , θ1
2 , τ2

) · · · ρ
(
θ1

1 , θN
2 , τ2

)
ρ
(
θ2

1 , θ1
2 , τ2

) · · · ρ
(
θ2

1 , θN
2 , τ2

) · · · ρ
(
θN

1 , θN
2 , τ2

)
...

ρ
(
θ1

1 , θ1
2 , τK

) · · · ρ
(
θ1

1 , θN
2 , τK

)
ρ
(
θ2

1 , θ1
2 , τK

) · · · ρ
(
θ2

1 , θN
2 , τK

) · · · ρ
(
θN

1 , θN
2 , τK

)

⎞
⎟⎟⎟⎠, (11)
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Mq,α ≡ dφ1dφ2

J∑
i=1

J∑
j=1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Mq,α

(
θ1

1 , θ1
2 , φi

1, φ
j
2

)
...

Mq,α

(
θ1

1 , θN
2 , φi

1, φ
j
2

)
Mq,α

(
θ2

1 , θ1
2 , φi

1, φ
j
2

)
...

Mq,α

(
θ2

1 , θN
2 , φi

1, φ
j
2

)
...

Mq,α

(
θN

1 , θN
2 , φi

1, φ
j
2

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (12)

Here, K is the sampling number of time points. N is the sampling number of θ1 and θ2 and J is the sampling number of φ1

and φ2. The fully discretized Mq,α (θ1, θ2, φ1, φ2) has billions of elements. Therefore, it cannot be directly solved and we have
to reduce the dimension of Mq,α (θ1, θ2, φ1, φ2). Note that, in the molecular coordinate system, the single-molecule dipole only
depends on the angle �. Thus, we can define

Rq(�1,�2) ≡ D∗
q(�1)Dq(�2), (13)

and then discretize Rq(�1,�2) to write it into matrix form.
We define

Rq ≡

⎛
⎜⎜⎜⎝

Rq
(
�1

1,�
1
2

)
Rq

(
�1

1,�
2
2

) · · · Rq
(
�1

1,�
N
2

)
Rq

(
�2

1,�
1
2

)
Rq

(
�2

1,�
2
2

) · · · Rq
(
�2

1,�
N
2

)
...

Rq
(
�N

1 ,�1
2

)
Rq

(
�N

1 ,�2
2

) · · · Rq
(
�N

1 ,�N
2

)

⎞
⎟⎟⎟⎠, G (Rq) ≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Rq
(
�1

1,�
1
2

)
...

Rq
(
�1

1,�
N
2

)
Rq

(
�2

1,�
1
2

)
...

Rq
(
�2

1,�
N
2

)
...

Rq
(
�N

1 ,�N
2

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (14)

R′
q ≡ Re(Rq). (15)

Here, G represents a transformation that transforms a matrix into a vector and G −1 represents the inverse transformation. Note
that in Eq. (12), Mq,α (θ1, θ2, φ1, φ2) is discretized using a grid defined in the laboratory coordinate system. According to Eq. (4),
we can obtain the corresponding grid in the molecular coordinate system. Then, we can use nearest-neighbor interpolation to
replace the element of Mq,α with the element of R′

q. This can be expressed by an interpolation matrix Cq,α , which is computed
by counting the nearest-neighbor points (TNNP) for each grid point in Mq,α (θ1, θ2, φ1, φ2). If we define

N [
(
θ

n1
1 , θ

n2
2 , φi

1, φ
j
2

)
,
(
�

n3
1 ,�

n4
2

)
] =

{
0, i f

(
�

n3
1 ,�

n4
2

)
is not TNNP of

(
θ

n1
1 , θ

n2
2 , φi

1, φ
j
2

)
.

1, i f
(
�

n3
1 ,�

n4
2

)
is TNNP of

(
θ

n1
1 , θ

n2
2 , φi

1, φ
j
2

)
.

(16)

Here (θn1
1 , θ

n2
2 , φi

1, φ
j
2 ) is the grid point of Mq,α (θ1, θ2, φ1, φ2) and (�n3

1 ,�
n4
2 ) is the grid point of R′

q. Then the matrix element
of Cq,α can be expressed as

Cn1n2n3n4
q,α ≡ Cq,α

(
θ

n1
1 , θ

n2
2 ,�

n3
1 ,�

n4
2

) =
J∑

i, j

N
[(

θ
n1
1 , θ

n2
2 , φi

1, φ
j
2

)
,
(
�

n3
1 ,�

n4
2

)]
, (17)

and the matrix Cq,α is defined as

Cq,α ≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C1111
q,α · · · C111N

q,α C1121
q,α · · · C112N

q,α · · · C11NN
q,α

...

