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Wavelike dynamics for high harmonic generation in solids
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We investigate the wavelike dynamics for high harmonic generation (HHG) in solids. Our results indicate that
the wavelike behavior of electrons plays a crucial role in HHG process of solids. In solids, the group velocity
dispersion, i.e., the second derivative of energy band, can lead to substantial spatial spread for the evolution of the
electron wave packet. This kind of wavelike effect is embedded in the interference of electron-hole wavelets, and
allows electrons and holes to be separated spatially when emitting HHG. Incorporating the wavelike effect, we
show how one can understand the time-frequency properties of HHG from the perspective of wavelike picture.
Furthermore, taking the gapped graphene as a prototype, we also demonstrate that the wavelike picture can
well describe the two-dimensional electron dynamics and the emission intensity of HHG. Our analysis provides
a comprehensive understanding of the HHG emission properties in solids, and shows how to comprehend the
underlying electron dynamics from the perspective of wavelike picture.
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I. INTRODUCTION

High harmonic generation (HHG), resulting from the non-
perturbative interaction between an intense laser and gaseous
targets, has established the foundation for attosecond science
[1,2]. Recently, HHG has also been observed in condensed
matters [3–8]. Since its first observation, HHG in solids has
attracted significant attention due to its broad applications in
generating ultrashort XUV radiation [6,9] and probing the
structures [6,10–17] or ultrafast electronic dynamics of solids
[6,18,19].

For atomic gases, the HHG can be interpreted using the
recollision picture [2,20]. Driven by a laser, the liberated
electrons are largely free from the influence of the ion core,
and thus a particlelike description on electrons can capture the
essential feature of HHG emission. Recently, the recollision
picture was also extended to solids [21–23]. However, unlike
the atomic case, electrons in solids are delocalized, and the
impact of the lattice’s periodic potential on electronic motion
is significant. This suggests that electrons can be scattered by
the lattice or recombine at different sites, complicating the
microscopic electronic dynamics [24–27]. Recently, several
studies have demonstrated that the emission time and energy
predicted by particlelike recollision picture shows significant
deviation from the simulations of semiconductor Bloch equa-
tions (SBEs) [28–30]. In Ref. [28], a four-step model has
been proposed, and an additional preacceleration step prior
to ionization is demonstrated to play an important role in
solid HHG. Considering the spatially delocalized nature of the
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real-space electron wave packet, it has also been found that
the imperfect recollision for electrons and holes is general for
systems with large Berry curvatures [29], or in any system
driven by elliptically polarized light [28,31,32]. Furthermore,
in light of the wave-particle duality, a wavelike picture has
been proposed to describe HHG in solids [30,33]. This model
characterizes HHG as the interference of a collection of
electron-hole wavelets, drawing parallels with the Huygens-
Fresnel principle. This approach incorporates wave properties
into the interference process, thereby can well describe the
emission characteristics of solid HHG.

In this study, we investigate the wavelike dynamics of elec-
trons to delve deeper into the fundamental mechanism of solid
HHG. Previously, the recollision model mainly concerns the
particlelike motion of electron-hole pairs from the trajectories
determined by the velocity difference between the conduction
and valence bands. Whereas, we demonstrate that it is not
sufficient to fully describe the electronic dynamics due to
the neglect of wavelike behavior of electrons. Our results
indicate that the wavelike effect caused by the group velocity
dispersion (GVD) can not be ignored in solids, which can
influence the dynamics of electron wave packet and cause sig-
nificant spatial spread. The wavelike effect is embedded in the
interference process of HHG, and permits the electrons and
holes to be separated spatially when emitting HHG. Taking
into account the wavelike behavior of electrons and holes,
we show how to understand the time-frequency properties
of HHG emission from the perspective of wavelike picture.
In addition, in noncentrosymmetrical gapped graphene, we
took into account the Berry phase and dipole phase. We fur-
ther show that the wavelike picture is also able to describe
the two-dimensional (2D) electron-hole dynamics, as well
the emission intensity. In essence, we provide an in-depth
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understanding of emission properties and reveal the associated
electronic dynamics for solid HHG.

II. WAVELIKE DYNAMICS BASED ON INTERFERENCE
PRINCIPLE

A. Theoretical model

We consider a two-band model of ZnO [21] with a fully
filled valence band (VB) and an empty conduction band (CB)
initially. Within the parameters used in this work, the contribu-
tion of the interband emission is dominant for the harmonics
in the plateau region. Therefore, we only consider the in-
terband emission, which is usually formulated as a multiple
integrals using the Keldysh approximation [21,28,30]. Fol-
lowing the saddle-point integral for the interband current, the
recollision picture is established based on three saddle-point
equations [21], which represent the ionization, acceleration,
and recollision processes of electron-hole pairs, respectively.
We call it the classical saddle-point method (CSPM) in this
work. Differently, in Ref. [30], the interband current can also
be tackled with the Gaussian integral. In this context, the HHG
emission observed at time tr can be interpreted as the interfer-
ence of all wavelets ionized at different initial momenta kl and
times t ′:

Y (�, tr ) ∝
∣∣∣∣∣∣

∑
kl ,t ′∈[0,tr ]

f (kl , t ′)P(kl , tr, t ′)e−iS(kl ,tr ,t ′ )

∣∣∣∣∣∣
2

, (1)

where Y (�, tr ) is the harmonic yield, f (kl , t ′) and P(kl , tr, t ′)
describe the ionization and emission amplitudes, respectively,
and S(kl , tr, t ′) is the phase of wavelet. Unlike the particlelike
recollision, the HHG emission is built on the constructive in-
terference of wavelets in both time domain (t ′) and momentum
space (kl ).

For the electrons ionized from an individual momentum
kl , the constructive interference for time domain (t ′) lies on
the condition of slow-varying phase, i.e., the partial derivative
with respect to t ′:

|∂t ′S| = |�εcv (kl ) − x(kl , tr, t ′)F (t ′)| (2)

reaches a minimum. Here, �εcv is the band gap be-
tween the conduction band and valence band, x(kl , tr, t ′) =∫ tr

t ′ ∂k�εcv (kl , τ, t ′)dτ is the classical electron-hole displace-
ment, F (t ′) is the electric field amplitude. Following this
condition, we can determine the most probable ionization
time and the corresponding central emission energy �c =
�εcv (kl , tr, ti ). Then, the HHG can be approximately con-
sidered as the superposition of all time-domain constructive
interference contributed by different ionization momenta kl

(for a detailed elaboration, one can refer to Appendix A). In
general, the central emission frequencies for each ionization
momentum distribute in a narrow range of frequency domain.
Therefore, we can adopt the central frequency of the distri-
bution to represent the overall HHG emission. We call this
method the wavelet stationary-phase method (WSPM).

In Fig. 1, we employ two different electric fields to il-
lustrate the effectiveness of WSPM. Atomic units are used
throughout this work unless indicated otherwise. The central
frequencies for these two fields are the same ω0 = 0.0152 a.u.,

FIG. 1. (a) The temporal shape of the electric field amplitude
F (t ). The time-frequency properties simulated with SBEs for two
electric fields with same frequency ω0 = 0.0152 a.u., but different
field strength F0 = 0.003 a.u., (b) and F0 = 0.0048 a.u. (c). The blue
lines represent the central emission frequency predicted by WSPM.
The black lines represent the central emission frequency predicted
by CSPM.

and the amplitudes are F0 = 0.003 a.u. [Fig. 1(b)] and F0 =
0.0048 a.u. [Fig. 1(c)] respectively. The corresponding time
frequency properties are simulated with SBEs, and the re-
sults from one cycle are shown in Figs. 1(b) and 1(c). For
clarity, the temporal shape of the field amplitude F (t ) within
one cycle is also displayed in Fig. 1(a). For comparison, the
central emission energy as a function of emission time (we
call it the emission channel) predicted by WSPM and CSPM
is presented with blue and black lines, respectively. It can
be seen that the predictions of WSPM match well with the
simulations of SBEs for both low and high field strength.
From the analysis in WSPM, we can know the interference
of electron-hole wavelets plays a crucial role in HHG process.
On the contrary, the predictions of CSPM deviate from the
simulation of SBEs in both of the emission time (about 500 at-
toseconds) and energy (about 2 ∼ 4ω0) for low field strength,
while close to the simulation of SBEs for high field strength.
These results imply that the deviation of CSPM arises from
the neglected wavelike effect embedded in the interference of
wavelets. Such wavelike effect is more significant for low field
strength.

