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Accelerating self-imaging effect for Airy pulse trains
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We investigate the temporal accelerating self-imaging effect for a train of Airy pulses propagating in optical
fibers. The group velocity of the Airy pulses is varying during propagation, resulting in a parabolic time-space
trajectory of self-imaging. The acceleration is determined by the main-lobe width of the Airy pulses. Meanwhile,
the self-imaging distance depends both on the main-lobe width and the time interval of the pulses. In addition,
the trajectory of self-imaging can be modified by imposing a linearly varying phase on the input pulse train. By
applying third-order dispersion, we also realize the temporally magnified self-imaging of the Airy pulse trains.
As the Airy pulses possess infinite energy, the self-imaging can be observed for infinite times. If the pulses
are truncated to have finite-energy, the self-imaging maintains only in a limited distance. The study provides a
promising way to control the self-imaging of optical pulses and may find applications in optical communication
and signal processing systems.
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I. INTRODUCTION

Talbot effect refers to the self-imaging of a periodic optical
field, which was first discovered by Talbot in 1836 [1]. The
effect has been studied in a variety of physical fields, such as
matter waves [2], plasmonics [3], and metamaterials [4]. The
discrete Talbot effect has also been observed in waveguide
arrays and manifests different features from continuous medi-
ums [5–7]. So far, the effect has found many applications in
nonlinear optics [8,9], quantum optics [10], and x-ray imaging
[11]. Considering the time-space duality and the analogy be-
tween spatial Fresnel diffraction and temporal group velocity
dispersion (GVD) [12], the Talbot effect has been extended
to time domain by injecting periodic optical pulse trains into
the optical fiber with GVD [13–17]. In the Talbot effects
mentioned above, the incident field has to be periodic and
is reproduced along the straightforward propagation direction
[18–20].

Recently, the spatial Airy-Talbot effect has been theoreti-
cally proposed and experimentally demonstrated [21], where
the incident field is composed by the superposition of many
Airy beams [22,23] with a lateral deviation between each
other. Each Airy beam has a profile of intensity in the form
of an Airy function [24], which is a nonspreading solution
of the linear Schrödinger equation and has many unique
features of self-accelerating, diffraction-free, and self-healing
[22,23,25–27]. Differing from the traditional Talbot effect,
the Airy-Talbot effect shows self-imaging along a curved
trajectory. On account of the time-space duality, the temporal
Airy pulse [22,23] can be obtained by imparting a cubic
phase modulation onto the Gaussian pulse [28]. Accord-
ingly, the Airy pulses manifest features of free dispersion,

*wangbing@hust.edu.cn
†lupeixiang@hust.edu.cn

self-acceleration [29], and self-reconstruction when propagat-
ing in the fibers. The self-acceleration of Airy beams leads
to a curved propagation trajectory in space. Comparably, the
self-acceleration of Airy pulses conduces to a varying group
velocity during propagation [29]. The linear and nonlinear
propagation dynamics of Airy pulses have been extensively
investigated [30–38] and found great applications in super-
continuum generation and signal processing [39,40].

In this work, we shall study the temporal Airy-Talbot effect
of a train of Airy pulses propagating in optical fibers. We
show that the self-imaging of the input wave train composed
by the superposition of Airy pulses is accelerating during
propagation. The acceleration is determined by the main-lobe
width of the Airy pulses. The corresponding self-imaging dis-
tance can be manipulated by varying the time interval and the
main-lobe width of the pulses. Unlike traditional Talbot effect,
the incident field needs not be periodic in the Airy-Talbot
effect. In addition, a linearly varying phase is also imposed
on the input pulse train in order to control the trajectory of
self-imaging. We further reveal the influence of third-order
dispersion on the self-imaging positions. Given the practical
Airy pulses with limited time duration, the self-imaging of
incident wave trains composed of finite-energy Airy pulses
are also investigated. The study may find the applications of
optical field self-imaging for both optical communication and
signal processing.

