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High harmonic generation (HHG) is usually described by the laser-induced recollision of particlelike
electrons, which lies at the heart of attosecond physics and also inspires numerous attosecond spectroscopic
methods. Here, we demonstrate that the wavelike behavior of electrons plays an important role in solid
HHG. By taking an analogy to the Huygens-Fresnel principle, an electron wave perspective on solid HHG
is proposed by using the wavelet stationary-phase method. From this perspective, we have explained the
deviation between the cutoff law predicted by the particlelike recollision model and the numerical
simulation of semiconductor Bloch equations. Moreover, the emission times of HHG can be well predicted
with our method involving the wave property of electrons. However, in contrast, the prediction with the
particlelike recollision model shows obvious deviations compared to the semiconductor Bloch equations
simulation. The wavelike properties of the electron motion can also be revealed by the HHG in a two-color
field.
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Laser-induced recollision [1–5] provides an intuitive
picture for many strong-field phenomena, e.g., high har-
monic generation (HHG) [6–8], high-order above-
threshold ionization [9,10], and nonsequential double
ionization [11,12], and plays a vital role in attosecond
physics. Following the recollision picture, classical and
semiclassical trajectory-based models have been developed
[13–17]. The recollision picture has made a big success to
understand the strong-field physics in the past three
decades [18,19]. On the other hand, it also inspires the
novel approaches toward elucidating the time-resolved
dynamics of atoms and molecules through the techniques
of laser-induced electron diffraction (LIED) [20–24] and
high harmonic spectroscopy (HHS) [25–30].
The recent process of attosecond science has been

extended to solid systems [31–38]. Following the big
success in gases, solid HHG is usually also explained with
the recollision picture [39,40], i.e., the electron in the
valance band (VB) is first excited to the conduction band
(CB) and then accelerated by the laser field and finally
recombined with the hole. In this context, the electron
behavior is generally modeled by the particlelike motion.
Similar to the HHG in gases, one can expect the extension
of attosecond techniques to solids if an internal clock
capable of resolving ultrafast dynamics on an attosecond
timescale is provided [33–35]. From the particlelike rec-
ollision picture, this internal clock is always established by
the electron-hole recombination events. As is well known,
wave-particle duality is the elementary nature of the
quantum process. The electron is much less localized in

solids compared to that in gases. Moreover, the solid
systems always have complicated band structures and thus
have different dispersions when an electron moves follow-
ing the energy bands. Indeed, some works have modified
the saddle-point equations or recollision conditions by
taking account of the width or separation of electron and
hole wave packets [41–43]. However, the harmonic emis-
sion is still described by the trajectory-based recollisions
formulated by the saddle-point equations, and the coher-
ence and interference of the electron wave packet during
propagation is excluded. It is important to ask whether the
particlelike recollision picture still works well in solids.
If not, how does one establish the internal clock in the
relevant spectroscopic methods, e.g., HHS or LIED?
To address these questions, a comprehensive picture
involving the wave properties of electrons in solid HHG
is indispensable.
In this Letter, we focus on the wavelike behavior of

electrons in solid HHG. Different from the particlelike
recollision picture, we propose a wave perspective on solid
HHG. It is shown that the spectrotemporal characteristics
of solid HHG cannot be accurately described by the
recollision picture and that the wave properties of the
electron motion play an important role. The emission time
predicted with the recollision model could deviate about
500 attoseconds from the simulations with semiconductor
Bloch equations (SBEs). In contrast, we propose a different
procedure to establish the time-energy correspondences of
solid HHG according to our model, and the spectrotem-
poral characteristics, e.g., the emission time and cutoff law,
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can be well reproduced. Our work provides a comprehen-
sive picture for solid HHG and also paves the way to
attosecond spectroscopy in solids.
Our wavelike perspective of solid HHG is obtained by an

analogy to the Huygens-Fresnel principle (see Fig. 1). At the
ionization time t0, the electron wave packet ionized by the
laser field is treated as a composition of wavelets, just like
the secondary wavelets in the Huygens-Fresnel principle.
Each wavelet is denoted as fkl; t0g, where kl is the central
momentum of the electron wavelet. The harmonic emission
at time tr, just like the wave at the observation in the
Huygens-Fresnel principle, can be described by the inter-
ference of the contributions from all wavelets. If the
diffraction during the propagation can be neglected, one
can treat the electron as a particle, which is similar to
geometrical-optics approximation. In this case, the electron
motion can be described by classical trajectories following
the saddle-point equations. However, due to the delocaliza-
tion of the electron wave packet and complicated dispersion
of the band structure in solids, the electron wave packet will
be dramatically distorted during the evolution (see section B
in the Supplemental Material (SM) [44]). Therefore, the
wave properties of electrons have to be considered and the
electron motion should be described by a series of wavelets
rather than particles.
Our analysis of the laser-solids interaction is based on a