C1N11
q,α · · · C1N1N

q,α C1N21
q,α · · · C1N2N

q,α · · · C1NNN
q,α

C2111
q,α · · · C211N

q,α C2121
q,α · · · C212N

q,α · · · C21NN
q,α

...

C2N11
q,α · · · C2N1N

q,α C2N21
q,α · · · C2N2N

q,α · · · C2NNN
q,α

...

CNN11
q,α · · · CNN1N

q,α CNN21
q,α · · · CNN2N

q,α · · · CNNNN
q,α

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (18)
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Then, Eq. (9) becomes

Iq,α = PCq,αG (R′
q). (19)

Now we can use Rq(�1,�2) to describe the HHG signal
and keep the equation linear. This approximation is fairly
accurate because the discrete grid is dense and the single-
molecule dipole is fairly smooth. When the polarizations of
the alignment and driving pulses are parallel, which means
that α = 0, the interpolation matrix Cq,α is a unit matrix. This
specific case was used in the previous work to retrieve the
single-molecule dipole moment [39]. However, the method in
[39] cannot use signals with α �= 0, so the amount of data
that can be used is small, which leads to poor accuracy and
stability of reconstruction. With Eq. (19), we can solve these
problems by adding HHG signals from other angles. To this
end, we further concatenate Iq,α and PCq,α with different α

by defining

Sq ≡

⎛
⎜⎜⎝

Iq,1

Iq,2
...

Iq,O

⎞
⎟⎟⎠, Kq ≡

⎛
⎜⎜⎝

PCq,1

PCq,2
...

PCq,O

⎞
⎟⎟⎠. (20)

Here, O is the sampling number of α. Then we have

Sq = KqG (R′
q). (21)

We now formalize the retrieval problem as an optimization
problem. Here, we assume that the molecular axis distribution
ρ(θ, τ ) is already known; thus, the matrix P is known in ad-
vance. In the experiment, ρ(θ, τ ) can be determined following
the previous works [43,45]. Equation (21) indicates that the
reconstruction problem can be formalized as linear regression
problem. Meanwhile, Eqs. (13) and (15) have to be satisfied
to decompose Rq(�1,�2) into D∗

q(�). Then we can write the
reconstruction problem as

min
R′

q

∥∥Sq − KqG (R′
q)

∥∥2

2
, s.t .

⎧⎨
⎩

Rq = Rq
†,

rank(Rq) = 1,

R′
q = Re(Rq),

(22)

which minimizes the square error of the input signal relative
to the reconstructed signal. The constraints of Eq. (22) mean
that Rq is a Hermitian matrix whose rank is 1 and R′

q has to be
the real part of Rq. As a result, the Rq is defined as a product
of two column vectors that are conjugate to each other. This is
an equivalent form of the definition of Rq and R′

q in Eqs. (14)
and (15) . Note that this nonconvex constraint was ignored in
previous work [39].

C. Retrieval algorithm

In this subsection, we introduce our retrieval algorithm
based on the iterative projection method. This includes the
segmentation of the solution space, definition of the projec-
tions, description of the iterative procedure and generalization
of the heteroscedastic situation.

1. Segmentation of the solution space

Equation (22) is a high-dimensional nonconvex optimiza-
tion problem. To solve it, a proper algorithm must be used.
Iterative algorithms based on projection [46] have been proved

FIG. 2. Schematic diagram of the convergence process of the
iterative projection method. Q1 and Q2 represent two different sets
that segment the solution space into two parts. P1 and P2 represent
the projections corresponding to Q1 and Q2 which satisfy Eq. (25).