II. THEORETICAL MODEL

The evolution of an optical pulse in the dispersive optical
fiber is governed by [12]

∂A

∂z
+ i

2
β2

∂2A

∂τ 2
− 1

6
β3

∂3A

∂τ 3
= 0, (1)

where A(τ, z) denotes the slowly varying envelope of the
optical pulse. β2 and β3 stand for the GVD and the third-order
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dispersion (TOD) coefficients of the fiber, respectively. The
impact of the higher-order dispersion on pulse propagation is
usually negligible with respect to that of GVD in the common
single-mode fibers (SMFs). τ = t − z/vg0 is the retarded time
in the frame of reference, which is moving at the initial pulse
group velocity vg0. The real time and propagation distance are

denoted by t and z, respectively. The equation is valid when
the incident field has weak intensity, and thus the nonlinear
effects can be ignored. Here the loss of the fiber is not
considered since only the field profile at a certain distance
is mainly concerned. For an input field A(τ, 0) at z = 0, the
evolution of the field is given by

A(τ, z) = 1

2π

∫ +∞

−∞
Ã(ω, 0) exp

(
i
β2z

2
ω2+i

β3z

6
ω3

)
exp (−iωτ )dω, (2)

where Ã(ω, 0) represents the Fourier transform of A(τ, 0).
We consider the propagation of a wave train comprised of a superposition of many Airy pulses with a constant time interval

T

A(τ, 0) =
∑
n∈Z
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T

t0

)]
, (3)

where Ai(·) denotes the Airy function with a (0 < a < 1) being the truncation factor. cn is a complex coefficient and contains
information of amplitude and phase for each Airy pulse component. All the Airy pulses have the same main-lobe width t0 [35].
Substituting Eq. (3) into Eq. (2), we obtain
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where θ = 1 + sgn(β2)β3z/2t03 and b = −β3/2β2t0. In the absence of higher-order dispersion, i.e., β3 = b = 0 and θ = 1,
Eq. (4) simplifies to
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and the corresponding intensity has the form
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From Eq. (6), one can find that the initial intensity profile
is reshaped during propagation owing to the interference of
Airy pulses. However, as the propagation distance satisfies the
condition |β2|T z/2t03 = 2mπ with m being a nonzero integer,
we have exp(−in|β2|T z/2t03) = 1. That is, all the Airy pulses
are in-phase. Consequently, similar to the spatial Airy-Talbot
effect, the input pulse train repeats itself periodically along the
parabolic trajectory in the τ -z plane [35], which is given by

τ = β2
2

4t03
z2+nT . (7)

The corresponding Newtonian equations describing the
trajectory read [31]

d2τ

dz2
= β2

2

2t03
= g,

dτ

dz
= β2

2

2t03
z = ν(z). (8)

Here g plays the role of acceleration and ν(z) acts as a
velocity. The schematic diagram of the temporal Airy-Talbot
effect is shown in Fig. 1, and the Airy-Talbot distance is

zT = 4πt03

|β2|T . (9)

It should be mentioned that the Airy-Talbot effect is
independent of the complex coefficients cn. In fact, from
Eqs. (3)–(6), one sees that the coefficients cn are arbitrarily
chosen. Thus the accelerating self-imaging wave train needs
not be periodic, which is contrary to the requirement of
periodic incident field in traditional Talbot effects.
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FIG. 1. Schematic diagram of the temporal Airy-Talbot effect.

III. RESULTS AND DISCUSSION

A. Airy-Talbot effect in the absence of TOD

To confirm the above theoretical analysis, we simulate
the evolution of a train of Airy pulses in optical fibers by
using the split-step Fourier transform method [12]. We shall
first consider the case of ideal Airy pulses with a = 0 in
the presence of GVD. The incident field is comprised of a
superposition of 11 Airy pulses with the main-lobe width t0 =
10 ps and a constant time interval T = 83.33 ps. The GVD
is chosen as β2 = −20 ps2/km. From Eq. (9), one gets the
Airy-Talbot distance zT = 7.54 km. The temporal evolution of
the pulse train in the τ − z plane is illustrated in Fig. 2(a). The
wave train repeats itself periodically along parabolic time-
space trajectories during propagation. The parabolic trajectory
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FIG. 2. (a) Temporal evolution of the Airy pulse train in the τ -z plane. The wave train is composed by 11 Airy pulses, each multiplied
by a different random coefficient cn. The self-imaging trajectory for n = 0 is marked by the red dashed curve. (b) Intensity carpet in the
accelerating frame. The red dashed lines denote the first and second self-imaging locations. (c) Normalized intensity profiles at z = 0, zT , and
2zT . (d) Cross-correlation coefficient vs the propagation distance in the accelerating coordinates. (e) Normalized intensity profile at zT /2 (blue
dashed curve), and the initial intensity envelope with the redefined coefficients c′