two-band model [39–43]. We consider a filled VB and an
empty CB over the first Brillouin zone (BZ). Within the

parameters used in this work, the contribution of the
intraband current is much lower than the interband current
for the HHG above the band gap; therefore, we only
consider the interband current in the following discussion.
The interband current can be derived as in Ref. [45], which
is demonstrated to agree well with that in Refs. [39,40]
(see also section A in the SM [44]),

JerðtÞ ¼−
Z
BZ

dk0
Z

t

−∞
dt0Iðk0; t0Þe−iSðk0;t;t0ÞRðk0; t; t0Þþ c:c:

ð1Þ

In Eq. (1), we use the notations Iðk0; t0Þ ¼
Fðt0Þ · Xcvðk0Þ, Sðk0; t; t0Þ ¼ R

t
t0 Δεcv½kðk0; τ; t0Þ�dτ, and

Rðk0;t;t0Þ¼Δεcv½kðk0;t;t0Þ�Xcv½kðk0;t;t0Þ�, where XcvðkÞ ¼
huckji▿kjuvki is the transition dipole moment. juvki and
jucki are the periodic part of the Bloch functions, Δεcv ¼
εc − εv is the gap energy between the CB and VB, and
kðk0; t; t0Þ ¼ k0 þ AðtÞ − Aðt0Þ is a reciprocal-space trajec-
tory ionized from k0 [45]. Here, we present the formula in
the one dimensional case, and it can be easily extended
to three dimensions. It is worthy to note that the saddle-
point approximation does not always work well for the
integrals in Eq. (1) due to the electron delocalization and
complicated dispersion (see section B in the SM [44]). To
overcome this problem, we propose a Gaussian wavelet
method following Huygens-Fresnel principle.
As sketched in Fig. 1, we separate the electron wave

packet into a series of Gaussian wavelets gðk0; kl; t0Þ ¼
e−fk0−kl·sign½Fðt0Þ�g2=k2w . In this form, kl > 0 indicates the
wavelets ionized along the same direction as the electric
field, while kl < 0 indicates the wavelet ionized antiparallel
to the electric field. The corresponding weight coeffi-
cient fðkl; t0Þ satisfies Iðk0; t0Þ ¼ P

kl fðkl; t0Þgðk0; kl; t0Þ.
kw is the width of the Gaussian wavelets. Then, the
harmonic emission at time tr can be expressed by a
coherent superposition of the contributions from different
wavelets,

YðΩ; trÞ ∝
����
Z þ∞

−∞
JerðtÞ½wðt; trÞeiΩt�

����
2

¼
����
X
kl;t0

fðkl; t0Þ
Z þ∞

−∞

Z þ∞

−∞
dtdk0gðk0; kl; t0Þe−iSðk0;t;t0ÞRðk0; t; t0Þ½wðt; trÞeiΩt�

����
2

; ð2Þ

where ðΩ; trÞ is the angular frequency and emission time of HHG (i.e., the observation point in the Huygens-Fresnel
principle), and wðt; trÞ ¼ e−ðt−trÞ2=t2w is a time window near the observation point.
We adopt the Gaussian integral, and the integration over t and k0 in Eq. (2) can be expressed as (see section C in the

SM [44])

Dðkl; tr; t0Þ ¼ e−iSðkl;tr;t0ÞþiΩtrG½∂k0Sðkl; tr; t0Þ;Δx�W½∂tSðkl; tr; t0Þ −Ω;ΔE�Rðkl; tr; t0Þ; ð3Þ