to be very effective in solving nonconvex optimization prob-
lems [47]. Recently, it was widely used in phase retrieval
[48], reconstructing state mixtures [49], diffractive imaging
[50–52], frequency-resolved optical gating [53], and image
superresolution [54]. Here, we provide an algorithm for solv-
ing Eq. (22) based on the iterative projection. The basic idea
of the projection method is to divide the solution space into
several sets and each set satisfies a subset of the constraints.
Then the solution to the feasibility problem is at the inter-
section of all sets (see Fig. 2). For Eq. (22), according to its
optimization objective, one of the subsets of the solution space
can be expressed as

Q1 ≡ {a|Kq Re(a) = Sq}. (23)

This means the real part of the matrices in Q1 is the so-
lutions of the linear equation Eq. (21), while the imaginary
part is not restricted. Another set that corresponds to the
constraints of Eq. (22) can be expressed as

Q2 ≡ {b|∃x ∈ {x|x = x†, rank(x) = 1}, b = Re(x)}. (24)

The matrices in Q2 are the real part of a Hermitian matrix
whose rank is 1. Q1 and Q2 segment the solution space into
two parts. Under this partition, the solution of Eq. (22) thus
belongs to the intersection of Q1 and Q2.

2. Definition of the projections

For searching the intersection of Q1 and Q2, we should
define the idempotent optimal projection for each set, which
means that the Euclidean distance before and after projection
should be minimal. The requirement for projections can be
expressed as

min
Pi

‖A − Pi(A)‖2
F , s.t .

{
Pi[Pi(A)] = Pi(A),
∀A = A†,Pi(A) ∈ Qi,

(25)
where A is an arbitrary Hermitian matrix. Qi represents the
sets that divide the solution space. Pi corresponds to an op-
eration that projects an arbitrary Hermitian matrix A into the
set Qi. The constraints in Eq. (25) indicate that the projection
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Pi is idempotent. In addition, the optimization objective of
Eq. (25) ensures the Euclidean distance (here is the Frobenius
norm of the matrix) between A and Pi(A) is minimal.

We have to solve Eq. (25) and make the projection Pi

concrete. For the projection P1 corresponding to Q1, we can
solve the following optimization problem:

min
δ

‖δ‖2
F , s.t . Kq{G (δ) + Re[G (A)]} = Sq. (26)

The solution δ is the residual error of A. Then, the solution δ

of Eq. (26) is used to define the projection P1,

P1(A) = δ + A. (27)

Here, δ can be understood as the change of A. Minimizing
‖δ‖2

F means the projection P1 is optimal.

Sometimes the solution requires additional symmetry; for
example, the single-molecule dipole Dq(�) should have a
mirror symmetry of 90 degrees in our case. As a result, a set of
orthonormal bases with corresponding symmetry is essential
to expand the δ. Specifically, we construct the symmetrized
two-dimensional (2D) Legendre polynomial basis functions

Bmn(θ1, θ2) ≡ 1√
2

[Lm(θ1)Ln(θ2) + Lm(θ2)Ln(θ1)] (m � n),

(28)
where Lm(n)(θ ) is the normalized Legendre polynomial of de-
gree m(n). Assuming that the highest order of the polynomial
is M, we can obtain the transformation matrix F, which is

F ≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

B00
(
θ1

1 , θ1
2

)
B10

(
θ1

1 , θ1
2

)
B11

(
θ1

1 , θ1
2

) · · · BMM
(
θ1

1 , θ1
2

)
...

B00
(
θ1

1 , θN
2

)
B10

(
θ1

1 , θN
2

)
B11

(
θ1

1 , θN
2

) · · · BMM
(
θ1

1 , θN
2

)
B00

(
θ2

1 , θ1
2

)
B10

(
θ2

1 , θ1
2

)
B11

(
θ2

1 , θ1
2

) · · · BMM
(
θ2

1 , θ1
2

)
...

B00
(
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⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (29)

Note that the column vectors of F are nonorthogonal in
Euclidean space. Thus, they are orthonormalized to construct
a set of orthonormal basis vectors in Euclidean space and form
a new transformation matrix H . Such a procedure preserves
the symmetry of the original Legendre polynomial basis set.
Consequently, the residual error δ is expanded by the or-
thonormal basis in H and the Frobenius norm of the original
matrix δ is equal to the l2-norm of the expansion coefficient ε

‖δ‖2
F = ‖Hε‖2

2 = ‖ε‖2
2. (30)