B. Role of GVD in HHG process

According to our previous discussion, the interference of
wavelets plays a crucial role in the HHG process. In this sec-
tion, we aim to uncover the wavelike dynamics underlying the
time-domain interference process. For this purpose, we focus
on the contribution of a single ionization momentum kl = 0
[seen in Fig. 2(a)], which can encapsulate the primary feature
of total HHG emission. Here, we adopt the same electric field
used in Fig. 1(a). As discussed previously, the constructive
interference in time domain occurs at the minimum of Eq. (2).
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FIG. 2. (a) The ZnO energy band and the second derivative
of band gap. (b) The value of |∂t ′ S| for three different emission
times: 0.45 T0, 0.665 T0, 0.900 T0. The amplitude and frequency of
electric field used here are F0 = 0.003 a.u. and ω0 = 0.0152 a.u.,
respectively. (c) The numerical (blue lines) and analytic (green
line) electron-hole distance predicted by the WSPM. (d) The time-
frequency profile contributed by the ionization momentum kl = 0,
and the emission channels predicted by WSPM (blue line), CSPM
(black line), and Eq. (3) (green line).

Figure 2(b) displays the value of Eq. (2) with respect to t ′
for three different emission times tr = 0.450 T0 (blue line),
tr = 0.665 T0 (orange line) and tr = 0.900 T0 (purple line)
with T0 = 2π

ω0
the laser period, and the minima are marked

with dots. We denote the time tr = 0.665 T0 as ts. It is worth
to note that there is one minimum for tr � ts. For tr > ts,
there are two minima with zero value, we adopt the medium
temporal position to represent their average level. Obviously,
the minimum satisfies the condition ∂2

t ′S = 0. By solving this
equation, we can derive the expression for electron-hole dis-
tance:

x(kl , tr, ti )

= F (ti )∂k�εcv (kl ) − F 2(ti )
∫ tr

ti
∂2

k �εcv (kl , τ, ti )dτ

∂F/∂t ′|ti
. (3)

Here, the first term on the right side is minimal near the mini-
mum band gap (exactly zero at kl = 0), hence, our focus is on
the second term. The second term involves the integral of the
second derivative of energy dispersion, i.e., the GVD, within
the accelerating interval [t ′, tr]. Figure 2(a) shows the second
derivative of the band gap with a solid red line. Figure 2(c)
illustrates that the nonzero electron-hole distance determined
numerically (blue line) and analytically by solving Eq. (3)
(dashed green line), respectively. One can see that they are
consistent for tr � ts. It is demonstrated that the existence of
GVD can allow a nonzero separation for electron and hole
when emitting HHG.

To elucidate the role of GVD in electron motion, we simu-
late the evolution of an electronic wave packet in Appendix B.
We find that the GVD significantly influences wave-packet
dynamics, resulting in considerable spatial spread. From

Eq. (3), it is inferred that the spatial spread effect contributes
to the delocalized emission in solids, permitting the electron
and hole to be separated spatially when emitting HHG. In
contrast, the CSPM discards the wavelike effect, failing to
fully capture the spatial property of electron motion. This lim-
itation hinders the ability of CSPM to describe HHG process
in solids. To illustrate this point, we compare the results of
CSPM and WSPM with the time-frequency spectra simulated
with SBEs in Fig. 2(d). Here, the time-frequency spectra are
obtained from the Gabor transformation of interband current
contributed by a single ionization channel kl = 0. We note that
the interband current for a single channel kl is simulated with

SBEs by multiplying a Gaussian window exp[− (k−kl )
g2

k

2
] (with

gk = 0.01 π
a0

, and a0 the lattice constant) to the transition term,
i.e., F (t )Xcv (k), with Xcv the transition dipole. Apparently, the
emission structure predicted by CSPM (black line) deviates
from the SBEs simulations in emission time and energy. In
contrast, the predictions of WSPM (blue lines) closely align
with the simulations of SBEs. Meanwhile, the analytic pre-
diction of Eq. (3) (dashed green line) is also consistent with
the numerical result (blue line) up until tr = ts. Definitely, the
GVD plays a crucial role in wavelike dynamics of electrons,
and influences the emission properties of solid-state HHG.

In the discussion above, we have considered the phase
up to the second-order expansion, which is enough to de-
scribe the primary time-frequency feature, i.e., the relation
between the central emission energy and the emission time.
For more detailed structure, it is necessary to expand the phase
to the higher orders at the ionization time ti: S(t ′) = S(ti ) +
S′(ti )(t ′ − ti ) + S′′′(ti )(t ′ − ti )3 + S′′′′(ti)(t ′ − ti )4 + · · · . The
higher derivatives S′′′(ti ) and S′′′′(ti) include the terms of group
delay dispersion (GDD), which is defined on the third-order
derivative of energy band, i.e., ∂3

k �εcv . Apparently, the GDD
will affect the rate of phase change in the vicinity of ti, and de-
termine the emission distribution around the central emission
frequency (a detailed discussion can be found in Appendix B).

In addition, our model also forecasts a unique phe-
nomenon: the emission channel bifurcates into two parts when
tr > ts, though one of them with higher emission energy does
not seem clear. This characteristic, akin to multiple inter-
ference fringes in optics, is a typical wavelike feature not
existing in the CSPM. We will demonstrate and elucidate this
phenomenon in Secs. III A and III B. According to Eq. (2),
the electron-hole distances for these two channels can be
expressed by x(kl , tr, ti ) = �εcv (kl )/F (ti ). Apparently, when
F (ti) �= 0, the electron-hole distance will approach to zero for
a tiny band gap. That is to say, the predictions of WSPM and
CSPM will become closer for the cases of smaller band gaps.
In addition, it is worth to note that these two split channels
diverge almost symmetrically from that determined by Eq. (3)
[represented by the dashed green line in Fig. 2(d)]. Therefore,
Eq. (3) can still represent the average level of the two chan-
nels, and describe the primary emission properties.

C. Dependence of CSPM’s deviation on the laser parameters

In previous discussions, we notice that the deviation of
CSPM is different for high and low field strength. Therefore,
we will further discuss the deviation of CSPM across different
laser parameters, and unravel its dependence on laser parame-
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FIG. 3. (a) The cutoff energy extracted from the time-frequency
profiles simulated by SBEs for different electric field parameters.
(b) The absolute deviation of the cutoff energy between the CSPM
and SBEs. (c) Same as (b), but between the WSPM and SBEs. (d)
The relative deviation between WSPM and CSPM.

ters. We use the cutoff energy as a metric to evaluate the devia-
tion. Figure 3(a) displays the cutoff energy obtained from the
SBEs simulations across different laser parameters. We note
that the cutoff energy is extracted from the time-frequency
profiles for accuracy. Here, we only consider the parameter
region between the dashed green (2A0 = π/4a0, A0 = F0

ω0
is

the peak amplitude of laser vector potential) and magenta
(2A0 = π/a0) lines. This is because the intraband emission
dominates for the region below the dashed green line, while
the cutoff energy reaches the maximum of band gap and be-
comes saturated for the region above the dashed magenta line.
In the region we considered, one can see that the cutoff energy
increases synchronously with the laser vector potential.