FIG. 1. Sketch for HHG analogy to the Huygens-Fresnel
principle.
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whereG½∂k0Sðkl;tr;t0Þ;Δx�¼kw
ffiffiffi
π

p
expf−½(∂k0Sðkl;tr;t0Þ)=

(Δx)�2g and W½∂tSðk0; tr; t0Þ−Ω;ΔE� ¼ tw
ffiffiffi
π

p
×

expf−½(∂tSðk0; tr; t0Þ−Ω)=(ΔE)�2g. Note that Dðkl; tr; t0Þ
describes the emission pulse around fΩ; trg.ΔE ¼ 2=tw and
Δx ¼ 2=kw denote the width of the emission.
By substituting Eq. (3) into Eq. (2), the harmonic yield

can be rewritten as

YðΩ; trÞ ∝
����
X
kl;t0∈½0;tr�

fðkl; t0ÞDðk0; tr; t0Þ
����
2

¼
����
X
kl;t0∈½0;tr�

fðkl; t0ÞPðkl; tr; t0Þe−iSðkl;tr;t0Þ
����
2

; ð4Þ

where Pðkl; tr; t0Þ ¼G½∂k0Sðkl; tr; t0Þ;Δx�W½∂tSðkl; tr; t0Þ−
Ω;ΔE�Rðkl; tr; t0Þ describes the emission pulse of a single
wavelet and e−iSðkl;tr;t0Þ is the corresponding phase. For
the summation over t0, the constructive interference at the
observation point ðΩ; trÞ occurs when the phase changes
most slowly, i.e., j∂t0Sj ¼ jΔεcvðklÞ− xðkl; tr; t0ÞFðt0Þj
reaches minimum. xðk0; t; t0Þ ¼ R

t
t0f∂kΔεcv½k0 þ AðτÞ −

Aðt0Þ�gdτ indicates the effective electron-hole displacement.
Note that the HHG in previous works is described by

the particlelike recollision picture based on saddle-point
equations [39–43]. We call it the classical saddle-point
method (CSPM) in the following discussions. Different
from that, the HHG in our model is described by the
interference of a series of wavelet contributions [Gaussian
distribution P in Eq. (4)] and the most probable ionization
time ti is determined by the constructive interference at
ftijmin½j∂t0Sðkl; tr; t0Þj�g. We call it the wavelet stationary-
phase method (WSPM). As will be shown below, j∂t0Sj
does not always reach zero in solid HHG; therefore, we
choose the condition reaching its minimum. Moreover, for
each wavelet, the emissions are described by Gaussian
distributions with the uncertainties Δx andΔE rather than a
single harmonic at a certain time (i.e., delta functions).
These uncertainties come from the Fourier limit by con-
sidering the wave properties of electrons.
In our model, the correspondence between the micro-

dynamics and harmonic emissions is established by con-
sidering the most probable distribution at the observation
point fΩ; trg (see Fig. 2). This relation is different from
that obtained by saddle-point equations [39–43] because
we use exact Gaussian integrations rather than a saddle-
point approximation when dealing with the contributions of
different paths. In our model, the wave properties are
inherently embedded in the evolution of the Gaussian
wavelets. Note that particlelike recollision picture obtained
from the CSPM can be reproduced in the quasiparticle
limit, i.e., Δx → 0 and ΔE → 0. This indicates the intrinsic
consistency between our model and the previous CSPM.
To demonstrate the wavelike property, we discuss the

HHG of ZnO crystals in a near-infrared laser field. We use
the same parameters as Refs. [39,40] and concentrate on the

linearly polarized laser field along the axis Γ–M. The laser
pulse has a sine squared envelope with a duration of ten
optical cycles 10 T0, and the amplitude F0 ¼ 0.003 a:u.
The laser frequency ω0 ¼ 0.0152 a:u:, which corresponds
to the wavelength of 3000 nm. t ¼ 0 corresponds to the
pulse center. The dephasing effect is phenomenally
involved by introducing an attenuation term e−ðtr−t0Þ=T2

into the interband current with T2 ¼ 0.25 T0. The SBEs
and CSPM analyses are performed following the methods
in Refs. [39,40]. The comparison between the SBEs
simulations and the integrations in Eq. (1) shows that
the HHG is mainly contributed by the channels ionized
near the Γ point of ZnO (see section D in the SM [44]).
Thus, one can reduce the simulations for channels
jklj < 0.05 Lkx, where Lkx is the width of the first BZ.
The width of each wavelet is 0.01 Lkx.
First, we analyze the quantum path for one single

channel kl ¼ 0. In Fig. 2(a), we plot the absolute value
of partial derivative of quasiclassical action with respect to
t0, i.e., j∂t0Sj. The location of each line’s tail corresponds to
the emission time tr. According to Eq. (4), the position of
the minimum corresponds to the most probable ionization
time ti. Then, one can determine the central frequency of
the emission by Ω ¼ Δεcvðkl; tr; tiÞ, which is the peak
location of the harmonic yield YklðΩ; trÞ. For example, the
red line in Fig. 2(a) indicates the emission time tr ¼
0.665 T0 and the ionization time ti ¼ 0.17 T0. Following
this procedure, one can obtain the relation between the
emission energy and emission (ionization) time. The results