n = (−1)n cn (red solid curve). Parameters are t0 = 10 ps,
T = 83.33 ps, and cn = [0.3371, 0.1622, 0.7943, 0.3312, 0.5285, 0.1656, 0.6020, 0.2650, 0.6541, 0.6892, 0.7482].
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FIG. 3. (a) Temporal evolution of the Airy pulse train by choosing cn = 1 if n is even and cn = i if n is odd. (b) Normalized intensity
profiles at z = 0, zT /2, and zT , indicated by the red dashed lines in (a). (c) Cross-correlation coefficient vs the propagation distance in the
accelerating coordinates. Other parameters are the same as in Fig. 2(a).

τ = z2/10 for n = 0 is plotted with the red dashed curve in
Fig. 2(a). The corresponding intensity carpet in the accelerat-
ing frame is shown in Fig. 2(b), where the self-imaging effect
can be visualized more clearly. The two red dashed lines in
Fig. 2(b) represent the first and second self-imaging positions.
Figure 2(c) shows the normalized intensity profiles at z = 0,
7.54 km, and 15.08 km. One can see that the intensity profiles
are identical except for the successive displacement along the
τ axis. Such a self-imaging effect can also be characterized by
the cross-correlation coefficient [14]

C =
∫ +∞
−∞ I (τ, z)I (τ, 0)dτ[∫ +∞

−∞ I (τ, z)dτ
∫ +∞
−∞ I (τ, 0)dτ

]1/2 , (10)

where I (τ, z) and I (τ, 0) are the instantaneous and initial in-
tensity distributions of the pulse train, respectively. The value
of C varies from zero to unity and is equal to unity only if the
two intensity wave forms are identical. Figure 2(d) shows the
evolution of the cross-correlation coefficient as a function of
propagation distance in the accelerating coordinate. The coef-
ficient manifests a periodic variation and reaches its maximum
close to unity at z = mzT (m = 1, 2, . . .), confirming the self-
imaging of the Airy pulse train. Unlike the traditional Talbot
effect, here the intensity profiles at the half integer multiplies
of Airy-Talbot distance are different from the initial one. The
blue dashed curve in Fig. 2(e) denotes the normalized inten-
sity envelope at z = 3.77 km, which is distorted by comparing
with that at z = 0. The reason stems from a phase shift π

between adjacent Airy pulses at the location. Additionally, the
factor cn exp(−in|β2|T z/2t03) in Eq. (6) is equal to cn if n is
even and −cn if n is odd. Thus the initial intensity profile has
to be reshaped due to the interference between the Airy pulses.
The red solid curve in Fig. 2(e) denotes the initial normalized
intensity profile with the redefined coefficients c′

n = (−1)n cn,
whose shape is the same with that at z = 3.77 km in Fig. 2(a).
The particular phenomenon is called the dual Airy-Talbot
effect [41].

Additionally, as we choose cn = 1 if n is even and cn = i
if n is odd, the phase shifts between the adjacent Airy pulses
become π/2 at z = zT and −π/2 at z = zT /2. Despite that the
amplitude A (τ , z) at z = zT is conjugate with that at z = zT /2,

the intensity profiles are identical and the dual Airy-Talbot
effect disappears. The temporal evolution of the Airy pulse
train is shown in Fig. 3(a). Figure 3(b) depicts the normalized
intensity profiles at z = 0, 3.77 and 7.54 km, indicated by
red dashed lines in Fig. 3(a). Unlike the above situation, the
intensity profiles at z = zT /2 and z = zT are identical, which
agrees fairly with the theoretical analysis. The variation of the
cross-correlation coefficient along the accelerating coordinate
is shown in Fig. 3(c), which exhibits periodic oscillation and
reaches C = 1 at the integer multiples of half Airy-Talbot
distance. The same results can also be obtained by choosing
cn = 1 as n is even and cn = −i as n is odd.