The deviations of CSPM and WSPM from the SBE sim-
ulations are displayed in Figs. 3(b) and 3(c), respectively.
One can see that the deviation of CSPM is significant, and
shows an obvious dependence on the laser vector potential A0,

reaching a maximum about 0.05 a.u. (corresponding to about
2 and 5 harmonic orders for wavelength 1.5 and 5 µm) near
2A0 = π/2a0 (dashed blue line). In contrast, there is only a
minor deviation below 0.01 a.u. for WSPM. This suggests that
the WSPM is robust across different parameters. Additionally,
considering the nonlinearity of the energy band, we further
introduce the relative deviation, which is defined as below:

D = E cut
WSPM − E cut

CSPM

E cut
WSPM − Emin

g

, (4)

where Emin
g represents the minimum band gap. The corre-

sponding result is depicted in Fig. 3(d). One can see that the
relative deviation decreases monotonically with laser vector
potential in the region between dashed green and magenta
lines. To understand this parameter dependence intuitively,
we display the results along a vertical line in the parameter
space with a fixed laser wavelength but varying intensity from
0.125 TW/cm2 to 0.8 TW/cm2 in Figs. 4(a)–4(j). Apparently,
the relative deviation decreases noticeably with the optical
intensity.

As we have previously demonstrated, the deviation of
CSPM mainly arises from the overlooked wavelike effects
caused by the GVD. This inspires us to understand the param-
eter dependence from the perspective of wavelike dynamics.
In the wavelike picture, the emission condition is determined
by Eq. (3). For brevity, we perform a variable substitution
φ = ω0τ :∫ φr

φw
i

∂k�εcv
(
kl , φ, φw

i

)
dφ

= −
F 2

(
φw

i

) ∫ φr

φw
i

∂2
k �εcv

(
kl , φ, φw

i

)
dφ

ω0∂F
(
φw

i

)
/∂φw

i

, (5)

where φw
i and φr represent the electric field phase at the

times of ionization and emission, respectively. The recollision
condition in CSPM reads as∫ φr

φc
i

∂k�εcv
(
kl , φ, φc

i

)
dφ = 0, (6)

where φc
i represents the electric field phase at the time of

ionization. For the same emission time, Eqs. (5) and (6) can

FIG. 4. The time-frequency profiles for the same wavelength 2.5 µm and varying optical intensity from 0.125 to 0.8 TW/cm2. The emission
channels predicted by the CSPM and WSPM are displayed with black and blue lines, respectively.
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FIG. 5. (a) The second derivative of cosine band (black line).
(b) The numerical (blue circle line) and analytic (red solid line)
electron-hole distance R̄eh with respect to laser vector potential A0.
The maximum of R̄eh is marked with a dashed blue line where Amax

0 ≈
0.2 a.u.. The corresponding reciprocal space trajectory kmax[φ(t )] =
kl + Amax

0 [φ(t )] − Amax
0 (φi ) is displayed in (a) with blue line. (c) Ion-

ization phase φi with respect to A0 solved numerically with CSPM
(black circle line) and WSPM (blue circle line). (d) Numerical (circle
line) and analytic (solid line) η(φi ) with respect to A0.

determine different ionization phases, which correspond to
different HHG processes. This difference is caused by the
nonzero term on the right-hand side of Eq. (5), which rep-
resents the cycle-averaged electron-hole distance. We denote
this term as R̄w(φw

i , φr, A0).
To reveal how the GVD leads to the parameter-

dependent deviation, we then discuss the relation between
R̄w(φw

i , φr, A0) and laser parameters. For parameters in the
discussed region, the cutoff energy mostly lies on or near the
time tr = 0.75T0, which corresponds to electric field phase
φr = 3π/2. Therefore, we solve the equations at the fixed
emission phase. The details of solutions can be seen in Ap-
pendix C. The term R̄w(φw

i , φr, A0) can be approximately
represented by the zeroth term in the Fourier expansions:

R̄eh ∼ a0A0J2
0 (a0A0)

(
φr − φw

i

)
. (7)

The analytic electron-hole distance is depicted in Fig. 5(b)
with solid red line, which is consistent with the numerical
result (blue circle line). From Fig. 5(b), one can see that
the electron-hole distance first increases and reaches a max-
imum near Amax

0 ≈ 0.2 a.u., and then decreases with further
increasing the vector potential. The reciprocal trajectory for
A0 = Amax

0 is displayed in Fig. 5(a) with blue line. One can
see the whole trajectory slightly exceeds the boundary of zone
with positive GVD [blue area in Fig. 5(a)]. This suggests that
the electrons and holes undergo a reciprocal space motion in
the Brillouin zone with positive GVD for A0 < Amax

0 . There-
fore, the accumulation of GVD increases with the laser vector
potential below Amax

0 . For A0 > Amax
0 , electrons and holes can

reach the Brillouin zone with negative GVD [yellow area
in Fig. 5(a)]. Here, a dispersion compensation is achieved,
resulting in a subsequent decrease with A0. Apparently,
due to the neglect of the parameter-dependent electron-hole

distance R̄eh, the discrepancy of ionization phases determined
by WSPM and CSPM, i.e., φw

i − φc
i , is also dependent on

the laser parameters. To validate this, we numerically solve
Eqs. (5) and (6), the solutions of ionization phases for CSPM
[φc

i (A0)] and WSPM [φw
i (A0)] are shown in Fig. 5(c) with

black and blue circle lines, respectively. One can see that there
is a large difference between them. Simultaneously, φc

i (A0) in-
creases noticeably with A0, while φw

i (A0) changes slowly with
A0. To comprehend this phenomenon, we further analytically
solve Eqs. (5) and (6) in Appendix C. The analytic solution
of ionization phases, which includes the dominant term, is
presented below:

η
[
φw

i (A0)
] ∼ a0A0J0(a0A0)

J1(a0A0)
, (8a)

η
[
φc

i (A0)
] ∼ J2(a0A0)

J0(a0A0)
. (8b)

Here, η is a defined function representing the relative value
of the ionization phase. Evidently, Eqs. (8a) and (8b) follow
different dependence on A0. As depicted in Fig. 5(d), the
analytic solutions (represented by solid lines) are consistent
with the numerical results (represented by circle lines). Note
that the analytic results in Fig. 5 include the Fourier series up
to the third order. From Eqs. (5), (7), and (8a), we can know
that the electron-hole distance related to the GVD remains
roughly synchronized with the classical displacement across
different parameters. This synchronization keeps the ioniza-
tion phases of WSPM to be roughly the same for different
parameters. Differently, without the synchronization, the ion-
ization phases for CSPM are significantly dependent on the
laser parameters. Overall, the discrepancy of ionization phase
between the CSPM and WSPM is more significant for small
laser vector potentials [as shown with green lines in Fig. 5(d)].

Finally, we will explain how such a difference in HHG
process can manifest in the relative deviation of cutoff energy
as shown in Figs. 3(d) and 4. The difference of cutoff energy
between the WSPM and CSPM can also be expressed as an
expansion of Fourier series:

�E cut(A0) ∼ 2J0(a0A0)J2(a0A0)
[
cos

(
φw

i

) − cos
(
φc

i

)]
− 4J2

1 (a0A0)
[
sin

(
φw

i

) − sin
(
φc

i

)]
+ · · · . (9)

Apparently, the deviation is contributed by two parts: the
Bessel coefficients and the difference of ionization phase. The
former originates from the nonlinearity of the energy band,
which determines the absolute deviation of the cutoff energy
as shown in Fig. 3(b). Removing the contribution of the non-
linearity of energy band, the relative deviation is determined
by the difference of ionization phase. Evidently, in Figs. 3(d)
and 4, the more significant relative deviation for small vector
potential is attributed to larger difference of ionization phase
[green lines in Fig. 5(d)].