With Eq. (30), Eq. (26) is equivalent to the following equa-
tion in the column space of matrix H:

min
ε

‖ε‖2
2, s.t . Kq{Hε + Re[G (A)]} = Sq. (31)

Thus, the projection P1 can be defined as

P1(A) = G −1(Hε) + A. (32)

Equation (31) can be solved using the following equation:

ε = (KqH )+{Sq − Kq Re[G (A)]}. (33)

Here, the Moore-Penrose pseudoinverse [55] is used to
solve the linear system in the constraint of Eq. (31) and
minimizes the l2-norm of ε. This will give us a unique
minimum-norm solution. In practice, a low-rank approxi-
mation of KqH is required to calculate the Moore-Penrose
pseudoinverse for numerical stability and solve the ill condi-
tion of this equation. Finally, combining Eq. (32) with Eq. (33)
the projection P1 can be expressed as

P1(A) = G −1(H (KqH )+{Sq − Kq Re[G (A)]}) + A. (34)

By now the projection P1 has been properly defined. Sim-
ilarly, the projection P2 corresponding to Q2 also needs to be
solved by an optimization problem, as expressed as

min
B

‖A − Re(B)‖2
F , s.t .

{
B = B†,

rank(B) = 1,
(35)

where A is an input arbitrary Hermitian matrix. The con-
straints of Eq. (35) mean the solution B is an Hermitian matrix
whose rank is one.

Such an optimization problem can be solved by the it-
erative projection method as well. Same as Eqs. (23) and
(24), the solution space of Eq. (35) can be further segmented
into two subsets. According to the constraints in Eq. (35), one
of the subsets of the solution space Q3 can be expressed as

Q3 ≡ {c|c = c†, rank(c) = 1}, (36)

which means the matrices in Q3 are Hermitian matrices whose
rank are one. The other subset that relates to the optimization
objective in Eq. (35) is defined as

Q4 ≡ {d| Re(d ) = Re(A)}, (37)

which means the real part of the matrices in Q4 are equal
to that of the input matrix A. Then, the projection P3 that
satisfies Eq. (25) can be expressed as

P3(�) = VV †E , (38)

where P3 projects any Hermitian matrix to Q3. � is an
arbitrary Hermitian matrix. E is the maximum eigenvalue of
the input matrix � and V is the corresponding eigenvector.

The definition of P4 is

P4(�) = Re(A) + Im(�)i, (39)
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where P4 projects any Hermitian matrix to Q4. Here, by
replacing the real part of � with the real part of A, Eq. (25)
can be easily satisfied.

After solving Eq. (35), the projection P2 can be defined as

P2(A) = Re(B). (40)

Here, with P3 and P4, an internal iterative projection is used
to implement P2.

3. Procedure of the iterative projection method

Once the projections P1 and P2 are defined, the solution
of Eq. (22) can be searched in the solution space. Here, we
use the Projection Onto Convex Sets (POCS) algorithm [46].
When there are two sets, it can be denoted as an iterative
formula

R′(n+1)
q = P2

[
P1

(
R′(n)

q

)]
, (41)

where R′(n)
q is the solution from the previous iteration and

R′(n+1)
q is the solution from this iteration. The measured signal

fed into the algorithm is represented as a vector Sq which is
defined in Eq. (20). The molecular axis distribution is used to
construct the matrix P. These are used to implement the pro-
jection P1. The difference between R′(n)

q and R′(n+1)
q is defined

as the Frobenius norm ‖R′(n)
q − R′(n+1)

q ‖2

F
. The iteration stops

once the difference is smaller than the tolerance. Figure 2
vividly describes the convergence process of the algorithm.
Starting from the initial point, it converges to the solution after
repeated projection between the two sets. The same formula
can be used to solve Eq. (35) by using projections P3 and P4

which are defined in Eqs. (38) and (39), respectively.
After solving Eq. (22), we can use the following equa-

tions to extract Dq(�) from R′
q [39]:

∣∣Dq(�)
∣∣ =

√
Re[R′(�,�)]

φ(�2) − φ(�1) = ± arccos

[
Re[R′(�1,�2)]∣∣Dq(�1)

∣∣∣∣Dq(�2)
∣∣
]
, (42)

where φ(�) is the phase of Dq(�). Here, we need to em-
phasize that, unlike in [39], our method completely includes
constraints on R′(�1,�2), so Dq(�) can be extracted using
Eq. (42).

