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Atomic photoionization by spatiotemporal optical vortex pulses
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Electromagnetic waves with a helical-like wavefront are known as optical vortices. One of their main
characteristics is a phase structure that has a circulation around a singularity and that they carry orbital
angular momentum (OAM). OAM is a fundamental property that governs the interaction of these sources
with matter. In the present paper, we study the electron dynamics driven by a so-called spatiotemporal optical
vortex (STOV). Contrary to the conventional optical vortices, a STOV carries transverse OAM. By designing a
streakinglike technique, we aim to fully characterize the OAM of the STOV. Using both quantum mechanical and
semiclassical models, we are able to dissect the spatially resolved photoelectron energy spectra and accurately
retrieve the OAM. Our approach paves the way toward a complete understanding of the interaction of complex
spatiotemporal light fields with atomic targets.
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I. INTRODUCTION

Light with a helical wavefront or phase structure configures
what is known as an optical vortex [1]. This phase has a
circulation around a phase singularity, where the field ampli-
tude vanishes and the azimuthal phase is discontinuous. In an
optical vortex, the light field carries an orbital angular momen-
tum (OAM) of l h̄ per photon (l is known as the topological
charge). Typically, Laguerre-Gauss [2] or Bessel-Gauss [3]
models are used to deal with optical vortices. Light fields
with OAM have been widely studied [4–10] and applied in
many areas, such as microscopy [11], optical communication
[12], and particle tweezing [13] to cite just a few. Very re-
cently, schemes with time-varying OAM were also introduced
[14,15].

In laser-matter interaction processes, the conservation of
OAM has been extensively examined. Previous work pointed
out that the transfer of OAM from the photon to the atomic
system would induce nondipole transitions [16,17], and this
has been observed experimentally in quadrupole electronic
excitations [18]. Meanwhile, the effect of OAM on the pho-
toelectrons distribution has been investigated theoretically
[19–23]. However, as the field amplitude vanishes at the phase
singularity, the measured observables are dominated by those
electrons released in areas where the laser has higher intensity,
thus the transfer of OAM appears to be negligible [24].
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Furthermore, either by XUV photoionization in the pres-
ence of an optical vortex pulse [25–27] or taking advantage
of the spin-orbit interaction [28,29], the transfer of OAM in
strong field ionization was experimentally implemented. In
high-order harmonic generation (HHG), the harmonics flux
results from the coherent superposition contribution of phase-
matched single-atom responses, carrying phase information
over the entire region of the optical vortex. Thus, the OAM
transfer from the infrared (IR) photon to their harmonics is
easy to achieve. In this way, the production of attosecond
pulses with tuneable OAM becomes feasible [30–34].

Whether we use a Laguerre-Gauss or Bessel-Gauss model,
the OAM vector is parallel to the light propagation direction,
namely, it is longitudinal. A few years ago, a concept, coined
spatiotemporal optical vortex (STOV), carrying a transverse
OAM, i.e., the OAM vector is perpendicular to the propaga-
tion direction, was proposed [35–37]. A STOV is essentially
a polychromatic electromagnetic structure, with phase circu-
lation in the spatiotemporal plane. STOVs were first observed
from short pulse filamentation in air [38] and were recently
generated successfully in free space [39,40]. Subsequently, an
accurate theoretical description of the propagation, polariza-
tion, and angular-momentum properties of a Bessel-type pulse
STOV, as well as its scalar and vector spatiotemporal Bessel-
type solutions, was introduced in Ref. [41]. It should be noted
that the expected value of the transverse OAM depends not
only on the topological charge l but also on the group velocity
dispersion and the spatiotemporal eccentricity of the STOV
pulse [42]. Similar to traditional optical vortices, the conserva-
tion of transverse OAM in laser-matter interaction processes
driven by a STOV has also been investigated. Likewise,
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recent work explored the conservation and characterization
of transverse OAM in second harmonic generation [43,44].
In HHG, the transverse OAM of the high-order harmonics
can be controlled through a two-color counterspin and coun-
tervorticity STOV pulse. Furthermore, it was also found that
spatially resolved harmonic spectra present an interference
pattern caused by the spatiotemporal phase singularity [45].
Besides all these investigations, it is not clear how transverse
OAM is transferred in other strong-field processes.