III. WAVELIKE DYNAMICS IN GAPPED GRAPHENE

A. Systems with different band gaps

In the previous discussion, we analyzed the wavelike
dynamics in a simple one-dimensional (1D) system. Here,
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FIG. 6. (a) The energy band with different band gaps along the high-symmetry directions. The time-frequency profiles and the emission
channels predicted by WSPM for different band gaps: 1 eV (b), 2 eV (c), and 3 eV (d). For 1-eV band-gap case, the contributions of channels
C1 and C2 to the total time-frequency properties are separated, and shown in (e) and (f), respectively.

we will further take the gapped graphene as an exam-
ple to illustrate the wide applicability of our analyzation.
Gapped graphene is a model system, which can be used
to mimic different 2D materials by adjusting the band gap
and hopping parameters. As shown in Fig. 6(a), the gapped
graphene has two nonequivalent valleys, K and K ′ valleys,
with opposite Berry curvature but symmetric energy band. For
simplicity, we only analyze the time-domain interference for
the contributions of a single ionization momentum kl = K.
For noncentrosymmetric crystals, the classical action is for-
mulated as S(k′, t, t ′) = ∫ t

t ′ �εcv[k(k′, τ, t ′)] + F(τ ) · (Xcc −
Xvv )dτ − φcv (k′, t, t ′) + φcv (k′, t ′). Here, k(k′, τ, t ′) = k′ +
A(τ ) − A(t ′). The second term in this formula is the Berry
phase with Xcc and Xvv the Berry connections [34,35]. The
last two terms are the phases of transition dipole. Both of
them vanish in symmetric materials. Similarly, the condition
of slow-varying phase becomes

|∂t ′S| = |�εcv (kl ) − F(t ′) · {x[k(t )] − Rcv[k(t )]}|. (10)

Here, Rcv represents the shift vector, which is defined
based on both the Berry connection and the dipole phase [36].
The basic form of Eq. (10) keeps consistent with Eq. (2), ex-
cept for the additional electron-hole displacement contributed
by the shift vector. For 2D systems, the shift vectors are
distinct for the components of emission along different di-
rections. Therefore, one should consider the emission along
different directions individually. Usually, the shift vector is
far smaller than the classical displacement contributed by the
dynamical phase.

Using Eq. (10), we examine the validation of WSPM across
three distinct band gaps: 1 eV [Fig. 6(b)], 2 eV [Fig. 6(c)], and
3 eV [Fig. 6(d)]. For the three band gaps, we employ a same
mid-infrared laser linearly polarized along the �-K direction
with field parameters of 0.4 TW/cm2, 3.8 µm, and solve the

SBEs as used in graphenelike systems [37–40]. We note that
the vertical component is dominant for total interband emis-
sion, and thus we mainly focus on the vertical component.
All the emission channels within one full cycle determined by
Eq. (10) are represented with the solid lines, and numbered
as C1 (black), C2 (red), and C3 (blue) in accordance with
the emission time when they first appear. We note that C1

and C2 denote the emission channels in the first half-cycle
(about 0.5∼1 o.c.), C3 denotes all the emission channels in
the later half-cycle (about 1∼1.5 o.c.). Due to the asymmetry
of energy band in the �-K direction, the emission structures
in two adjacent half-cycles are different. Besides, the signal
of channel C2 is much weaker than that of C1, and not easy
to be distinguished. For clarity, we separate the total signal
for the case of 1-eV band gap into the contributions from
C1 [Fig. 6(e)] and C2 [Fig. 6(f)] according to their different
ionization time. One can see that C1, C2, and C3 are all in good
agreement with the SBEs simulations. This implies that the
WSPM is applicable for materials with different band gaps.
Additionally, we mention two unique phenomena here. On the
one hand, the channel C2 occurs after the time ts (marked with
green circles), and the intensity of C2 is three to five orders
of magnitude lower than that of C1. On the other hand, the
emission of long orbit is enhanced as the increase of band
gaps. We will discuss these questions in detail in the following
section.

B. Emission intensity analysis based on the
interference principle

To highlight the importance of the wavelike dynamics in
HHG process, we further unravel the interference process
embedded in the intensity of HHG emission. In Eq. (1), the
harmonic yield is dependent on both the time-domain and
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momentum interferences. Considering the dominant role of
the time-domain interference, we just analyze the emission
contributed by a single ionization momentum kl , it solely
depends on the time-domain interference:

Ykl (�, tr ) ∝
∣∣∣∣∣∣

∑
t ′∈[0,tr ]

f (kl , t ′)P(kl , tr, t ′)e−iS(kl ,tr ,t ′ )

∣∣∣∣∣∣
2

, (11)

where P(kl , tr, t ′) = G[∂k′S(kl , tr, t ′),�x]W [∂t S(kl , tr, t ′) −
�,�E ]Dvc(kl , tr, t ′) describes the emission amplitude of a
single wavelet, with G and W two Gaussian functions, and
Dvc is the emission dipole. One can see that the emission
intensity is determined by several factors, which represent the
contributions from different HHG processes.

(i) The first term f (kl , t ′) is the expansion coefficients in
Gaussian basis, which is proportional to the field strength
F (t ′) and transition dipole Xcv (kl ). It describes the amplitude
of a wavelet ionized at t ′. For a specific ionization channel kl ,
it depends solely on the field strength F(t ′).

(ii) The second term, G[∂k′S(kl , tr, t ′),�x] =
kw

√
π exp{−[∂k′S(kl , tr, t ′)/�x)]2}, describes the inter-

ference of wavelets in k′ space. Here, ∂k′S(kl , tr, t ′) =
x(kl , tr, t ′) − Rcv (kl , tr, t ′) is the distance of electron-hole
pair at the observation time tr , which represents the rate of
phase change along k′ direction. �x = 2/kw with kw the
width of reciprocal-space Gaussian wavelets, and we use
kw = 0.01 π

a0
. This term implies that the emission intensity

decreases exponentially with the electron-hole distance.
(iii) The third term, W [∂t S(kl , tr, t ′) − �,�E ] =

tw
√

π exp{−[(∂t S(kl , tr, t ′) − �)/(�E )]2}, describes the
emission intensity of the observed frequency �. Here,
∂t S(kl , tr, t ′) = �εcv (kl , tr, t ′) + F(tr ) · Rcv (kl , tr, t ′)
represents the emission frequency of a wavelet. Sim-
ilarly, this term suggests that the emission intensity
of the observed frequency � decreases exponentially
as the deviation from the most probable frequency
�c = �εcv (kl , tr, ti ) + F(tr ) · Rcv (kl , tr, ti ).

(iv) Dvc(kl , tr, t ′) = �εvc(kl , tr, t ′)Xvc(kl , tr, t ′) repre-
sents the emission dipole, which describes the probability
of emission. There is no variation in order of magnitudes
throughout the entire Brillouin zone for the emission dipole.