4. Generalization of the heteroscedastic situation

Equation (22) assumes that the input signal is homoscedas-
tic, which means that each measured Sq has the same variance.
Here, we provide a way to extend the algorithm to the het-
eroscedastic situation. For the heteroscedastic situation, the
problem can be explained as a weighted linear regression
model with some constraints. The linear regression model is
represented as

Sq = KqG (R′
q) + νq. (43)

Here, νq is the heteroscedastic noise. The inverse of its
variance can be used as the weight ωk

q,α = 1
Var(νk

q,α ) . Then we

can define the weight matrix W q as

�q ≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ω1
q,1
...

ωK
q,1

ω1
q,2
...

ωK
q,2
...

ωK
q,O

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, W q ≡ diag(�q). (44)

Here diag represents a transformation that transfers a vec-
tor to a diagonal matrix. The optimization problem can be
represented as

min
R′

q

∑
α

[Sq − KqG (R′
q)]T W q[Sq − KqG (R′

q)],

s.t .

⎧⎨
⎩

Rq = Rq
†,

rank(Rq) = 1,

R′
q = Re(Rq).

(45)

By multiplying each term in the Eq. (43) with
√

W q, we
have √

W qSq = √
W qKqG (R′

q) + √
W qνq. (46)

This is also a linear regression model and its noise term√
W qνq is homoscedastic. Considering the constraints of R′

q,
the corresponding optimization form can be represented as

min
R′

q

∑
α

‖√W qSq − √
W qKqG (R′

q)‖2
2,

s.t .

⎧⎨
⎩

Rq = Rq
†,

rank(Rq) = 1,

R′
q = Re(Rq).

(47)

Equation (47) can be solved with the algorithm introduced
above.

III. RESULTS AND DISCUSSION

In this section, we first verify the validity and stability
of our algorithm with numerical results, then introduce our
experimental scheme, and finally implement our algorithm on
experimental data.

A. Numerical results

To test the validity and stability of our algorithm, we
first perform our algorithm on theoretically calculated HHG
spectra. We calculate the single-molecule dipole by the quan-
titative rescattering (QRS) theory [44,56–58]. The driving
pulse which generates the high harmonics has a peak intensity
of 1.3 × 1014 W/cm2 and a duration of 40 fs (full width at
half maximum, FWHM). The calculated amplitude and phase
of the 25th harmonic (H25) are shown in Fig. 3(a) with
solid lines. Then, we calculate the molecular axis distribution
ρ(θ, φ, τ ) of N2 molecules. In our calculation, the alignment
pulse has a peak intensity of 3 × 1013 W/cm2 and a duration
of 50 fs (FWHM). The rotational temperature of the gas is
100 K. The calculated molecular axis distribution is shown
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FIG. 3. (a) The calculated amplitude (blue solid line) and phase
(green solid line) of the single-molecule dipole D(�) of H25 for
N2 using QRS theory. Red and black dashed lines are the retrieved
results. (b) Calculated time-dependent molecular axis distribution.
(c) Calculated time-dependent harmonic signal at different polariza-
tion angles between the alignment and driving pulses for H25 after
convoluting the calculated single-molecule dipole D(�) in (a) with
the time-dependent molecular axis distribution in (b). (d) Same as
(c), but is calculated with the retrieved single-molecule dipole.

in Fig. 3(b). The maximal degree of alignment 〈cos2 θ〉 is
approximately 0.44. The HHG signal Iq(α, τ ) then can be
calculated using Eq. (3) to simulate experimental data. To
facilitate the calculation, the corresponding random alignment
signal was used to normalize the calculation result, which
means that we do not care about the absolute amplitude but the
angle distribution of the single-molecule dipole. We mention

that the absolute amplitude can be easily reproduced with our
reconstruction result multiplied by a real factor. Figure 3(c)
shows the simulated signal of H25 as a function of the time
delay and polarizing angle between the alignment and driving
pulses. With the simulated HHG signals, we first demonstrate
our algorithm in a noiseless case. The single-molecule dipole
retrieved for H25 of N2 is shown in Fig. 3(a) as the dashed
lines. Without the noise, one can see that both the amplitudes
and phases are accurately retrieved. The HHG signal repro-
duced with the retrieved dipole moment is shown in Fig. 3(d),
which is also in excellent agreement with the input result in
Fig. 3(c).

