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Tunable supermode converters based on Jx graphene waveguide arrays
with transversely linear modulation
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Conventional mode converters are usually based on wave-number matching in the propagation direction. This
often requires applying the periodic modulation in the longitudinal orientation. Here, we propose to construct
an efficient supermode converter with only transverse modulation. By linearly changing the surface conductivity
of Jx graphene waveguide arrays, we build a synthetic Jx lattice with linearly varying on-site potential in the
modal dimension. It turns out that each supermode can fully transfer to its corresponding symmetric partner. The
conversion distance of supermodes is inversely proportional to the ramp of linear modulation. In this way, tunable
supermode converters can be readily implemented by modulating the surface conductivity of graphene sheets.
This study may find promising applications in developing mode converters and mode-division multiplexers
utilizing plasmonic waveguide arrays.
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I. INTRODUCTION

In the last two decades, graphene plasmonics [1,2] has
received much research interest due to its unique electronic
and optical properties. A monolayer graphene can support
transverse magnetic (TM) polarized surface plasmon polari-
tons (SPPs) in the infrared region. Compared to traditional
noble metals, SPPs in graphene present appealing proper-
ties such as extreme confinement, low losses, and tunability
[3]. With these characteristic properties, graphene SPPs have
been widely used in plasmonic waveguides at infrared fre-
quencies. Coupled graphene sheet arrays have been used to
study various optical effects, including Bloch oscillations [4],
Talbot effect [5], and Anderson localization [6]. The surface
conductivity of graphene can be varied by adjusting the chem-
ical potential, which is governed by the carrier density. The
carrier density is actually able to be controlled by applying
bias voltage [7]. Though the propagation of plasmonic su-
permodes has been investigated in graphene multilayers [8],
the conversion of SPP supermodes has not yet been widely
studied.

Synthetic dimension has been recently attracting much re-
search interest in many physical systems such as cold atoms
[9], Weyl points [10], and photonic topological insulators
[11]. The synthetic modal dimension [12] has been experi-
mentally implemented with oscillated Jx waveguide arrays.
The coupling coefficients between adjacent waveguides fol-
low the matrix elements of the angular momentum operator
Jx, resulting in equally spaced propagation constants [13].
The spatial waveguide modulation guarantees the couplings
of adjacent modes. Thus, the spatial Jx lattice with spatial
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modulations is equivalent to a synthetic lattice in the modal
dimension. With the conception of synthetic dimensions, one
can manipulate optical modes more flexibly.

A uniform lattice with linear on-site potential that induces
Bloch oscillation has been widely studied in many different
systems such as semiconductor superlattices [14], atomic sys-
tems [15], and coupled dielectric waveguide arrays [16–18].
Optical revivals occur in an infinite Bloch lattice due to its
equispaced Wannier-Stark eigenspectrum [19]. For a finite
lattice with linear on-site potential, the recurrence of wave
packets does not occur at the edge of the lattice since the
eigenfunctions that are localized at the edge do not corre-
spond to an eigenvalue ladder [20]. However, a finite Jx lattice
can exhibit the recurrence for an edge excitation because of
its overall equidistant eigenspectrum. Optical revivals [13],
light transitions [21,22], and quantum state transfer [23–25]
have been studied in Jx waveguide arrays. Jx lattices have
very intriguing features. There have been experimental works
demonstrating the applicability of such optical arrangements
[26,27]. A normal Jx lattice has also been applied in the
multiphoton structures to investigate multiphoton discrete
fractional Fourier dynamics [28]. Jx lattices with ramp po-
tentials have emerged in the multiple-photon states [29]. The
Jx lattice with linear on-site potential still holds an equally
spaced eigenspectrum. In the following contents, we shall
prove that a Jx lattice with linear on-site potential in real space
can construct a synthetic Jx lattice with linear on-site potential
in the modal dimension, which results in the perfect transfer
of supermodes.