FIG. 2. Time frequency property of HHG for the channel
kl ¼ 0. (a) The absolute value of partial derivative of quasiclass-
ical action j∂t0Sðkl; tr; t0Þj for the different emission times
tr ¼ 0.0450 T0, 0.665 T0, and 0.900 T0. (b) The values
j∂t0Sðkl; tr; tiÞj (black line) and effective electron-hole displace-
ment jxðkl; tr; tiÞ=axj (red line) with ti determined by Fig. 2(a).
(c) The relation between the most probable emission energy and
emission (ionization) times. The gray and black lines are obtained
with our WSPM method. The light blue and blue lines are
obtained with the CSPM method. (d) The time frequency
property of HHG obtained with the numerical integration of
Eq. (2). The black line and blue line are the results obtained with
the WSPM and CSPM.
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are shown in Fig. 2(c). For comparison, the blue lines
obtained with the CSPM are also plotted. Different from the
CSPM, the WSPM indicates three types of paths: “C”,
“C1”, and “C2”. For tr < 0.665 T0, one can see that j∂t0Sj is
always larger than 0. There is only one minimum, and its
trace forms the path “C”, which is similar to the short
trajectory in CSPM. In contrast, for tr > 0.665 T0, there are
two minima, which correspond to the paths “C1”, and “C2”.
We show the value of j∂t0Sðkl; tr; tiÞj and the effective
electron-hole displacement jxðkl; tr; tiÞj=ax in Fig. 2(b).
Note that we only discuss the results for tr > 0.4 T0,
because the contribution with smaller tr is negligible for
the interband HHG. As shown in Fig. 2(b), the effective
electron-hole displacement jxðkl; tr; tiÞj is always deviated
from 0. In other words, the recollision condition in the
CSPM, jxðkl; tr; tiÞj ¼ 0, is broken. This can be understood
by the delocalized electron wave packet propagating with
nonparabolic energy dispersion. In this case, the most
probable emission time as well as the effective electron-
hole displacement are modified by the distortion of the
electron wave packet. Besides, the relative displacement of
path “C1” is obviously larger than those of paths “C” and
“C2”; its contribution is much less than the paths “C” and
“C2” by considering the spread of Gaussian wavelets.
For comparison, Fig. 2(d) shows the numerical results of

Eq. (2) for the channel kl ¼ 0. One can see that the path
obtained from the WSPM well describes the time-fre-
quency features of the HHG. Following the discussions
above, one can obtain the relation between the emission
energy and emission time for different channels, e.g.,
kl ¼ 0.02 Lkx, and kl ¼ 0.04 Lkx in Figs. 3(a) and 3(b).
Here, we only show the dominant channels with kl > 0 (see

section E in the SM [44] for channels with kl < 0). One can
see the bifurcation structure near the cutoff, which supports
the prediction of two paths C1 and C2 with the WSPM. For
comparison, the time-frequency property obtained with
SBEs is shown in Fig. 3(c). One can see that all the paths
predicted with the WSPM have a similar trend and are in
good agreement with the SBEs simulation. However, the
CSPM predictions have nearly 0.5 fs deviations from the
SBEs simulation. More importantly, the WSPM predicts a
higher cutoff energy than that from the CSPM. Note that we
neglect the path C1 because of its weak contribution (see
Fig. 3 in the SM [44]), and the cutoff energy is determined
by the paths C and C2. As shown in Fig. 3(d), the higher
cutoff agrees well with the SBEs simulation [see Fig. 3(d)].
This result explains the long-standing deviation about the
cutoff law between the CSPM and the SBEs simulation
[40] and also demonstrates the influence of the wavelike
properties predicted by our model.
The recollision picture has also inspired the development

of attosecond spectroscopy in gases, where the key is the
timeline defined by the relation between the harmonic
energy and emission (or ionization) time. However, the
wavelike behavior of the electron motion in solids will
dramatically influence such a relation. To show this effect,
we consider a simulation experiment of HHG interferom-
etry formed by a fundamental pulse (Aω0

) with a perturba-
tive second harmonic field (A2ω0

) [33,46]. The second
harmonic perturbs the quantum path differently in the
adjacent half cycle. It forms interferometry with two
unbalanced arms and will lead to the generation of even
harmonics. When the second harmonic is much weaker
than the fundamental field, the even harmonic yields
Yðt;ϕ; klÞ ∝ sin2½σðt;ϕÞ� ∼ σ2ðt;ϕÞ, where