In this contribution, we theoretically study atomic pho-
toionization driven by STOV pulses. In our prototypical
scheme, an H atom is ionized by a STOV with a cen-
tral wavelength of 1600 nm, assisted by an XUV pulse.
By changing the spatial location and time delay of the
XUV pulse relative to the STOV, the strong field ion-
ization can be controlled in space and time, respectively.
To simulate the electron dynamics, we numerically solve
the three-dimensional time-dependent Schrödinger equation
(3D-TDSE). From the time-propagated electron wave func-
tion, we calculate the photoelectron momentum distribution
(PMD) and the energy spectra for different positions and
time delays. We show that the photoelectron energy spectra
depend on the spatial location of the XUV pulse and ex-
hibit distinct interference patterns. The former reflects the
spatial chirp of the electric field of the STOV pulse, which
is traced back to the spatiotemporal phase circulation [45].
The latter is due to the presence of the spatiotemporal sin-
gularity, which makes the electrons ionized before and after
such singularity interfere with each other. By employing the
strong field approximation (SFA) [46,47], we reproduce the
interference pattern from a classical trajectory-based perspec-
tive and demonstrate its physical origin. In addition, through
the interference fringes, the OAM of the STOV can be fully
characterized. Here, as the OAM increases, the fringes be-
come denser. Our results provide a method to study STOV
using photoelectrons and extend its application to strong-field
ionization.

II. NUMERICAL METHODS

The electric field of a linearly polarized STOV, propagating
along the z axis and carrying an OAM with topological charge
l , can be described mathematically as [38,40,43,45] (atomic
units are used throughout unless stated otherwise)

Fl
ST(t, x, y, z) = F ST

0 α0

⎡
⎣(

x

wx

)2

+
(

t − z
vg

wt

)2
⎤
⎦

|l|
2

× exp

⎡
⎣−

(
x

wx

)2

−
(

y

wy

)2

−d

(
t − z

vg

wt

)2
⎤
⎦

× exp[i(ωSTt − kSTz − lφST)]x̂. (1)

Here, the OAM vector is along the y axis, (t, x, y, z) are the
spatiotemporal coordinates; x̂ is the polarization direction;
F ST

0 is the electric field peak amplitude; α0 = [2e/|l|]|l|/2 is
a normalization constant; vg = c is the light group velocity;
wx, wy, and wt are the spatial and temporal scale widths,
respectively; kST is the wave number; ωST is the central

FIG. 1. (a) Schematic representation of the propagation of a
STOV pulse with l = 1. The dashed violet curve represents an XUV
pulse located at x = 0 and a positive time delay relative to the spa-
tiotemporal singularity. (b) Spatiotemporal distribution of the electric
field of the STOV with l = 1 at z = y = 0. The dashed violet lines
denote the position of the XUV pulse in the space-time plane (x − z
plane). The time delay is chosen to be before (τ+ = wt

√|l|/2) or
after (τ− = −wt

√|l|/2) the spatiotemporal singularity, and the x
position is scanned from −1.6 wx

√|l|/2 to 1.6 wx
√|l|/2.

frequency; and φST = tan−1[ xwt
(t−z/vg)wx

] is the spatiotemporal
phase. Here, φST means that the phase circulates in the x-z
plane and rotates about the y axis. Considering that the OAM
vector is directed along the y axis, only the y component
of the transverse OAM exists. The corresponding angular
momentum operator can be written as Ly = −i(vgt − z) ∂

∂x ,
with an expected value 〈Ly〉 = l/2 [42]. Note that it will not
play any role in our study. In Fig. 1(a), we show a STOV
pulse with l = 1, joint with the assisting XUV pulse (see
below for more details). The STOV pulse appears as a fly-
ing donut with transverse OAM. Around the spatiotemporal
singularity of the donut center, the phase of the STOV has
a 2π circulation (for l = 1). In Fig. 1(b), the spatiotemporal
distribution of the STOV electric field with l = 1 at z = y = 0
is shown. In this work, a STOV pulse with wavelength λST =
1600 nm and intensity IST = 1 × 1012 W/cm2 is employed,
which has spatiotemporal widths wx = 2λST and wt = 2TST

(TST = 2π/ωST), respectively. It should be noted that wx and
wt are not directly related to the actual beam spatial distri-
bution or the pulse duration. These quantities are more like
the beam waist of traditional light beams. From Fig. 1(b), it
can be seen that the STOV pulse is distributed in a range of
about ≈13 μm (i.e., ≈8 wavelengths), and the pulse lasted
for more than 40 fs (≈8 cycles). As shown in Fig. 1(b), the
forked pattern in the center is the embodiment of the spa-
tiotemporal singularity. In addition, the oscillation frequency
of the electric field at different positions changes slightly, i.e.,
the STOV is spatially chirped. This is a consequence of the
phase circulation [45].