Next we investigate the influence of the time interval
and main-lobe width of the Airy pulses. For a fixed main-
lobe width t0 = 10 ps, the Airy-Talbot distance decreases
as the time interval increases, as shown in Figs. 4(a)–4(d).
The blue stars in Fig. 4(e) represent the numerical results
of acceleration for different T , which are almost identical.
The data coincide well with the theoretical analysis for
d2τ/dz2 = β2

2/2t03 = 0.2 ps/km2, as plotted with the red
line in Fig. 4(e). The blue stars in Fig. 4(f) denote the
numerical results of Airy-Talbot distance with respect to T ,
which are extracted from the cross-correlation coefficients.
The results also agree well with the theoretical analysis. The
Airy-Talbot effects for different main-lobe widths of the Airy
pulses as T = 83.33 ps are shown in Figs. 5(a)–5(d). Both the
theoretical and numerical data of the acceleration are shown
in Fig. 5(e). Figure 5(f) plots the theoretical and numerical
results of the Airy-Talbot distance as a function of t0. It is
clearly apparent that the Airy-Talbot distance relates both to
the main-lobe width t0 and time interval T of the Airy pulses,
while the acceleration of self-imaging only depends on t0.

As the input Airy pulse train is modulated by a linearly
varying phase, we have

A(τ, 0) =
∑
n∈Z

cnAi

(
τ

t0
− n

T

t0

)
exp

[
a

(
τ

t0
− n

T

t0

)]

× exp

(
iα

τ

t0

)
, (11)
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FIG. 4. (a)–(d) Temporal evolutions of the wave train vs the time interval T of the Airy pulses; the white dashed lines denote the
corresponding Airy-Talbot distances. (e) Theoretical (red line) and numerical (blue stars) results of acceleration vs T . (f) Theoretical and
numerical results of Airy-Talbot distance vs T . Other parameters are the same as in Fig. 2(a).

where α stands for the modulation coefficient of the linear
phase. In this situation, Eq. (6) becomes

I (τ, z) =
∣∣∣∣∣
∑
n∈Z
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4t04
− α

|β2|z
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× exp
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|β2|z
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× exp
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τ
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− n

T

t0
− α

|β2|
t02

z − β2
2

2t04
z2

)]∣∣∣∣
2

. (12)

Then the trajectory of self-imaging for n = 0 is given by

τ = β2
2

4t03
z2 + α

|β2|
t0

z. (13)

The corresponding Newtonian equations read

d2τ

dz2
= β2

2

2t03
= g,

dτ

dz
= α

|β2|
t0

+ β2
2

2t03
z. (14)

According to Eqs. (13) and (14), the trajectory and velocity
of self-imaging can be manipulated by varying the coefficient
α. As α < 0, the self-imaging of the Airy pulse train de-
celerates initially until it stalls at z = −2αt02/|β2|. Then the
self-imaging accelerates along the τ axis, and the transverse
displacement is reduced with respect to that of α = 0. On
the other hand, the transverse shift of the self-imaging will be
enhanced as α > 0. Figure 6(a) shows the temporal evolution
of the pulse train with α = −1, where the other parameters
are the same as in Fig. 2(a). The wave train repeats itself,
shifted along the trajectory τ = −2z + 0.1z2 for n = 0 and
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FIG. 5. (a)–(d) Temporal evolutions of the wave train vs the main-lobe width t0 of the Airy pulses. (e) Theoretical (red curve) and numerical
(blue stars) results of acceleration vs t0. (f) Theoretical and numerical results of Airy-Talbot distance vs t0. Other parameters are the same as in
Fig. 2(a).

reaches its apogee at z = 10 km, as plotted with the red
dashed curve in Fig. 6(a). The corresponding self-imaging
trajectory in the accelerating coordinates is a straight line
with a slope of −2, indicated by the red line in Fig. 6(b). In
addition, the Airy-Talbot effect as α = 1 in the τ − z plane
and in the accelerating coordinates are shown in Figs. 6(c)
and 6(d), respectively. The input wave train is self-imaged
with the enhanced displacement along the τ axis. The slope
of the self-imaging trajectory in the accelerating coordinates
is opposite to that of α = −1. The solid curves in Fig. 6(e)
denote the theoretical self-imaging trajectories for different
modulation coefficients of the linear phase. As one can clearly
see, for α = −2, the decelerate distance is increased and the
transverse displacement is further reduced with respect to that
of α = −1. On the other side, the transverse displacement is
further enhanced as α = 2. The corresponding results in the
accelerating coordinates are shown in Fig. 6(f). The dots in

Figs. 6(e) and 6(f) represent the numerical results of self-
imaging positions associated with these cases, which agree
well with the theoretical analysis.