σðt;ϕÞ ¼
Z

t

t0ðtÞ
v½kl − Aω0

ðt0Þ þ Aω0
ðτÞ�

× ½A2ω0
ðτ;ϕÞ − A2ω0

ðt0;ϕÞ�dτ
¼ σsðtÞ cosðϕÞ þ σcðtÞ sinðϕÞ ¼ ΣðtÞ cos½ϕ − θðtÞ�:

ð5Þ

In this equation, σsðtÞ ¼ A2

R
t
t0ðtÞ v½kl − Aω0

ðt0Þ þ Aω0
ðτÞ�×

½sinð2ω0τÞ − sinð2ω0t0Þ�dτ, σcðtÞ¼A2

R
t
t0ðtÞv½kl−Aω0

ðt0Þþ
Aω0

ðτÞ�½cosð2ω0τÞ−cosð2ω0t0Þ�dτ, θðtÞ ¼ arctanðσc=σsÞ,
and ΣðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2c þ σ2s

p
. Thus, the even harmonic reaches

the maximum at the relative phase ϕmaxðt2NÞ≡ θðt2NÞ,
where t2N is the emission time of the 2Nth harmonic. Note
that, different from the CSPM, the terms contributed by
A2ω0

ðt0;ϕÞ in the integration should be maintained because
the effective electron-hole displacement jxðkl; tr; t0Þj are
always nonzero as shown in Fig. 2(b).
Figure 4(b) shows the phase dependence of HHG spectra

simulated with SBEs. For clarity, the yield of each order
harmonic is normalized to 1. The blue line is obtained by
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FIG. 3. The time frequency property of HHG from the
numerical results for channels (a) kl ¼ 0.02 Lkx, and
(b) kl ¼ 0.04 Lkx. (c) The result for SBEs. The WSPM results
are marked by black, purple, and green dots that are copies
from Figs. 2(d), 3(a), and 3(b). The CSPM result is marked
by blue points. (d) The simulated cutoff law (red circles); the
prediction from WSPM (solid black line) and CSPM
(blue line).
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using the CSPM. There is a deviation of nearly 0.4π (∼1 fs)
between the CSPM prediction and the SBEs simulation.
Such a deviation can lead to a large error or even prevent
one from correctly retrieving the subcycle dynamics with
HHS. The deviation between the CSPM and SBEs is
mainly due to the deformation of the electron wave packet.
In other words, after ionization, the Gaussian electron wave
packet moves in the CB driven by the laser field. However,
the energy dispersion of the solid is no longer a parabola
with a constant effective mass. The electron wave packet
will be distorted due to the mismatch between the phase
velocity and group velocity (see Fig. 2 in the SM [44]).
Such an effect will blur the recollision event and cannot be
correctly modeled in the particlelike recollision picture. In
contrast, our model includes the wave properties of the
electron. As shown in Fig. 4(b), the ϕmax predicted by our
WSPM agrees very well with the SBEs. Moreover, there is
more than one channel and different harmonics are con-
tributed by different channels. In Fig. 4(a), we plot the
fringe amplitudes Σðt2NÞ for different channels. One can
see that the cutoff of path “C” is increased with reducing
the kl and the contribution of “C2” is less obvious. The
dominant channel is shifted from kl ¼ 0.04 Lkx to kl ¼
0.02 Lkx and kl ¼ 0with increasing the harmonic order. For
the high harmonics from 8th to 18th, the dominant channel
is kl ¼ 0.04 Lkx, and ϕmax decreases slowly with increasing
the harmonic order. Then, ϕmax decreases slightly faster
from the 20th to 24th harmonics, which can be attributed to
the dominant contribution of channels kl ¼ 0.02 Lkx
and kl ¼ 0.
In conclusion, we proposed an electron wave perspective

on solid HHG by taking account of the similarity between
the propagation of the electron wave packet and the optical
pulse. Compared to the particlelike recollision picture, our
model provides a different and complementary perspective
for understanding the HHG. The wavelike behavior plays a

significant role in solid HHG due to the nonparabolic band
structure and delocalized electron wave packet. The emis-
sion time and cutoff energy of the HHG are shifted by
considering the wave properties of the electron motion.
The prediction by our model agrees well with the SBEs
simulations. However, in contrast, the emission time
predicted by the CSPM deviates 500 attoseconds from
the SBEs simulation. This effect will have a substantial
impact on the attosecond metrology and the wavelike
properties have to be considered when extending the
attosecond spectroscopy, e.g., HHS, LIED, from gases to
solids.
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