To uncover the influence of the STOV spatiotemporal
structure in strong field ionization, we assist the ionization
with an XUV pulse, i.e., the electrons are first transferred
to a highly excited state by the XUV pulse before being
ionized by the STOV pulse, with a central wavelength of
91.13 nm (ωXUV = 0.5 a.u.) and peak intensity IXUV = 1 ×
1013W/cm2. In this way, we can control the ionization time
and position of the photoelectrons by changing the time delay
and position of the XUV pulse relative to the STOV pulse,
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as shown in Fig. 1(a) (violet dashed curve). The latter is
experimentally feasible because the spatial size of a focused
XUV pulse is much smaller than that of the STOV pulse. The
XUV pulse can be written as

FXUV(t ; τ ) = F XUV
0 f (t + τ )cos[ωXUV(t + τ )]x̂, (2)

where τ is the time delay relative to the spatiotemporal singu-
larity, F XUV

0 is the peak electric field strength, and f (t ) is the
pulse envelope, which has a cos2(πt/Tp) shape with a duration
of Tp = 32TXUV (TXUV = 2π/ωXUV). The time delay is taken
to be τ+ = wt

√|l|/2 (τ+ = 7.62 fs and 10.79 fs for l = 1
and l = 2) or τ− = −wt

√|l|/2, which corresponds to XUV
pulses arriving before or after the spatiotemporal singularity,
respectively [see the dashed lines in Fig. 1(b)]. The position
of the XUV pulse in the x axis scans over a region from
−1.6 wx

√|l|/2 to 1.6 wx
√|l|/2 (−3.62 to 3.62 μm for l = 1,

and −5.12 to 5.12 μm for l = 2). Here, ±wt
√|l|/2 is the

time when the electric field of the STOV pulse at position
x = 0 reaches its maximum, and ±wx

√|l|/2 is the position
where the electric field at time t = 0 reaches its maximum. If
the XUV pulse comes first, electrons at a given position can
be transferred to a highly excited state at a given time and
then ionized by the STOV pulse. These electrons thus encode
spatiotemporal information of the STOV.

A. Numerically solving the time-dependent
Schrödinger equation

The dynamics of an atomic electron interacting with strong
laser pulses are governed by the 3D-TDSE. In the velocity
gauge, it can be written as

i
∂	(r, t )

∂t
=

(
p2

2
+ Al

±(t, x) · p + V (r)

)
	(r, t ), (3)

where V (r) = −1/r is the Coulomb potential of the H atom.
Note that in Eq. (3) we have neglected the [Al

±(t, x)]2 term
[48]. It contributes to a phase that does not affect the observ-
ables. The vector potential of the total laser pulse is described
by

Al
±(t, x) =

∫ [
FXUV(t ; τ±) + Fl

ST(t, x, y = 0)
]
dt, (4)

where τ± is the time delay of the XUV pulse before or after the
spatiotemporal singularity and Fl

ST(t, x, y = 0) is the electric
field of the STOV at x, where x is the spatial location of the
XUV pulse relative to the singularity of the STOV.

To solve the 3D-TDSE, the wave function 	(r, t ) is ex-
panded in spherical harmonics Ylm(θ, φ) as

	(r, t ) =
∑
l,m

Rlm(r, t )

r
Ylm(θ, φ). (5)

Here, Rlm(r, t ) is the radial part of the wave function, which
is discretized by the finite-element discrete variable rep-
resentation method [49,50]. In our simulation, the angular
momentum l is chosen up to 30 to guarantee convergence,
the magnetic momentum m is taken to be 0 due to the linearly
polarized character of both the STOV and XUV pulses, and
the box size for the radial coordinate is rmax = 500 a.u. The
time-propagated electron wave function is obtained by the
split-Lanczos method with a time step �t = 0.1 a.u. [51].