In this work, we propose to construct a tunable super-
mode converter based on modulated Jx graphene waveguide
arrays (GWAs). By linearly changing the surface conductivity
of each graphene sheet, a synthetic lattice with linear on-
site potential in the modal dimension can be readily formed
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FIG. 1. (a) Schematic diagram of Jx graphene waveguide arrays.
(b) Real parts of propagation constants for the spatial Jx lattice
calculated in TMM and TBA method. (c) Modal ladder and profiles
of supermodes.

because of the symmetric transformation matrix. In contrast to
the synthetic dimension that has been constructed in Ref. [12],
the modulation of our system in real space is only in the
transverse direction. It results in constant coupling coefficients
of supermodes in the modal dimension, which correspond to
the matrix elements of Jx operator. Due to the equispaced
eigenvalue spectrum, the energy of some excited supermode
could efficiently transfer to its symmetric partner. Compared
to traditional static mode converters, the conversion distance
in our system can be conveniently adjusted by changing the
surface conductivity of graphene sheets. The construction of
the synthetic modal lattice provides an effective approach
to manipulating the conversion of supermodes in plasmonic
waveguide arrays.

II. CONSTRUCTION OF THE SYNTHETIC
MODAL LATTICE

The schematic diagram of Jx GWAs is depicted in Fig. 1(a).
Each monolayer graphene sheet is sandwiched between two
Si layers. This structure can be constructed through a re-
peated process of filtering liquid-phase exfoliated graphene
film and the subsequent coating of amorphous Si film via
the plasma-enhanced chemical vapor deposition method [30].
The position of the graphene sheet is denoted by Xn, where
n ranges 1 to N with N = 13 the total number of graphene
waveguides. It is assumed that all graphene sheets extend
infinitely in the y direction and SPPs propagate along the z
direction. By controlling the thickness of Si film, the space
between adjacent graphene sheets can be determined, which
results in the impacts on the coupling of SPPs in graphene.
The coupling coefficient between graphene waveguide n and
n + 1 is set to Cn = (γ /2)[n(N−n)]1/2 to form a Jx lattice in
real space, where γ is the desired difference between adjacent
propagation constants of supermodes. A square root depen-

dence on coupling constants is indeed away from a realistic
situation. Actually, the coupling coefficients are determined
by the distance between graphene sheets. For the Jx waveguide
arrays with designed coupling constants Cn, the correspond-
ing distance dn can be calculated numerically. Although it
is impossible to achieve irrational values for coupling coeffi-
cients, the distances are rational numbers. A small variation
of distance or coupling constants could not produce a new
effect. The separation of graphene sheets gradually increases
from the center to the sides. Due to the presence of propa-
gation loss in graphene, the coupling coefficients of adjacent
graphene waveguides are complex numbers. Based on the
transfer matrix method (TMM), we can derive the complex
propagation constants of the waveguide arrays [31–33]. We
first focus on the wave packet dynamics in GWAs and omit
the propagation loss of SPPs in graphene. Consequently, the
imaginary parts of Cn could be neglected in the analysis.
The SPP modes are bounded at the positions of the graphene
sheets. Thus, a tight binding approximation (TBA) can be em-
ployed. Together with nearest-neighbors approximation, the
evolution of electromagnetic wave in the spatial Jx lattice can
be written in the Dirac vector notation as −id|a〉/dz = H |a〉,
where |a〉 = (a1, a2 . . . an, . . . , aN )T , an denotes the complex
field amplitude in graphene waveguide n, and H is the Hamil-
tonian of the system. The matrix elements of H are given
by Hm,n = (δm−1,n + δm+1,n)Cn, where δm−1,n and δm+1,n are
Kronecker deltas. Since H is a real Hermitian matrix, it has a
complete set of real orthonormal eigenvectors (supermodes)
with real eigenvalues. By solving the eigenvalue equation
H |a〉 = β|a〉 we can obtain the supermode eigenvalues βi =
[i − (N + 1)/2]γ (i = 1, 2, . . . , N ) and corresponding eigen-
vectors |a(i)〉, where the superscript i denotes the order of
the supermode. Here, the supermodes are sorted in ascend-
ing order of eigenvalues. The propagation constants of the
supermodes (β0 + βi) are equally spaced, where β0 is the
propagation constant of the individual graphene waveguide.
As a comparison, we calculate the propagation constants using
TMM to measure the accuracy of the TBA method. The results
as shown in Fig. 1(b) are obviously convincing. The magnetic
field component Hy of each supermode can be expressed as
the superposition of TM modes in all graphene waveguides
ψi(x) = �na(i)