B. Airy-Talbot effect in the presence of TOD

In this section, we shall study the influence of TOD on
the Airy-Talbot effect. It has been reported that the Airy
pulse will exhibit the inversion and tight focusing under the
action of positive TOD [30]. By comparing with the case
with only GVD in the fiber, the Airy pulse can propagate
a longer distance with less dispersion distortion in the pres-
ence of negative TOD [31]. We consider the self-imaging
for a train of Airy pulses propagating in optical fibers with
anomalous GVD and negative TOD. From Eq. (4), the GVD
and TOD will bring about distinct phase factors to every
Airy pulses, which are dependent on the propagation distance.
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FIG. 6. Temporal evolutions of the Airy pulse train with (a),(b) α = −1 and (c),(d) α = 1 in the τ -z plane and in the accelerating
coordinates, respectively. (e) Numerical self-imaging positions (dots) and theoretical self-imaging trajectories (curves) for different α in the
τ -z plane. (f) The corresponding results in the accelerating coordinates. The curves (A)–(E) in (e) and (f) were obtained for α = −2, −1, 0, 1,
and 2, respectively. Other parameters are the same as in Fig. 2(a).

Analogously, the incident field can recur as the propagation
distance L satisfies the condition

1

θ2

[(
−|β2|L

2t03
T

)
+

(
bβ2

2L2

2t05
T

)]
= 2mπ, (15)

where m is an integer. In particular, Eq. (15) can be satisfied if
we set

|β2|L
2θ2t03

T = 2k1π,

−bβ2
2L2

2θ2t05
T = 2k2π, (16)

where k1, k2 are nonzero integers. Unlike the situations with
GVD only, the image at L is temporally expanded with a mag-
nification factor (1 + |β3|L/2t03)1/3 compared to the input one
at z = 0, and the corresponding self-imaging trajectory for

n = 0 in the τ -z plane is

τ = β2
2z2

4t0(t02 − b|β2|z)
. (17)

The analysis can be verified by implementing numerical
simulations. Figure 7(a) shows the temporal evolution of a
train of Airy pulses under the actions of GVD and TOD
simultaneously. In the simulation, the parameters are given
as t0 = 10 ps, T = 2π × 10 ps, β2 = −1 ps2/km, and β3 =
−0.8 ps3/km. The self-imaging distance can be obtained
through Eq. (16). For k1 = 3 and k2 = 2, L = 1.67 × 103 km.
For k1 = 2 and k2 = 8, L = 1 × 104 km. The two locations of
self-imaging are marked by the white dotted lines in Fig. 7(a).
The red dashed curve in Fig. 7(a) denotes the trajectory
described by Eq. (17). Figure 7(b) shows the normalized
intensity profiles at z = 0, 1.67 × 103 km, and 1 × 104 km. It
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is found that the intensity profiles have similar shapes. As the
distance increases, the profile is magnified proportionally in
the time dimension.