(v) The factors mentioned above determine the emission
amplitude of each independent wavelet. However, the final
yield is determined by the interference of these wavelets,
which also depends on their phases. According to Eq. (10),
we can determine the most probable ionization time ti. This
means that the constructive interference of wavelets ionized
near ti will contribute primarily to the HHG emission. We
consider the wavelets ionized within the interval [ti − �t, ti +
�t]. The amplitudes for these wavelets can be considered as
a constant quantity I0(ti ) due to its much slower variation
compared to phase. In this context, the integral in Eq. (11)
can be approximately calculated with a Gaussian integral:

I0(ti )
∫ +∞

−∞
dt ′exp

[
−1

2
g0(t ′ − ti )

2 − iS(kl , tr, t ′)
]
, (12)

where g0 = 2ln2
�t2 describe the width of Gaussian function, and

�t = 0.04T0 is used here. We denote the integral term as
the interference factor ζ (kl , ti, tr ). By expanding the phase

FIG. 7. (a) The normalized field strength at the ionization time
for two band gaps: 1-eV (solid lines) and 3-eV band gaps (dashed
lines). The color of lines indicates different channels: C1 (black), C2

(red), C3 (blue). (b) The interference factor with respect to emission
time tr . (c), (d) The total emission intensity calculated with Eq. (14)
for 1- and 3-eV band gaps, respectively.

to the second order S(t ′) = S(ti ) + S′
t ′ |ti (t ′ − ti ) + 1

2 S′′
t ′ |ti (t ′ −

ti )2, the interference factor can be easily obtained:

ζ =
∫ +∞

−∞
exp

[
−1

2
(g0 + iS′′

t ′ )(t ′ − ti )
2 − iS′

t ′ (t ′ − ti )

]
dt ′

=
√

2π

g0 + iS′′
t ′

exp

[
− S′2

t ′

2(g0 + iS′′
t ′ )

]
. (13)

The interference factor has negative correlation with the rate
of phase change.

(vi) Additionally, the dephasing effect can influence the
intensity of HHG emission, which can be represented by the
factor Dp = exp(− tr−ti

T2
). Here, the dephasing time T2 is set to

5 fs as commonly used in graphenelike materials [29,41,42].
In summary, the factors mentioned above collectively

determine the ultimate emission intensity. Overall, the time-
domain relative intensity for the center frequency �c can be
approximated as follows:

Ykl (�c, tr ) ∝ |F(ti ) · Xcv (kl )Dvc(tr )Gζ (kl , tr, ti )Dp|2. (14)

The general intensity picture can provide a comprehensive
understanding of the HHG process, including the ionization,
emission, and time-domain interference, all of which can af-
fect the emission intensity.

Then, we discuss the phenomena mentioned in the prior
section, i.e., the significant difference in intensity of HHG
emission between C1 and C2, and the enhanced intensity of
long-orbit HHG emission for larger band gaps. We will show
how one can understand these phenomena, and unravel the
underlying electronic dynamics from the perspective of wave-
like picture. For simplicity, we only consider the results in
the cases of 1- and 3-eV band gaps in Figs. 6(b) and 6(d).
Figure 7(a) presents the normalized ionization amplitudes of
three channels C1 (black lines), C2 (red lines), and C3 (blue
lines) for 1-eV (solid lines) and 3-eV (dashed lines) cases,
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respectively. Apparently, C1 has a larger ionization amplitude
than C2. Additionally, the interference factor with respect to
emission time tr is shown in Fig. 7(b). It has a maximum at the
temporal position ts (marked with green circles) where both
of S′

t ′ and S′′
t ′ equal to zero. The ultimate emission intensity is

calculated with Eq. (14), and displayed in Figs. 7(c) and 7(d)
for 1- and 3-eV cases, respectively. The emission intensity for
the results of SBEs in Figs. 7(c) and 7(d) is directly extracted
from the time-frequency data along the emission channels in
Figs. 6(b) and 6(d). This is equivalent to Gabor transformation
of the interband currents at the temporal position tr for the cen-
tral emission frequency �c(tr ), both of which are determined
by WSPM. Overall, one can see that the emission intensity
predicted by WSPM is consistent with the results of SBEs
(circle lines) qualitatively. It is worth to note that the intensity
of C1 is always dominant and several orders higher than that
of C2. This is mainly ascribed to their significant discrepancy
in ionization amplitudes. In addition, we also compare the
emission intensity of 1- and 3-eV cases near the time emitting
the cutoff energy, i.e., the shadow region. The intensity of the
1-eV case is significantly weaker than that of the 3-eV case.
For the 1-eV case, the interference factor has attenuated to
a minimal value due to a larger interval between this region
and ts. Whereas the interference factor is relatively larger for
the 3-eV case due to a smaller interval between this region
and ts. Clearly, the time-domain interference of wavelets will
affect the intensity of HHG emission, and leads to significant
difference of long-orbit emission for 1- and 3-eV cases.

C. Revealing the 2D electronic dynamics from the perspective
of particlelike trajectory

Previously, 2D electronic dynamics were rarely explored
due to the limitations of the CSPM. For instance, meeting
the recollision condition was difficult when driven by a 2D
elliptically polarized light [31,32]. Considering the limitation
of CSPM in 2D cases, it is necessary to adopt an extended rec-
ollision model in which the electrons and holes do not need to
reencounter exactly. Usually, it is referred to as electron-hole
imperfect recollision (ehIR). Here, we will revisit these issues
from the perspective of wavelike picture. Following the same
procedure as in the 1D case, the WSPM can also be applied
to describe the HHG emission in full Brillouin zone for 2D
cases. Detailed explanations are provided in Appendix A.
For simplicity, we only consider the emission in the entire
K valley of gapped graphene with a band gap of 3 eV at K
point. We employ a 2D elliptically polarized light: F(t ) =

εF0√
1+ε2 cos(ω0t )
ex + F0√

1+ε2 sin(ω0t )
ey, where ε is the ellipticity,
and the field strength and frequency are F0 = 0.0065 a.u.

and w0 = 0.015 a.u. The time-frequency properties are shown
in Fig. 8 for two different ellipticities: 0.5 [Fig. 8(a)] and
1 [Fig. 8(b)]. For the elliptically polarized lights, there are
three emission structures within one cycle due to the threefold
rotational symmetry of energy band. The emission channels
predicted by WSPM are displayed with black lines. One can
see that they are in good agreement with SBEs simulations.
Undoubtedly, the WSPM is also applicable for 2D systems.

It seems that there is a commonality between the
WSPM and ehIR, i.e., the electrons and holes are all sep-
arated spatially when emitting HHG. In fact, these two

FIG. 8. The time-frequency profiles contributed by the full K
valley driven by elliptically polarized light with different ellipticities:
(a) ε = 0.5, (b) ε = 1. The black lines show the central emission
frequency predicted by the WSPM.

models are essentially different. To illustrate their differ-
ence, we further explore the electronic dynamics of 2D
systems by comparing the real-space electron-hole trajecto-
ries determined by the ehIR and WSPM. For generality, we
adopt a 2D orthogonally polarized two-color field (OTC):
F(t ) = F0[sin(ω0t )ẽx + cos(2ω0t )ẽy], with field strength and
frequency are F0 = 0.0048 a.u. and ω0 = 0.0152 a.u., respec-
tively. The initial ionization momentum is chosen as kl =
M where the band gap is 7.26 eV. In this context, both of
laser vector potential and energy band are symmetric with re-
spect to x (�-M ) and y (K-M ) directions, thereby facilitating
the imperfect recollision events. The time-frequency property
simulated with SBEs is shown in Fig. 9(a). For the OTC field,
the exact recollision rarely occurs, and thus we adopt the ehIR,
and relax the restriction of recollision distance to 10 a0 (a0

is the lattice constant). The emission channel predicted by
ehIR is shown with black lines. One can see that it deviates
significantly from the SBEs simulation in both emission time
and energy. In contrast, the prediction of WSPM (blue lines)
agrees well with SBEs simulations. This means that the ehIR
also fails to describe the 2D electronic dynamics in HHG
process.