n φn(x), where φn(x) is the magnetic field distri-
bution in the graphene waveguide n. The supermode ladders
and corresponding field distribution are depicted in Fig. 1(c).
The equally spaced propagation constants of supermodes and
their adjacent coupling could form a synthetic lattice in the
modal dimension.

The eigenmodes of the spatial Jx lattice form an equally
spaced ladder in the synthetic modal dimension, but they
are orthogonal to each other. To couple the supermodes, we
vary the surface conductivity of graphene sheets along their
transverse direction. The amplitude of the variation is linearly
increasing. Let us assume that the variation is expressed as
a perturbation H ′

m,n = αδm,nβn in the Hamiltonian matrix,
where α is the proportion of perturbations to the eigenvalues
of unperturbed spatial Jx lattice. There is a real orthogonal
matrix Q which transforms the unperturbed Hamiltonian to
a diagonal matrix 	 = QTHQ, whose diagonal elements are
eigenvalues of all supermodes, that is to say 	m,n = δm,nβn.
Thus, the perturbation can be denoted as H′ = α	. The
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Hamiltonian matrix with perturbation in real space is

H + H ′ =

⎡
⎢⎢⎢⎢⎢⎣

αβ1 C1 0 · · · 0
C1 αβ2 C2 · · · 0

0 C2 αβ3 · · · ...
...

...
...

. . . CN−1

0 0 · · · CN−1 αβN

⎤
⎥⎥⎥⎥⎥⎦

. (1)

According to perturbation theory, we derive the new
Hamiltonian 	′ = QT(H + H ′)Q in modal space by applying
the representation transformation. Since the transformation
matrix Q is a real symmetric matrix [13], namely QT = Q,
we can obtain the Hamiltonian 	′ = 	 + αH in the modal
dimension. Thus, the Hamiltonian matrix in modal space is

	′ =

⎡
⎢⎢⎢⎢⎢⎣

β1 αC1 0 · · · 0
αC1 β2 αC2 · · · 0

0 αC2 β3 · · · ...
...

...
...

. . . αCN−1

0 0 · · · αCN−1 βN

⎤
⎥⎥⎥⎥⎥⎦

. (2)

Here, the linear on-site potential in the modal dimension
is introduced and they are exactly equal to the eigenvalues
of supermodes in real space. Particularly, the second item
αH indicates that adjacent supermodes couple to each other.
The coupling coefficients are proportional to the coupling
between adjacent graphene waveguides in real space. It means
that a Jx lattice with linearly on-site potential in the modal
dimension is formed. For a Jx lattice in real space without
modulation, supermodes are orthogonal to each other. As
a result, a given eigenmode should propagate without any
deformation. The additional modulation causes the coupling
of supermodes for the original Jx lattice in real space. Then
we consider the dynamics of supermodes for the origin Jx

lattice without additional modulation. For an arbitrary in-
cident wave packet 
(x, 0) = �nbn(0)ψn(x), the magnetic
field distribution at the propagation distance z could be ex-
pressed as the superposition of all supermodes 
(x, z) =
�nbn(z)ψn(x)exp(iβnz). As a result, we can get the complex
amplitude of the nth supermode at any distance by utilizing
the orthogonality relations of the different supermodes, which
is bn(z) = ∫ψn(x)exp(−iβnz)
(x, z)dx. Then, the conversion
of supermodes can be readily analyzed by calculating the
modal intensity |bn(z)|2.