In each step of the time propagation, we use an absorbing
mask function F (r) = 1 − 1/[1 + e(160−r)/2] to split the wave
function 	(r, t ) into an inner part 	in(r, t ) = F (r)	(r, t ) and
an outer part 	out(r, t ) = [1 − F (r)]	(r, t ). The inner part
	in(r, t ) is evolved by the full 3D-TDSE, while the outer wave
function is propagated by a Coulomb-Volkov propagator [52].
The initial wave function is prepared by imaginary-time prop-
agation. This scheme is preferable for more complex atomic
targets, where analytical solutions are not available. Thus,
for any given Coulomb-like potential and quantum number,
its associated ground-state wave function can be easily ob-
tained (and excited states can be recovered as well, using
orthonormalization tools). Since we normally simulate strong-
field dynamics for complex atoms, typically constrained by
experiments, we tend to use the imaginary-time propagation
to obtain the initial wave function, even for the case of an
H atom. Here, we chose the ground state of the H atom as
the initial electronic state. The PMDs are then obtained by
projecting the final wave function on the scattering states of
the H atom.

In our analysis, spin-orbit coupling is not considered. This
is because (i) the ponderomotive energy Up (of both the STOV
and XUV pulses) is much smaller than the rest mass energy of
an electron and (ii) we employ an H atom as a target, where
spin effects are negligible.

B. Semiclassical simulations

Although the laser-matter interaction processes can be
adequately described by the 3D-TDSE, other methods are re-
quired to unfold the ultrafast electron dynamics. In this paper,
to uncover the underlying physics of the interference patterns
in the PMD, we resort to the SFA model [46,53–58]. Within
this approach, such interference patterns are understood in
terms of the quantum interference between different electron
trajectories. In our calculations, due to the low intensity of
the STOV, only the electron that is first promoted to a highly
excited state by the XUV pulse can then be subsequently
ionized by the weak STOV pulse. Thus, neglecting the rescat-
tering process, the accumulated phase of the photoelectron is
determined by the classical action S(x0, tis) (note that only the
STOV pulse should be taken into account):

S(x0, tis) = 1

2

∫ te

tis

dt ′[p + Al
ST(t ′, x)

]2 − (te − tis)Ip. (6)

Here, x0 indicates the location of the atom. tis is the saddle
point for the ionization time (s represents the sth saddle point),
te is the end of the laser pulse, Al

ST(t, x0) = ∫
Fl

ST(t ′, x0) dt ′
is the vector potential, and Ip is the binding energy of the
excited state from where the photoelectron is freed to the
continuum (see the next section for details). For each given
final momentum, the corresponding saddle-point equation is
written as

1

2

[
p + Al

ST(tis, x0)
]2 + Ip = 0. (7)

Electrons ionized at different times but achieving the same
final momentum can interfere with each other in the PMD,
giving rise to interference structures. The PMD can be
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FIG. 2. PMDs for the photoionization of an H atom by a STOV pulse assisted by an XUV pulse. The STOV has a topological charge l = 1.
(a)–(c) PMDs at positions x = 0, x = wx

√|l|/2 (2.26 μm) and x = 1.6 wx
√|l|/2 (3.62 μm) for a negative time delay τ− of the XUV pulse.

(d)–(f) PMDs at positions x = 0, x = wx
√|l|/2 and x = 1.6 wx

√|l|/2 for a positive time delay τ+ of the XUV pulse.

computed from

M(p, x0) =
∣∣∣∣∣
∑

s

Ms(p, x0)e−iS(x0,tis )

∣∣∣∣∣
2

, (8)

where Ms(p, x0)e−iS(x0,tis ) represents the transition amplitudes
of electrons ionized at different times tis. In this semiclas-
sical model, the role of the XUV pulse is to control the
ionization time and position of the direct electrons. Thus,
the time delay τ determines the range of ionization times:
only electrons excited by the XUV pulse could be subse-
quently ionized by the STOV pulse. Here, tis ∈ [τ, te] should
be considered. Moreover, the location x0 dictates the elec-
tric field shape of the STOV pulse Fl

ST(t ′, x0) felt by the
electrons.