To unravel the basic difference underlying these two
perspectives we focus on the electron-hole particlelike tra-
jectories. In Fig. 9(a), we consider the emission of 30th
harmonics (marked with dashed white line). For WSPM, the
emission times are marked with green dots A1 and A2 for short
and long orbits, respectively. Similarly, the emission times
for ehIR are also marked with the red dots B1 and B2. The
corresponding real-space trajectories of electrons (solid lines)
and holes (dashed lines) are shown in Figs. 9(b) and 9(e) with
the position at the emission time marked with dots (electrons)
and circles (holes). For clarity, the straight-line distances
|Reh(t )| of electron-hole pairs are also shown in Figs. 9(c) and
9(f) correspondingly, with the emission times marked with
dots. It is evident that electrons and holes undergo entirely
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FIG. 9. (a) The time-frequency profile contributed by momentum kl = M driven by an orthogonally polarized two-color field. The emission
channels determined by WSPM and ehIR are shown with blue and black lines, respectively. The 30 order harmonic is marked by a dashed
white line, with corresponding emission time marked with red or green dots: A1, A2 and B1, B2. The real-space trajectories of electrons and
holes are exhibited for points A1, B1 (b) and A2, B2 (e), respectively, with the emission position marked with filled dots (electron) or circles
(hole). The time-dependent straight-line distances between the electron and hole pairs for A1, B1 (c) and A2, B2 (f). (d) The emission distances
of all other electron-hole pairs which emit HHG at different time tr .

different movement in real space for WSPM and ehIR. For
ehIR, the emission probability depends on the electron-hole
distance, reaching a maximum when they are spatially closest.
In contrast, the emission probability for WSPM is largely
independent of the electron-hole distance. Furthermore, The
emission distances of all other electron-hole pairs which emit
HHG at different time tr are shown in Fig. 9(d) for WSPM
(blue line) and ehIR (black line), respectively. One can see that
they follow completely different trends. This indicates that the
criteria of ehIR, which are based only on particlelike trajecto-
ries, are not reliable. To better quantify the HHG process, it is
necessary to take into account the interference of wavelets.

IV. CONCLUSION

To summarize, the wavelike dynamics in solid-state HHG
was studied. In solids, the GVD arising from the nonquadratic
energy band can lead to substantial spatial spread for the evo-
lution of electron wave packet. This kind of wavelike effect
can also significantly affect the electronic dynamics of HHG
emission, and allows the electrons and holes to be separated
spatially when emitting HHG. Incorporating the wavelike ef-
fect, the time-frequency properties of HHG emission and the
underlying dynamics can be well understood by the wavelike
picture. Furthermore, the wavelike picture is also demon-
strated to be able to describe the 2D electronic dynamics and
emission intensity. Our analysis has provided a comprehen-
sive understanding on the HHG emission properties, as well
as the underlying electronic dynamics.
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APPENDIX A: INTERFERENCE ANALYSIS IN WSPM

According to Eq. (1), the harmonic yield is determined by
both the time-domain t ′ and momentum space kl interference.
The results of interference are related to the rate of phase
change, which can be described by the partial derivative of
S with respect to t ′ and kl :

|∂t ′S| = |�εcv (kl ) − x(kl , tr, t ′)F (t ′)|, (A1a)

|∂kl S| = |x(kl , tr, t ′)|. (A1b)

In general, |∂t ′S| is much smaller than |∂kl S|, and the in-
tegration domain of t ′ (same order of magnitude as T0, about
102 a.u.) is much larger than that of kl (same order of mag-
nitude as 2π/a0, about 100 a.u.). These factors result in the
time-domain interference playing a dominant role in Eq. (1).
Therefore, we can tackle the time-domain integral in Eq. (1)
exactly for each single ionization momentum kl indepen-
dently, while taking an approximate treatment for the integral
of kl . Figure 10(a) displays the value of Eq. (A1a) with respect
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FIG. 10. (a) The value of Eq. (A1a) with respect kl and t ′ for tr =
0.7 T0. The dashed lines indicate the kl and t ′ which correspond to the
same harmonic order. (b) The contour lines for the classical action
S(kl , tr, t ′) at tr = 0.7 T0. (c) The colored scatter plot shows the most
probable emission frequency for different ionization momentum kl

with the color indicating the normalized amplitude f (kl , ti ). The
dashed black line marks the weighted average frequency. The dashed
magenta line shows the intensity distribution of SBEs simulation.
(d) The time-frequency properties simulated with SBEs. The solid
lines show the emission channels predicted by WSPM.

to t ′ and kl for tr = 0.7 T0. It can be seen that the minima
for each kl are distributed within a narrow range between two
dashed red lines, which corresponds to emission frequency
range: 20.6 ω0 ∼ 24 ω0. Most of them are near the frequency
22.4 w0, as marked with the dashed black line. For clarity,
we present a contour plot of the classical action S(kl , tr, t ′)
in Fig. 10(b). It can be seen that S(kl , tr, t ′) is flat along the t ′
direction for the frequency 22.4 ω0. This implies that the most
probable emission frequencies for electrons ionized from dif-
ferent momenta are very close. In Fig. 10(c), the distribution
of the most probable emission frequency for each kl , i.e.,
H (kl ), is shown with colored scatter dots. The color of the dots
indicates the normalized amplitude of electron-hole wavelets,
i.e., f (kl , ti ) = |dcv (kl )F (ti)|. Consequently, the central emis-
sion frequency after the interference of the contribution from
all ionization momenta can be approximately represented by
the weighted average frequency:

Havr = 1∑
kl

f (kl )

∑
kl

f (kl )H (kl ). (A2)

The average frequency is plotted with a dashed black line.
One can see that it agrees well with the SBEs simulations
as shown with the dashed magenta line. It is worth to note
that the average frequency is artificially defined to describe
the whole distribution of emission frequencies, and only
suitable for a concentrated distribution. Figure 10(d) displays
the predicted central emission frequency within half of optical
cycle. One can see that the channel C1 aligns well with the
SBEs simulation. In addition, we also present the second
channel C2, which corresponds to the second minimum of
∂t ′S [seen in Fig. 10(a)]. However, the value of Eq. (A1b)

FIG. 11. (a) The energy band of gapped graphene in the K valley,
and the K point is shifted to the zero point for clarity. (b) The blue
dots represent the frequency-domain emission distribution (emission
frequencies and the corresponding normalized amplitudes) of the
different ionization momenta kl for tr = 0.6 T0. The dashed magenta
line shows the emission intensity calculated by SBEs. (c) Same as
(b), but for tr = 1.1 T0. (d) The time-frequency properties simulated
by SBEs. The black lines show the emission channels predicted by
WSPM.

for C2 is large, indicating a fast-changing phase along the kl

direction [seen in Fig. 10(b)]. Therefore, for channel C2, the
interference between different ionization momenta is destruc-
tive. Moreover, ionization amplitude F (ti ) for C2 is close to
zero. As a result, C2 is significantly weaker than C1, and thus
we pay less attention to C2.

The analysis above is also applicable to the 2D case. In
the 1D case, we can easily estimate the relative amplitudes
of wavelets contributed to two distinct channels, C1 and C2,
and discuss them individually. However, this is challenging
for the 2D case. In this context, using only f (kl , ti ) to describe
the amplitudes may overestimate the contribution of some
wavelets. To be precise, we adopt a more precise expression
for the amplitude of the wavelets after time-domain interfer-
ence, i.e., Eq. (14).