Considering the presence of the noise in the experiment,
we next investigate the robustness of the algorithm against
the noise. we added Gaussian random noise to our numerical
results to simulate the real spectra measured in the experi-
ment. In the simulations, the signal-noise ratio (SNR) is used
to assess the level of the Gaussian random noise, which is
defined as

SNR = 10log10

(
Var(S)

Var(ε)

)
, (48)

where Var(S) and Var(ε) are the variance of the signal and
the noise, which describe the average power of the signal
and the noise respectively. The unit of the SNR is decibel
(dB). Here, we still take H25 as an example. Figures 4(a)
to 4(d) show the simulated spectra for SNR = 20, 10, 5, 0,
respectively. The amplitude and phase of H25 retrieved from
the noisy data are shown in Figs. 4(e) and 4(f). One can see
that the single-molecule dipole can be accurately retrieved
with the SNR changing from 0 to 20 dB. Additional tests
for other harmonics are shown in Appendix A. All results
show good noise stability. In our experiment, the SNR of the
measured HHG spectra is estimated to be about 10 dB. Thus

FIG. 4. (a)–(d) are calculated spectra of H25 with SNR = 20, 10, 5, 0, respectively. The dashed purple (dark gray) line, dotted yellow line,
dash-dotted red line, and blue solid line in (e,f) are the amplitude and phase of the single-molecule dipoles retrieved with the spectra in (a)–(d).
The dashed green (light gray) line is the input single-molecule dipole calculated by QRS theory.
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FIG. 5. (a) Time-dependent degrees of molecular alignment
〈cos2 θ〉 around the half-rotational revival of N2 are reconstructed
using the experimental data. (b) Reconstructed time-dependent
molecular axis distribution ρ(θ, τ ).

the proposed algorithm can be well used in our experimental
data. We also test the noise stability for noise in the molecular
axis distribution. Our results show that our algorithm can ac-
curately retrieve the complex single-molecule dipole from the
harmonic spectra with good noise stability (see Appendix B).

B. Experiment results

In this section, we demonstrate the implementation of our
algorithm on experimental data. Our experiment is carried out
by using a commercial Ti: sapphire laser system (Astrella-
USP-1K, Coherent, Inc.), which delivers 35-fs, 800-nm pulses
at a repetition rate of 1 kHz. The output laser is split into
two pulses to produce the alignment and driving pulses. An
alignment pulse with moderate intensity and polarization par-
allel to the z axis is used to induce the nonadiabatic alignment
of molecules along its polarization. Later, the intense driving

pulse with adjustable time delay and polarization is applied to
interact with the molecular ensemble to generate high-order
harmonics. A motorized delay line and a half-wave plate are
installed in the arm of the driving pulse to adjust its time delay
and polarization with respect to the alignment one. The delay
and polarizations of the driving pulses are scanned to obtain
the harmonic spectra like that in Fig. 4(a). The generated high
harmonics are detected by a homemade flat-field soft x-ray
spectrometer [59,60].

To retrieve the single-molecule dipole, we first need to
determine the time-dependent molecular axis distribution in
our experiment. We do this following the previous work [43].
The time-dependent degrees of molecular alignment 〈cos2 θ〉
reconstructed by experimental data are shown in Fig. 5(a). The
maximum alignment degree is approximately 0.4. Figure 5(b)
shows the time-dependent molecular axis distribution ρ(θ, τ )
reproduced with experimental data. With ρ(θ, τ ) determined,
we can then use our algorithm to retrieve the single-molecule
dipole with experimental data. Figures 6(a) and 6(c) show
the experimental signals of H19 and H23 measured at dif-
ferent delays and polarization angles between the alignment
and driving pulses. The solid lines in Figs. 6(e) to 6(h) are
the retrieved dipole amplitudes and phases of H19 and H23,
respectively. Figures 6(b) and 6(d) show the corresponding
HHG signals reproduced with the retrieved dipoles. One can
see that the reconstruction results agree well with the ex-
perimental results. We also perform theoretical calculations
using the QRS theory to compare with our retrievals. In our
QRS calculations, the peak intensity of the driving pulse
is 1 × 1014 W/cm2. The amplitude and phase of calculated
dipoles of H19 and H23 are shown as dashed lines in Figs. 6(e)
to 6(h). In our calculation, only the HOMO orbital is used.
One can see that the calculation falls within the bounds of the