III. RESULTS AND DISCUSSION

In Fig. 2, we show the PMDs for the photoionization by
a STOV pulse assisted by an XUV pulse of an H atom at
different positions, namely, x=0, x=wx

√|l|/2 (2.26 μm) and
x=1.6wx

√|l|/2 (3.62 μm) for l=1. The PMDs are plotted in
the (px, py) plane (pz=0). Figures 2(a)–2(c) show the PMDs
of electrons assisted by the XUV pulse with negative time
delays τ−, i.e., the XUV pulse arrives after the spatiotempo-
ral singularity. In this case, clear above-threshold ionization
(ATI) peaks are visible. In addition, these PMDs are asymmet-
ric along the laser polarization direction, which is due to the
carrier-envelope phase (CEP) of the STOV pulse. Particularly
in Fig. 2(c), where the effective interaction time of the STOV
pulse with the atom is short, the CEP effect is more evident.
In Figs. 2(d)–2(f), we show the PMDs for positive time delays
τ+ (here the XUV pulse comes before the spatiotemporal
singularity). In this case, the electrons are excited by the XUV
pulse before the singularity of the STOV pulse, and the PMDs
exhibit additional interference structures. As the ionization

position of the photoelectron moves away from x = 0 (i.e., the
position of the spatiotemporal singularity), these interference
fringes become sparse. The spatially resolved Fourier trans-
form of the electric field of the STOV can be written as

F̃ l
ST(ω, x) =

∫
F l

ST(t, x) exp(iωt ) dt . (9)

Here, the spectral weight of each frequency at different po-
sitions is given by |F̃ l

ST(ω, x)|. In the inset of Fig. 3(a),

l

FIG. 3. Spatially resolved photoelectron energy spectra for time
delays (a) τ− and (b) τ+ of the XUV pulse obtained by the 3D-TDSE.
The topological charge of the STOV is l = 1. The black dashed
curves are the values of E 1

1,2,3,4(x) from Eq. (11). Inset: Spatially
resolved frequency spectrum |F l

ST(ω, x)| of the electric field of the
STOV pulse with l = 1. The solid blue curve is ω1(x) from Eq. (10).
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we show the distribution of |F̃1
ST(ω, x)|. Then, the lo-

cal carrier frequency, or the local photon energy, can be
obtained by

ωl (x) =
∫ ∣∣F̃ l

ST(ω, x)
∣∣ω dω∫ ∣∣F̃ l

ST(ω, x)
∣∣dω

= ωST + �ωl (x).

(10)

Here, �ωl (x) is the frequency variation caused by the spa-
tiotemporal phase circulation. The spatial change in the local
carrier frequency ωl (x) is known as the spatial chirp of the
STOV pulse [45], which results in a spatial varying ATI
spectrum. We plot ωl (x) as a solid blue curve in the inset
of Fig. 3(a). It can be seen that the spatial change of ωl (x)
follows the trend of the visible twist in the ATI spectra (see
below for more details).

In Fig. 3(b), we show the spatially resolved spectrum for
time delays τ+. A set of tilted interference fringes can be
clearly seen now. A similar structure has been recently re-
ported in a theoretical work about HHG [45]. For positive time
delays τ+, the electron is transferred to an excited state before
the singularity and is then ionized by the STOV pulse. This
ionization occurs both before and after the spatiotemporal
singularity. This fact gives rise to the interference pattern
visible in Fig. 3(b). It can be considered as a temporal double-
slit interference. In the case of negative time delays τ− in
Fig. 3(a), the electrons are ionized only after the singularity,
and thus the interference fringes disappear. We can conclude
then that these fringes are associated with the interference
between electrons ionized before and after the singularity with
the same momentum (energy). Interestingly, the number of
interference fringes increases with the photoelectron energy.
This is related to the number of absorbing photons per elec-
tron, as we detail next.