For simplicity, we only consider the emission in the K val-
ley of the gapped graphene excited by an elliptically polarized
light with an ellipticity ε = 0.5. The energy band with a band
gap of 3 eV is shown in Fig. 11(a). Similar to the 1D case,
we can determine the most probable emission frequency for
each individual momentum kl = [kx, ky], as well as the cor-
responding amplitude. By aggregating the contributions from
all momenta, we can obtain the frequency-domain distribution
of all possible emissions, as shown in Figs. 11(b) (tr = 0.6 T0)
and 11(c) (tr = 1.1 T0) with a blue scatter plot. For tr = 0.6 T0,
most of the emission is distributed within a narrow range
(about 20 ∼ 30 order) with a center frequency of 25.3 ω0.
This agrees with the narrow peak in the emission distribution
of SBEs simulations as shown with dashed magenta line. For
tr = 1.1 T0, a wider distribution within about 10 ∼ 40 order
can account for a wide-band emission simulated with SBEs
(dashed magenta line). In this context, an weighted average
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frequency is not suitable to represent the character of emission
anymore, so we do not show the center frequency for the
interval 1 T0 ∼ 1.2 T 0. Overall, The WSPM is valid for both
1D and 2D systems.

APPENDIX B: INFLUENCE OF GVD ON WAVE PACKET
DYNAMICS IN SOLIDS

Here, we discuss the effect of higher derivatives of energy
band on the wave-packet evolution in solids. It has been found
that the electron wave packet propagating in solids can un-
dergo significant changes in spatial width and waveform, as
seen in the supplementary materials of the references [29,30].
While the underlying dynamics for the wave-packet evolu-
tion remains unclear. We aim to provide a general physical
picture to establish the relationship between the wave-packet
dynamics and the electronic structure of solids. To begin, we
also construct a real-space Gaussian wave packet, and the
evolution of the wave packet can be described by the formula

�(x, t, t0) =
∫ ∞

−∞
dk g(k)eikx−iϕ(k,t,t0 ). (B1)

Here, g(k) = e−(k−k0 )2/2α2
represents an initial Gaussian

wave packet with the center at k0. ϕ(k, t, t0) is the classical
action accumulated within the temporal interval [t0, t]. To the-
oretically obtain the dynamical properties of the electron wave
packet, we consider a narrow wave packet. Consequently, the

classical action can be Taylor expanded at the center of the
wave packet k0:

ϕ(k) =
3∑

n=0

ϕn(k0)

n!
(k − k0)n + O((k − k0)4). (B2)

We denote xc = (dϕ/dk)k0
, which corresponds to the

accumulation of the group velocity of the wave packet,
i.e., the classical displacement. β = (d2ϕ/dk2)k0

and γ =
(d3ϕ/dk3)k0

represent the accumulation of the second and
third derivatives of energy band, respectively. The second
derivative is usually called the group velocity dispersion
(GVD), while the third derivative of energy band is called
group delay dispersion (GDD). We retain only the lowest
three orders and rewrite the integral in Eq. (B1) by replacing
k − k0 with k. Then, the evolution of the wave packet can be
approximately described by

�(x, t ) = e−iϕ0 (t )

√
2π

∫ +∞

−∞
eik(x−xc )− k2

2 (iβ+1/α2 )
[

1 − i

6
γ k3

]
dk.

(B3)

Here, the term k3 is a small quantity for a narrow wave packet,
so we have taken it out of the exponent. By simplifying the
Gaussian integral above, we can obtain the time-dependent
spatial density distribution of wave packet:

|�(x, t )|2 ≈ α2√
1 + β2α4

{
1 + γ

[
α4(1 − β2α4)

(1 + β2α4)2 (x − xc) + α6(β2α4 − 1/3)

(1 + β2α4)3 (x − xc)3

]}
exp

[
− α2

1 + β2α4
(x − xc)2

]
. (B4)

Here, the higher-order terms O[(x − xc)4] with tiny coef-
ficients are discarded. From the formula above, we can see
that the wave packet remains approximately Gaussian, with
the center at the classical displacement xc(t ) during propaga-
tion. Meanwhile, significant changes in the spatial distribution
are characterized by a time-dependent exponent factor and
a deformation factor in square brackets, which correspond
to the spatial spread and deformation of the wave packet,
respectively. To characterize these effects, we introduce two
parameters based on Eq. (B4), namely, the full width at
half-maximum (FWHM) w and the deviation �x between
the average displacement 〈x(t )〉 = ∫ +∞

−∞ x|�(x, t )|2dx and the
classical displacement xc:

w ≈ 1

α

√
1 + β2α4 ∼ α

∣∣∣∣
∫ t

t0

∂2
k εcv[k(t )]dt

∣∣∣∣, (B5a)

�x = 〈x〉 − xc = 1
4α2γ . (B5b)

The formulas above indicate that the width of wave packet
depends on the integral of GVD, while the deformation is
related to the integral of GDD. Evidently, it is insufficient to
describe the wave-packet dynamics solely through the clas-
sical displacement when the effect of the GVD and GDD is
significant.

To validate the discussion above, we consider a wave
packet propagating on the conduction band of ZnO, and il-
lustrate the wavelike effects caused by GVD and GDD. By
numerically solving Eq. (B1), we can simulate the propaga-
tion of an electron wave packet driven by a mid-infrared laser
with parameters F0 = 0.003 a.u., ω0 = 0.0152 a.u. Figure 12
illustrates the time-dependent spatial distribution under three
scenarios: including the full dynamical phase [Fig. 12(a)], and
including the phase expanded up to the second [Fig. 12(b)]
and third order [Fig. 12(c)]. The classical and average dis-
placements of the wave packet are marked with black and
dashed red lines, respectively. One can see that the wave
packet’s center still adheres to classical movements. Notably,
the width changes significantly when including the GVD,
while deformation occurs when including the GDD. Fig-
ure 12(d) further intuitively exhibits these effects through
the wave-packet distribution at t = T0/2. The wave packet
including the GVD is a symmetric Gaussian function, while it
becomes asymmetrical when including the GDD as predicted
by Eq. (B4). In Figs. 12(e) and 12(f), the numerical and ana-
lytic FWHM and displacement deviation �x of wave packet
are presented with the solid blue lines and dashed red lines,
respectively. Except for a minor deviation arising from the ap-
proximations made in the theoretical derivation, the numerical
and analytic results are in good agreement. This demonstrates
the significant influence of GVD and GDD on dynamics of
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FIG. 12. (a) The propagation of a Gaussian wave packet on the conduction band, with the classical displacement and the average
displacement indicated with black and dashed magenta lines. Same as (a), but Taylor expanding the dynamical phase to the second
(b) and third order (c). (d) The spatial density distribution of wave packet for the three cases above at the time t = 0.5 T0. (e) The
time-dependent width of wave packet obtained numerically (solid blue line) and analytically (dashed red line). (f) The time-dependent
deviation of average displacement from the classical displacement obtained from numerical (solid blue line) and analytic (dashed red line)
methods.

electron wave packet, suggesting that the classical movement
is insufficient to fully describe the electronic dynamics in
solids.