III. CONVERSION OF SUPERMODES

The supermode conversions can be analyzed by numerical
simulation of the wave packets in modulated graphene waveg-
uide arrays. The parameters used here should be rational and
consistent with those extracted from real materials. The de-
tails of getting the parameters can be found in past works
about SPPs in graphene [34–36]. In our study, the wavelength
of the incident wave packets is set to λ = 10 µm (ћω =
0.124 eV). We consider the graphene sheet with chemical
potential μc = 0.8 eV. The corresponding relaxation time is
τ = 0.8 ps. The difference between adjacent propagation con-
stants of supermodes is set to γ = 0.01 µm−1. The propagation
constant of SPPs for a single graphene waveguide has a rela-
tion to the surface conductivity as β0 = k0[1 − 2εd /(Z0σg)]1/2,

where k0 = 2π/λ is the incident wavelength number, εd is the
relative permittivity of the filling dielectric medium, Z0 is the
impedance of free space. We modulate the surface conduc-
tivity of graphene sheets along the x direction as �σg(n) =
{[n − (N + 1)/2]δ}σg0 in simulation, where σg0 is the basic
surface conductivity without perturbation and δ is the linear
ramp of modulation amplitude. As a consequence, the varia-
tion of propagation constants for the graphene waveguide n
is �β(n) ≈ −[n − (N + 1)/2]δβ0. The ramp of modulation
amplitude for surface conductivity of graphene sheets is set to
δ = 0.005. The variation is small enough so that it can be re-
garded as a perturbation for the Hamiltonian in real space. The
perturbation is expressed as H ′

m,n = δm,n[n − (N + 1)/2]δβ0

in Hamiltonian matrix. Compared with the form H ′
m,n =

δm,n[n − (N + 1)/2]αγ that has been assumed above, the re-
lation αγ = δβ0 can be acquired. As discussed above, the
elements of the Hamiltonian matrix 	′ in modal space are
given by 	′

m,n = δm,nβn + (δm−1,n + δm+1,n)κn, where κn =
(δβ0/2)[n(N−n)]1/2 is the coupling coefficient between the
nth and (n + 1)th supermode and γ is the linear ramp of
on-site potential in this synthetic lattice. The eigenvalues
of the Hamiltonian matrix 	′ in the modal dimension are
still equispaced. It results in field recovery with the period
2L = 2π /γ ′, where γ ′ = [γ 2 + (δβ0)2]

1/2
is the spacing of

propagation constants in this system. The ramp of propagation
constants γ for the spatial Jx lattice is equivalent to the ramp
of on-site potential in the modal dimension. The product of
the modulation ramp δ for surface conductivity and the propa-
gation constants β0 for a single graphene waveguide indicates
the coupling strength between adjacent supermodes in modal
space. Typically, there are efficient conversions of energy
between symmetric orders of supermodes at the conversion
distance z = L [21]. Figures 2(a)–2(c) show the distribution
of field intensity in real space for a single incidence of the
first, fourth, and tenth supermode in transversely modulated
Jx graphene waveguide arrays. The field intensity does not
evolve obviously. However, the corresponding phase distri-
butions as shown in Figs. 2(d)–2(f) do vary evidently. In
Figs. 2(g)–2(i), we show the dynamics of the synthetic lat-
tice in modal space for a certain supermode excitation. As
displayed in Fig. 2(g), when the first supermode is excited,
it will couple to higher supermodes until it transfers to the
highest supermode at the conversion distance. The transfor-
mation rate |b13(L)|2 can achieve up to 0.98. In Fig. 2(h), if
the fourth supermode is launched, it will convert to the tenth
supermode and vice versa as depicted in Fig. 2(i). Here, the
lowest and the highest supermodes act as the boundaries of
the synthetic modal lattice. In a word, if the nth supermode is
launched, it couples to both lower and higher supermodes and
transfers to the symmetric (N + 1 − n)th supermode. It can be
seen that the supermode transfers to the desired mode at the
conversion distance as expected in spite of the overall loss in
graphene sheets. From the expression of conversion distance
L = π /[γ 2 + (δβ0)2]