FIG. 6. (a,b) are the harmonic signals of H19 measured in our experiment and calculated with the retrieved single-molecule dipole. Blue
solid lines in (e,f) are the retrieved amplitude and phase of the single-molecule dipole for the experimental signal in (a). Red dashed lines in
(e,f) are the amplitude and phase of the single-molecule dipole of H19 for the HOMO orbital which is calculated by QRS theory. (c,d) and
(g,h) Same as (a,b) and (e,f), but for H23.
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FIG. 7. (a,b) are the harmonic signals of H25 measured in our experiment and calculated with the retrieved single-molecule dipole. Blue
solid lines in (e,f) are the retrieved amplitude and phase of the single-molecule dipole for the experimental signal in (a). Red dashed lines
and black dotted lines in (e,f) are the amplitude and phase of the single-molecule dipole of H25 for HOMO and HOMO-1 orbitals which is
calculated by QRS theory. (c,d) and (g,h) Same as (a,b) and (e,f), but for H31.

experimental uncertainty for almost every alignment angle,
and agrees at a quantitative level with the experiment. These
results indicate that the HOMO orbital dominates the HHG
process.

We also performed our algorithm for harmonics in the
cutoff region. Figures 7(a) and 7(c) show the experimental
signals of H25 and H31. The solid lines in Figs. 7(e) to
7(h) are the retrieved dipole amplitudes and phases of H25
and H31, respectively. The HHG signals reproduced with
the retrieved dipoles also agree well with the experimental
results shown in Figs. 7(b) and 7(d). However, the retrieved
harmonic dipoles show a significant difference compared to
the theoretical calculations for HOMO [see Figs. 7(e) to 7(h)].
The retrieval results show a much larger enhancement after 60
degrees than the theoretical results for HOMO. To understand
this difference, we further performed simulations with deeper
orbitals taken into account [61]. It was reported in previous
works that the HOMO-1 orbital plays an important role in the
HHG from N2 when the molecule is perpendicularly aligned
to the polarization of the driving laser [62]. The calculation re-
sults of HOMO-1 for H25 and H31 are shown in Figs. 7(e) to
7(h) with black dashed lines. From Figs. 7(e) to 7(h), one can
see that the contribution of HOMO-1 is most prominent after
60 degrees due to its πg symmetry, which is consistent with
our retrievals. In addition, we also note that the contribution
of HOMO-1 is small for the lower order. It will not signif-
icantly effect the harmonic spectra below H25 according to
our calculation result. This also agrees with our experimental
results. Note that experimental results of other harmonics are
also shown in Appendix A.

Finally, we emphasize that the contribution from deeper
molecular orbitals of N2 in HHG can be directly observed in
the measured HHG signals in the previous experiment [62].

However, to observe this signature, it usually requires a high
alignment degree which is not observed in our experiment due
to the low alignment degree [see Figs. 7(a) and 7(c)]. But
using our algorithm, the effects of multiple orbitals can still
be clearly identified from our retrieved results.

IV. CONCLUSION

In summary, we developed a robust machine learning al-
gorithm based on the iterative projection method to retrieve
the single-molecule dipole moment from the harmonic spectra
measured at different delays and polarization angles between
the alignment and driving pulses. We introduce a linearization
technique to efficiently use signals with nonzero polarization
angles between the alignment and driving pulses. This could
increase the accuracy and stability. Our numerical test shows
that the accuracy and noise stability of our algorithm are good
and robust enough to deal with the experimental data. We
also demonstrate that our algorithm works well on the experi-
mental data. The retrieved single-molecule dipoles agree well
with the theoretical calculations with QRS theory. Moreover,
multiple orbitals effects in the cutoff region is clearly identi-
fied from our retrievals even if the alignment degree is pretty
low.