C. Finite-energy Airy-Talbot effect

It has been revealed that the temporal Airy-Talbot effect
can be observed for a wave train formed by the superposition
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of ideal Airy pulses. However, the ideal Airy pulses possess
limitless time duration and infinite energy. In practice, we
have to truncate the pulses so as to make them have finite
energy. As a result, similar to truncated Airy beams in space,
the truncated Airy pulses will experience dispersion and the
acceleration feature never maintains after a certain distance.
Beyond the accelerating range, which is comparable to the
dispersion length [37], the intensity profile of the pulses be-
comes from Airy-like to Gaussian-like [22]. Here, we choose
the truncation factor a = 0.1 and cn = 1 for all Airy pulse
components, and the other parameters remain unchanged.
The temporal evolution of the incident field is illustrated
in Fig. 8(a), where the self-imaging effect disappears very
quickly. Figure 8(b) shows the normalized intensity profiles
at z = 0, 7.54 km, and 15.08 km; the wave train is getting
closer to a sequence of Gaussian-like pulses as the propaga-
tion distance increases. And the cross-correlation coefficient
decreases as z increases; see the red curve in Fig. 8(c). The
reason lies in the fact that the Airy-Talbot distance is beyond
the self-accelerating range of the Airy pulses. Therefore,
for finite-energy Airy pulses, one has to shorten the Airy-
Talbot distance to make sure that the accelerating range is
long enough for the formation of self-imaging. According to
Eq. (9), the Airy-Talbot distance can be decreased by decreas-
ing the main-lobe width t0 or enlarging the time interval T
of the Airy pulses. For instance, we decrease the main-lobe
width to t0 = 8 ps by comparing with that in Fig. 8(a), then the
Airy-Talbot distance becomes zT = 3.86 km. As illustrated in
Fig. 8(d), the accelerating self-imaging phenomenon can be
observed. The red dashed lines in Fig. 8(d) denote the two
self-imaging positions of z = 3.86 km and z = 7.72 km, the
intensity profiles at which are the same with that at z = 0,
as shown in Fig. 8(e). Figure 8(f) shows the evolution of
the cross-correlation coefficient along the accelerating co-
ordinate, which varies nearly periodically and reaches its
maximum near unity at the self-imaging positions. It clearly
validates the Airy-Talbot effect. In addition, the Airy-Talbot
effect can also be observed by enlarging the time interval
T of the pulses. The temporal evolution of the Airy pulse
train with T = 125 ps in the τ -z plane is shown in Fig. 8(g),
where the other parameters are the same as in Fig. 8(a).
The red dashed lines in Fig. 8(g) denote the first and second
self-imaging locations at zT = 5.03 and 10.06 km, the corre-
sponding intensity profiles at which are identical to the input
one at z = 0, as depicted in Fig. 8(h). The periodic variation
of the cross-correlation coefficient is shown in Fig. 8(i), which
also validates the self-imaging effect of the finite-energy Airy
pulse train.

IV. CONCLUSIONS

In conclusion, we have theoretically demonstrated the
temporal accelerating self-imaging effect for a train of Airy
pulses. Due to the self-acceleration of the Airy pulses, the

self-imaging of the incident field is shifted along the parabolic
trajectories in the τ -z plane. The self-imaging distance can
be manipulated by varying the main-lobe width and the time
interval of the Airy pulses, where the acceleration itself is de-
termined by the pulse main-lobe width. Unlike the traditional
Talbot effect, the incident field needs not be periodic, but in-
stead can have an almost arbitrary profile as a superposition of
Airy pulses with different intensities and phases. In addition,
the trajectory of self-imaging can be modified by imposing a
linearly varying phase on the input pulse train. Furthermore,
the pulse train exhibits the temporally magnified self-imaging
effect under the action of TOD. For ideal Airy pulses, the
self-imaging maintains indefinitely. For the truncated Airy
pulses, the self-imaging can be observed only in a limited
distance. Our study paves a promising way to control the
self-imaging of optical pulses and may find applications in
information processing and transmission in optical fibers.
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APPENDIX

In this Appendix, we briefly describe the simulations of
the Airy pulse train propagating in optical fibers by using
the split-step Fourier transform method. Equation (1) can be
written as

i
∂A

∂z
= (D̂ + N̂ )A, (A1)

where the dispersion operator D̂ and nonlinear operator N̂ are
given by

D̂ = −1

2
β2

∂2

∂τ 2
+ 1

6
β3

∂3

∂τ 3
, N̂ = 0. (A2)

Inspired by the split-step Fourier transform method, we
have

A(τ, z + 
z) = A(τ, z)exp[i(D̂ + N̂ )
z]. (A3)

In our model, the nonlinear operator is absent, thus the
optical field distribution of the wave train after the propagation
distance h can be described as

A(τ, z + h) = F−1

{
F [A(τ, z)] exp

(
i
β2h

2
ω2+i

β3h

6
ω2

)}
,

(A4)

where F and F−1 represent the Fourier transform and inverse
Fourier transform, respectively. In the calculations, we choose
h = 100 m, which is sufficient to ensure the accuracy of
simulation results.
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