1/2
, we learn that the conversion distance

is determined by the difference between adjacent propagation
constants of spatial Jx lattice, the modulation ramp of the sur-
face conductivity of graphene, and the propagation constants
of a single graphene waveguide. The surface conductivity is
able to be changed by varying the applied gate voltage on
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FIG. 2. (a)−(c) Distribution of field intensity in real space for a
single incidence of first, fourth, and tenth supermode in transversely
modulated Jx graphene waveguide arrays. (d)−(f) Corresponding
phase distribution for (a)−(c). (g)−(i) Evolution of the normalized
intensity for supermodes in the modal dimension.

graphene. Thus, the conversion distance of supermodes in
graphene waveguide arrays can be conveniently modulated.

IV. EFFECT OF MODULATION PARAMETERS

With the excitation of the fundamental supermode, we in-
vestigate the relation between the conversion distance and the
modulation ramp by analyzing the dynamics in modal space.
Figure 3(a) shows the numerical results of the relationship
between L and δ with the incident wavelength λ = 8, 10, and
12 µm. It can be known that the conversion distance de-
creases as the modulation ramp increases at a fixed incident
wavelength, which coincides with the analytical results cal-

FIG. 3. (a) Relation between γ and the conversion distance L
obtained by simulation data and TBA method with the incident
wavelength λ = 8, 10, 12 µm. (b) Tracks of average modal intensity
in modal space for δ = 0.005, 0.01, and 0.015 with the excitation of
fundamental mode at λ = 10 µm.

FIG. 4. (a) Conversion distance and the transformation rate ver-
sus the perturbation coefficient. (b) Tracks of average modal intensity
in modal space for α = 1, 2, 3, and 10 with the excitation of funda-
mental supermode at λ = 10 µm. (c)−(f) Corresponding dynamics
of supermodes in modal space for the tracks in (b).

culated by the equation of conversion distance. In addition,
the conversion distance is more sensitive to the modulation
ramp at higher incident wavelength. For a constant modula-
tion ramp, the conversion distance increases with the incident
wavelength. The mean of modal intensity in synthetic space
is defined as 〈n〉(z) = �nn|bn(z)|2. In Fig. 3(b), we display
the tracks of average modal intensity for δ = 0.005, 0.01, and
0.015 with the excitation of fundamental supermode at λ =
10 µm. It clearly shows that the modulation ramp can deter-
mine the conversion distance of supermodes in this system.
It is worth noting that the linearly increasing on-site potential
in the modal dimension does not take obvious effect in our
present discussion. In the previous section, we have chosen
the parameters such as γ = 0.01 µm−1, δ = 0.005, and λ =
10µm, leading to the ratio α = δβ0/γ ≈ 40, which means that
the impact of on-site potential in the modal dimension is negli-
gible with respect to the coupling coefficients of supermodes.
In Fig. 4(a), we plot the conversion distance and the trans-
formation rate η versus the perturbation coefficient α. The
conversion distance increases with the perturbation coefficient
and it is nearly a constant when α is big enough. However,
the transformation rate is close to zero when α is equal to 1.
It means that the linearly increasing on-site potential in the
modal dimension plays a significant role in this condition.
The conversion efficiency is in close proximity to 1 with the
increase of the perturbation coefficient. In Fig. 4(b), we show
the tracks of average modal intensity in modal space. The cor-
responding dynamics in the modal dimension are depicted in
Figs. 4(c)–4(f). There is no efficient conversion of supermodes
when γ is of the same order as δβ0. The linear on-site potential
in the modal dimension suppresses the evolution of dynamics
in modal space. By the way, it is obvious that there will be
no coupling for supermodes in the absence of perturbation,
which is derived from the applied gate voltage. Hence, the
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FIG. 5. Conversion distance of supermodes (a) and the amplitude
of the mode variation (b) when the number of waveguides varies.
(c)−(e) Dynamics of supermodes in modal space with the number of
waveguides N = 20, 30, and 40 respectively.

conversion of supermodes can be controlled by switching on
or off the applied voltage on graphene sheets.