To unfold the origin of these interference fringes more
clearly, we employ the SFA. Figure 4 shows the spatially
resolved photoelectron energy spectra obtained from the SFA
for the STOV pulse with l = 1. Here, the electrons are ionized
from the 4p state of the H atom (see below for more details). In
Fig. 4(a), we show a spatially resolved photoelectron energy
spectrum for electrons ionized within the time range [−τ+, te],
that corresponds to the case of an XUV pulse with positive
time delay τ+. We can observe that the result from the SFA
agrees very well with the 3D-TDSE simulations [Fig. 3(b)].
In our SFA calculations, we can separately calculate spatially
resolved photoelectron energy spectra for electrons released
before and after the singularity t=0. Figures. 4(b) and 4(c)
show the spatially resolved spectra for electrons ionized by
the STOV pulse within the time ranges [−τ+, 0] and [0, te],
respectively. Here, the interference fringes on the ATI spectra
are absent in each of the individual contributions. Contrari-
wise, in the coherent sum of these two spectra, the twisted
interference structures are clearly visible [Fig. 4(a)], which
are similar to those present in Fig. 3(a). This definitely indi-
cates that the interference fringes result from the interference
between the electrons ionized before and after the spatiotem-
poral singularity.

The interference pattern in the spatially resolved photo-
electron energy spectra encodes the phase of the laser-ionized

FIG. 4. Spatially resolved photoelectron energy spectrum calcu-
lated by the SFA for a STOV pulse with l = 1. Ip = 0.0325 a.u. is the
binding energy of the 4p state of the H atom. (a) For electrons ionized
before and after the spatiotemporal singularity, i.e., tis ∈ [−τ+, te].
(b) For electrons ionized before the spatiotemporal singularity, i.e.,
tis ∈ [−τ+, 0]. (c) For electrons ionized after the spatiotemporal sin-
gularity, i.e., tis ∈ [0, te]. The black dashed curves are the values of
E 1

1,2,3,4(x) from Eq. (11).

photoelectron, acquired during its journey in the continuum.
When the STOV pulse interacts with the atom, the temporal
structure of the phase of the STOV pulse is recorded in the
photoelectrons ionized before and after the singularity. The
quantum interference between these two trajectories followed
by the photoelectrons thus can be used to retrieve the temporal
structure of the STOV pulse. In addition, the phase difference
between them depends on the position where the ionization
occurs. This difference is related to the spatial structure of
the STOV pulse. By analyzing the interference pattern as a
function of the spatial location of the XUV pulse relative
to the singularity, the spatiotemporal structure of the STOV
pulse, i.e., the OAM, can be fully characterized.

From the discussion above, we can infer that the transverse
OAM transfer is echoed in the interference pattern visible
in the spatially resolved photoelectron energy spectrum. The
inset of Fig. 3(a) shows the spatially resolved frequency spec-
trum of the STOV pulse. One minimum in the interference
pattern is clearly visible, which can be linked to the topologi-
cal charge value of the STOV, l = 1. Analogous to the OAM
transfer in HHG [30,43–45], when the electron is ionized by
absorbing one photon, the photoelectron spectrum possesses
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topological charge of l = 1, and one interference dark fringe
will appear. When the number of absorbed photons increases
by one, so does the topological charge. In Fig. 3(b), the first-
order ATI spectrum has two dark fringes along the dashed
line, meaning that in this part it has a topological charge
l = 2. Thus, this indicates that the electron has absorbed two
photons from the STOV pulse to get ionized from the excited
state. Likewise, for the second- or third-order ATI spectra,
the topological charge becomes l = 3 or l = 4, respectively.
This is reflected in the number of interference fringes in the
corresponding ATI spectrum see Fig. 3(b)]. However, for the
negative delay, all the electrons are ionized after the singu-
larity. In this case, only a part of the OAM is transferred
from the photons to the electrons. Thus the spatially resolved
ATIs spectra miss the information on the temporal structure of
the OAM, and the interference fringes disappear, as shown in
Fig. 3(a).

From the number of the interference dark fringes, one
could extract the number of photons from the STOV pulse that
the electron absorbs. Then, we can estimate the excited state
from which the photoelectron is released. For the nth order
ATI spectrum, the energy is given by

El
n(x) = (n + 1)ωl (x) − U l

p(x) − Ip, (11)

where U l
p(x) = (F ST

0 /2ωl (x))2 is the ponderomotive energy
of the STOV at position x, and Ip is the binding energy
of the excited state. In Fig. 3(a), ω1(0) = 0.0285 a.u. (for
1600 nm), U 1

p (0) = 0.0088 a.u., and the energy of the first-
order ATI spectrum at x = 0 is about 0.0157 a.u. Thus, an
Ip = 0.0325 a.u. is obtained, which is close to the binding
energy of the 4p state of the H atom. This means that the
electrons are first transferred to this excited state by the XUV
pulse and then ionized by the STOV pulse. Taking the 4p
state as the initial state where the electron is ionized by the
STOV pulse, we plot E1

1,2,3,4(x) in Figs. 3 and 4 (dashed black
curves). These curves agree very well with each of the ATI
spectra. Particularly, the degree of spatial chirp is similar for
the dashed curves and the TDSE results at each ATI spectrum.
Likewise, the interference fringes are distributed along these
curves.