In addition, our algorithm can also be applied to other more
complex linear molecules. We do not limit the complexity of
the single-molecule dipole as in previous work [38] since the
algorithm can directly solve the high-dimensional optimiza-
tion problem. The current algorithm can be directly applied
to nonsymmetric linear molecules by replacing the molecular
alignment distribution with the molecular oriented distribu-
tion. However, for nonlinear molecules, the single-molecule
dipole moment needs to be described with a second Euler

033105-10



ITERATIVE PROJECTION ALGORITHM FOR RETRIEVAL … PHYSICAL REVIEW A 107, 033105 (2023)

FIG. 8. The amplitude (a)–(g) and phase (h)–(n) of the single-molecule dipoles for H17, H19, H21, H23, H27, H29, H31. The dashed
purple (dark gray) line, dotted yellow line, dash-dotted red line, and blue solid line are the retrieved results for SNR = 20, 10, 5, 0 of signals.
The dashed green (light gray) line is the input single-molecule dipole calculated by QRS theory.

angle χ . Since the one-dimensional (1D) alignment technique
is used, the reconstructed result will be the integral dipole
moment with respect to Euler angle χ . Our work provides an
algorithm for retrieving the single-molecule dipole of the lin-
ear molecule that can be used as a tool in detecting molecular
structures and ultrafast dynamics.

ACKNOWLEDGMENTS

This work was supported by National Key Research
and Development Program of China (Grant No.
2019YFA0308300), National Natural Science Foundation of
China (Grants No. 91950202, No. 12225406, No. 12074136,

and No. 12021004), and the Natural Science Foundation of
Hubei Province (Grant No. 2021CFB330).

APPENDIX A: THEORECTICAL AND EXPERIMENTAL
RESULTS OF OTHER HARMONICS

Here we present theoretical and experimental results of
other harmonics to further illustrate the capability of our al-
gorithm. Figure 8 shows the theoretical results of H17, H19,
H21, H23, H27, H29, and H31. The theoretical results of all
harmonics agree well with the ground truth and perform good
noise stability and accuracy. Figure 9 shows the experimental
results of H17 and H21 in the plateau region. In spite of the
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FIG. 9. (a,b) are the harmonic signals of H17 measured in our experiment and calculated with the retrieved single-molecule dipole. Blue
solid lines in (e,f) are the retrieved amplitude and phase of the single-molecule dipole for the experimental signal in (a). Red dashed lines in
(e,f) are the amplitude and phase of the single-molecule dipole of H17 for the HOMO orbital, which is calculated by QRS theory. (c,d) and
(g,h) Same as (a,b) and (e,f), but for H21.

slight difference, the calculations well reproduce the general
trend of the experimental retrievals, which also indicates a
dominant contribution of the HOMO orbital in the generation
of H17 and H21. Figure 10 shows the experimental results

of H27 and H29 in the cutoff region. Both theoretical cal-
culations and experimental reconstructions indicate that the
contribution of the HOMO-1 orbital significantly effect the
harmonic spectra after H25.

FIG. 10. (a,b) are the harmonic signals of H27 measured in our experiment and calculated with the retrieved single-molecule dipole. Blue
solid lines in (e,f) are the retrieved amplitude and phase of the single-molecule dipole for the experimental signal in (a). Red dashed lines
and black dotted lines in (e,f) are the amplitude and phase of the single-molecule dipole of H27 for HOMO and HOMO-1 orbitals which is
calculated by QRS theory. (c,d) and (g,h) Same as (a,b) and (e,f), but for H29.
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FIG. 11. The amplitude (a)–(h) and phase (i)–(p) of the single-molecule dipoles for H17, H19, H21, H23, H25, H27, H29, H31. The dashed
purple (dark gray) line, dotted yellow line, dash-dotted red line, and blue solid line are the retrieved results for SNR = 0, 5, 10, 20 of alignment
axis distribution. The dashed green (light gray) line is the input single-molecule dipole calculated by QRS theory.

APPENDIX B: NOISE STABILITY FOR NOISE IN THE
MOLECULAR AXIS DISTRIBUTION

To demonstrate the noise stability for noise in the molec-
ular axis distribution of our algorithm, we performed some
numerical simulations. Gaussian random noise is added in the

molecular axis distribution with SNR = 20, 10, 5, 0, respec-
tively. Figure 11 shows the reconstructed results compared
with the ground truth for H17, H19, H21, H23, H25, H27,
H29, and H31. All results show that our algorithm has good
noise stability for noise in the molecular axis distribution.
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