In Sec. II B, we have discussed the effect of GVD on HHG
emission. Here, we will further discuss the effect of GDD
by comparing the results with and without the contribution
of GDD. For this purpose, we perform a calculation under
the Keldysh approximation, and the interband current can be
expressed as (seen in Refs. [28,30])

Jer (t ) = −
∫

BZ
dk′

∫ t

−∞
dt ′F (t ′)Xcv (k′)�εcv (k′, t, t ′)

× Xcv (k′, t, t ′)e−iS(k′,t,t ′ )−(t−t ′ )/T2 + c.c. (B6)

which has been demonstrated to agree well with the SBEs
simulations. For a certain ionization channel k′ = kl , the
integral is mainly contributed by the wavelets around the
ionization time t ′ = ti which satisfy the phase slow-varying
condition. To discuss the effect of GDD, we Taylor expand
the phase S up to the fourth order at the ionization time:

S(k′, t, t ′) =
4∑

n=0

∂n
t ′S |t ′=ti

n!
(t ′ − ti )

n + O[(t ′ − ti )
5], (B7)

with two terms involving the GDD 1
6 F 3(ti )

∫ t
ti

∂3
k �εcv

(k′, τ, ti )dτ (t ′ − ti )3 and 1
4 F 2(ti ) ∂F

∂t ′ |t ′=ti

∫ t
ti

∂3
k �εcv (k′, τ, ti )

dτ (t ′ − ti )4. By discarding these two terms in the expansion,
we can artificially eliminate the contribution of GDD to the
phase of wavelets ionized in the vicinity of ti. From these two
terms, we can know that the GDD has a third- or higher-order
effect on the electron movement, which is significantly weaker
than that of GVD. Besides, the contribution of GDD is expo-

nentially dependent on the electric field strength. Therefore,
we adopt a relatively strong field strength F0 = 0.008 a.u. and
ω0 = 0.02 a.u. to obtain a significant contribution.

Figure 13(d) shows the GDD of ZnO energy band, which
is symmetric with respect to the zero. This implies that the
accumulation of GDD during the acceleration process of
electron-hole pairs will be offset to a great extent [seen in
Fig. 12(f)]. Therefore, for the ZnO energy band, the effect of
GDD for small ionization momentum is negligible. To dis-
cuss the effects of GDD qualitatively, we consciously choose
an ionization channel which is far away from the zero, i.e.,
kl = 0.15 2π

a0
as marked with the black dashed line. In this way,

the effect of GDD can be maintained.
As shown in Figs. 13(a)–13(c), we numerically integrate

Eq. (B6) under the three scenarios: (a) using the accurate
phase S (full phase); (b) using the phase of Taylor expansion
(B7) including the GDD terms; (c) using the phase of Taylor
expansion (B7) but discarding the GDD terms. Note that these
results are plotted without normalization and with the same
color bar for comparison. One can see that the emission distri-
bution and intensity without the GDD is apparently different
from the first two cases. For clarity, we show the emission
distribution at tr = 0.28 T0 in Fig. 13(e). One can see that the
emission intensity without GDD (blue dotted line) is much
larger than that of full phase (black line) and with GDD
(red dotted line). Besides, the central emission energy for the
case without GDD is slightly shifted as marked with blue
vertical dashed line. These phenomena can be understood as
follows.

From Eq. (B7), we know that the GDD can affect the phase
of wavelets in the vicinity of ti. In Fig. 13(f), we compare
the full phase (black line) with the expanded phase including
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FIG. 13. (a)–(c) The time-frequency spectra obtained by numerically integrating Eq. (B6) under the three scenarios: (a) using the full
phase; (b) using the phase of Taylor expansion including the GDD terms; (c) using the phase of Taylor expansion but discarding the GDD
terms. (d) The GDD of ZnO energy band. (e) The emission distribution at tr = 0.28 T0 for the cases in (a)–(c). (f) The phase of wavelets ionized
at different time t ′ for tr = 0.28 T0.

(red line) and not including (blue line) the GDD. One can see
that the phase without GDD departs observably from the full
phase, and shows a more slow-varying tendency, especially
for t ′ < ti. This implies that more wavelets will participate
in the constructive interference, especially for the wavelets
ionized ahead of ti. As a result, the emission intensity is en-
hanced overall, and has a slower decay for the emission below
the central emission energy. In addition, the central emission
energy shows a slight shift to lower frequency; this can also
be attributed to the joint contribution of the more slow-varying
phase and larger ionization ([F (t ′) = F0cos(ω0t ′)] and emis-
sion amplitudes of wavelets which emit HHG below the
central emission energy. These results indicate the important
role of GDD in the detailed interference structure of HHG
emission. We expect that the effect of GDD can be found to
be non-negligible in some systems, e.g., the systems without
the symmetric GDD, in the future.

APPENDIX C: SOLVING EQUATION BY FOURIER
SERIES EXPANSION

Here, we solve Eqs. (5) and (6) using finite-order Fourier
series expansion. The integrals in these equations contain
nested trigonometric functions, which are challenging to solve
exactly. Considering their periodicity with respect to φ, it
can be analyzed qualitatively using the finite-order Fourier
series expansion. For brevity, we denote the product of lattice
constant a0 and laser vector potential A0 as b. The integral in
the expression of classical displacement can be expanded as

follows:

xc =
∫ φr

φi

− sin [b(sin φ − sin φi )]dφ

= 2J0(b)J1(b)[sin φi(φr − φi ) + cos φr − cos φi]

+ 2J1(b)J2(b)[2(cos 2φr − cos 2φi ) cos 2φi

+ sin φi(sin 2φr − sin 2φi )]

+ 2J0(b)J3(b)[1/3(cos 3φr − cos 3φi )

+ sin 3φi(φr − φi )]

+ · · · . (C1)

The expanded formula is still coupled for φi(b) and hard to
solve exactly. Fortunately, we are primarily interested in the
parameter dependence of φi(b), eliminating the need for an
exact solution. Therefore, an approximate solution is enough.
We can see that the dependence of xc on the parameters b is
mainly determined by the Bessel coefficient parts, while its
dependence on phase φi is much weaker because the ioniza-
tion usually occurs at the neighborhood of the peak of the
field. Moreover, only the first term is dominant, and the other
higher-order terms are much smaller. Consequently, we only
retain the precise form of φi(b) for the first term and use an
averaged ionization phase φ̄i(b) in other terms. This approach
maintains the primary monotonicity in Eqs. (5) and (6) and
simplifies the problem. We define η(φc

i ) = sin φi(φr − φc
i ) +

cos φr − cos φc
i , a monotonic function within our range of in-

terest that can represent the relative value of φi. Consequently,
we can approximately solve Eqs. (5) and (6). For the CSPM,
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xc = 0, we obtain

η
[
φc

i (b)
] ∼ J2(b)

J0(b)
θ12

(
φ̄c

i

) + J3(b)

J1(b)
θ03

(
φ̄c

i

) + · · · , (C2)

where θ12 and θ03 represent the corresponding trigonometric
function parts of Eq. (C1). For the WSPM, xc[φw

i , φr, b] =
R̄eh[φw

i , φr, b], and the right-hand side can also be expanded
as

R̄eh
(
φw

i , φr, b
) ∼ bJ2

0 (b)
(
φr − φw

i

)
+ 2bJ0(b)J2(b)

[
1
2

(
sin 2φr − sin 2φw

i

)
+ (

φr − φw
i

)
cos 2φw

i

]
− 4bJ2

1 (b) sin φw
i

(
cos φr − cos φw

i

) + · · · .

(C3)

Similarly, we denote the trigonometric function parts in
the above formulas as χnm, where n and m correspond to the
orders of the Bessel coefficients. For a qualitative analysis, we
only focus on the dominant terms, and obtain the solution

η
[
φw

i (b)
] ∼ bJ0(b)

J1(b)
χ00

(
φ̄w

i

) + bJ2(b)

J1(b)
χ02

(
φ̄w

i

)
+ bJ1(b)

J0(b)
χ11

(
φ̄w

i

)
. . . . (C4)

When comparing Eqs. (C3) and (C4), it is evident that φc
i

and φw
i exhibit different dependencies on the laser parameters,

attributable to the presence of the electron-hole displacement
R̄eh introduced by the GVD.
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