To further explore the influence of the OAM of the STOV
pulse on the interference structure, we calculate the spatially
resolved photoelectron energy spectra for a STOV pulse with
l = 2. The results are shown in Figs. 5(a) and 5(b), which are
obtained from the 3D-TDSE and SFA, respectively. Taking
into account the degree of approximation considered in the
SFA—the influence of the Coulomb potential is neglected
for electrons in the continuum in this approach—it can be
seen that these two results agree very well. For this case, the
interference fringes become denser at each ATI spectra (along
the dashed curves), as compared to those for l = 1. Taking
into account that the topological charge is l = 2 in Fig. 5, the
first-, second-, and third-order ATI spectra, which come from
the electrons absorbing two, three, and four photons, have
topological charges of l = 4, 6, 8, respectively. Likewise,
the number of interference fringes increases accordingly. To
observe this last feature more clearly, in Figs. 6(a) and 6(b)
we show the fringes along El

3(x) [see Eq. (11)] for l = 1 and
l = 2, respectively. The agreement between the 3D-TDSE and

FIG. 5. Spatially resolved photoelectron energy spectrum for a
STOV pulse with l = 2 and an XUV pulse with time delay τ+.
(a) 3D-TDSE results, (b) SFA results. The black dashed curves are
the values of E 1

1,2,3,4(x) from Eq. (11).

SFA results is remarkable for both cases. For the same order
of the ATI spectrum, the interference fringes are different for
l = 1 and l = 2. Here, the electron absorbs four photons from
the STOV pulse. Thus, the topological charges are l = 4 and
l = 8, respectively, and the spectra should exhibit four and
eight minima, i.e., interference dark fringes. This behavior
is clearly noticeable in Fig. 6. Therefore, the spatiotemporal
structure of the STOV pulse is encoded by the interference
structures. Consequently, from the interference pattern in the
spatially resolved photoelectron energy spectrum, we can
retrieve the transfer of the transverse OAM in atomic strong-
field ionization.

l

FIG. 6. Interference fringes along El
3(x) (Eq. 11) for (a) l = 1

and (b) l = 2. The green solid and red dashed curves represent the
3D-TDSE and SFA results, respectively.
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IV. CONCLUSIONS

In this paper, we have presented a technique to characterize
a STOV. Our approach extends the well-known streaking tech-
nique, used to fully characterize the electric fields of infrared
pulses with attosecond time resolution, to a more complex
scenario. The field shape of a STOV is much more complex,
having variations both in time and space. Taking advantage
of the strongly nonlinear nature of strong field ionization, we
can extract both the temporal and spatial information of the
STOV electric field using photoelectrons. One of the main
characteristics of the STOV is that it carries a transverse
OAM. In our scheme, based on an XUV-assisted ionization,
this intrinsic property of the STOV becomes encoded in the
spatially resolved photoelectron spectra. Using both quantum
mechanical and semiclassical-based simulations, we are able
to accurately retrieve the OAM of the STOV, just by count-
ing the number of fringes in an interferencelike pattern. Our
results present a route toward (i) the extension of streaking
techniques to the spatial domain and (ii) a more complete

understanding of the electron dynamics driven by a STOV,
where the transverse OAM appears to play an instrumental
role.
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[26] J. Wätzel, P. R. Ribič, M. Coreno, M. B. Danailov, C.
David, A. Demidovich, M. Di Fraia, L. Giannessi, K. Hansen
et al., Light-Induced Magnetization at the Nanoscale, Phys.
Rev. Lett. 128, 157205 (2022).

[27] G. D. Ninno, J. Wätzel, P. R. Ribič, E. Allaria, M. Coreno, M. B.
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