To achieve the conversion of supermodes, we have
considered a system with 13 waveguides to explore the char-
acteristics of Jx lattices with linear modulation. In theory, it is
proper for any number larger than 3 since at least two spaces
between those waveguides could be variable, which does form
a Jx array. Here we did not choose a very large number of
waveguides because the modes in the system could be com-
plicated and they are hard to excite and detect. For a Jx lattice
with a larger number of waveguides, the distance between
adjacent waveguides should decrease when the lateral size of
the system is fixed. The reduction of spacing enhances the
coupling and then results in the increase of γ , which is equiv-
alent to increasing the ramp of on-site potentials in the modal
dimension. As depicted in Fig. 5(a), the conversion distance
of supermodes almost remains unchanged if N � 15. Then
it decreases rapidly as the number of waveguides increases.
The amplitude of the mode variation can be estimated by
�n = 4α〈Cn〉/γ in theory. If N � 25, the value of γ is small
so that �n > N . Under this condition, the value of �n should
take the upper limit as N and the linear on-site potentials in
the modal dimension do not take effect. As shown in Fig. 5(b),
�n decreases for larger mode numbers due to the increase of
γ . The distributions of mode intensity during propagation for
N = 20, 30, and 40 are shown in Figs. 5(c)–5(e). The con-
version of supermodes is inhibited since the ramp of on-site
potentials in the modal dimension increases. To achieve ef-
ficient conversion of supermodes, it should be suitable to
choose a Jx waveguide array whose number is not so large.

So far, we have studied how the linear modulation ampli-
tude of surface conductivity in Jx graphene waveguide arrays

FIG. 6. (a),(b) Evolution of supermodes in modal space with (a)
the second and (b) the third order nonlinear modulation. (c) Tracks
of average modal intensity in modal space for the evolution of super-
modes in (a) and (b).

acts on the conversion of supermodes. Here, we consider the
second order nonlinear modulation of surface conductivity as
�σg(n) = 0.001n2σg0 and the third order nonlinear modula-
tion as �σg(n) = 0.0001n3σg0. The dynamics of supermodes
for the second order and third nonlinear modulations are de-
picted in Figs. 6(a) and 6(b) respectively, and Fig. 6(c) shows
the tracks of average modal intensity for the corresponding
nonlinear modulations. It can be seen that the nonlinear mod-
ulation breaks the efficient conversion of supermodes. The
stronger the nonlinearity is, the more chaotic dynamics of
supermodes are. The influence of nonlinear modulation is
prominently distinct from the linear modulation, since the
latter results in the elegant transformation of Hamiltonian
from real space to modal space. Hence, the efficient conver-
sion of supermodes can only be realized in the case of linear
modulation in Jx graphene waveguide arrays.

V. CONCLUSION

In summary, we construct a tunable supermode con-
verter utilizing transversely modulated Jx graphene waveguide
arrays. By linearly increasing the surface conductivity of
graphene, we build a synthetic Jx lattice with linearly vary-
ing on-site potential in the modal dimension. As a result,
any supermode can efficiently convert to its corresponding
symmetric partner. The transformation rate is extremely high
when the modulation ramp is much larger than the spacing
of the eigenspectrum for the Jx lattice in real space. In this
condition, the conversion distance of supermodes is inversely
proportional to the ramp of linear modulation. The construc-
tion of the tunable supermode converter paves the way for the
realization of mode converters and Mode-division multiplex-
ing applications in optoelectronic devices.

ACKNOWLEDGMENTS

This work was supported by the National Natural Science
Foundation of China (Grants No. 12374305, No. 11974124,
No. 12021004, No. 12147151, and No. 12204185).

[1] M. Jablan, H. Buljan, and M. Soljačić, Plasmonics in graphene
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