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Abstract: We investigate the discrete temporal Talbot effect in a synthetic mesh lattice by 
employing two coupled fiber loops with different lengths. The lattice consists of the round-
trip number and time delay of pulse trains propagating in the fiber loops. The Talbot effect 
occurs only as the incident pulse train in one loop has a temporal period that is 1, 2, or 4 folds 
of time interval corresponding to the length difference of the two loops. By varying the 
splitting ratio of coupler connecting the two loops, the lattice band structure can be 
engineered and so do the Talbot distance, which can be further tuned by imposing an initial 
linear phase distribution on the incident pulse train. In addition, the incident periods for 
Talbot effect can also be fractional fold by using time multiplexing. The study may find 
applications in temporal cloaking, passive amplifying, and pulse repetition rate multiplication. 
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

Talbot effect refers to self-imaging phenomena as the periodic structure is illuminated by a 
coherent light beam, which was firstly reported by H. F. Talbot in 1836 [1]. The effect was 
later explained by the Fresnel diffraction theory [2]. The Talbot image usually locates at 
multiple Talbot distance. Moreover, the fractional Talbot images with squeezed period also 
exist at rational multiples of Talbot distance [3–5]. Due to the analogy between spatial 
Fresnel diffraction and second-order temporal dispersion, the Talbot effect can be extended to 
time domain aiming to realize recurrence of periodic pulse trains [6,7]. The fractional Talbot 
effect also exists in time domain, which could increase the repetition rate of pulse trains [8–
11]. The temporal Talbot effect has found wide applications in high-speed signal generation, 
passive amplification, and temporal cloaking for the purpose of optical communication and 
signal processing [8–16]. 

On the other hand, the Talbot effect can be realized in discrete optical systems such as 
waveguide arrays [18–25]. Unlike the Talbot effect in continuous medium, which is 
independent of the incident period, the discrete Talbot effect occurs only as the incident field 
has specific set of periodicities [18]. The discrete system has already been generalized from 
real space to other synthetic dimensions. For example, the temporal and spectral lattices were 
proposed to simulate diffraction effects, that is, the evolution of temporal pulse and light 
spectrum during propagation [26–31]. Recently, the synthetic temporal mesh lattice based on 
two coupled fiber loops with slightly different length has been proposed to realize large-scale 
PT-symmetry networks and the measurements of topological invariants [27,30]. 

In this work, we shall investigate the discrete temporal Talbot effect in the synthetic mesh 
lattice constructed by two coupled fiber loops. The lattice is two-dimensional and is formed 
by the round-trip number and time delay of pulse trains propagating in the fiber loops. The 
Talbot effect occurs only if the incident period is chosen as certain specific values, which are 
different from that in waveguide arrays due to the two dimension in periodicity. By changing 
the splitting ratio of the coupler that connects the two fiber loops, the band structure of 
synthetic mesh lattice can be engineered, resulting in the variation of Talbot distance. 
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Additionally, the Talbot distance is also tunable by modulating the distribution of initial 
phases imposed on the incident pulse trains. The Talbot effect can also be observed even if 
the incident period of pulse train becomes fractional fold of the lattice period. The unique 
features in the temporal mesh lattice are hard to obtain in the spatial counterparts. 

2. Theory 

We start by considering the synthetic mesh lattice constructed by the coupled fiber-loop 
circuit. As shown in Fig. 1(a), the circuit consists of two fiber loops connected by a 50:50 
directional coupler. The length difference between two loops is ΔL which corresponds to a 
time delay of 2ΔT = ΔL/cF, where cF is the light speed in the fiber. Here we inject a periodic 
pulse train to the long loop. After the initial pulse sequence passes through the coupler, two 
new pulse trains are generated and flow into two loops. A round trip later, the pulse sequence 
in long loop experiences a time delay 2ΔT compared to the one in short loop. The interference 
between two pulse trains occurs as they meet at the coupler. The pulse trains will evolve in a 
stepwise manner with the increase of round-trip number, as shown in the bottom insert in Fig. 
1(b). Considering that the evolution of the pulse trains is similar to the beam dynamics in the 
spatial mesh lattice, the equivalent mesh lattice for the two coupled fiber loops is established, 
as shown in Fig. 1(b). The axis m corresponds to the times the pulse trains enters the coupler 
connecting two fiber loops, and n is the relative position of pulse in the train. The evolution of 
amplitudes can be described by 
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where um n and vm n denote the complex amplitudes of pulses in short and long loops, 
respectively [26,27]. The Bloch modes in this lattice can be written as 
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in which (U0, V0)
T is the eigen vector, Q and θ are the transverse Bloch momentum and 

longitudinal propagation constant of Bloch mode, respectively [26,27]. Substituting Eq. (2) 
into Eq. (1), we can obtain the band structure 
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As illustrated in Fig. 1(c), two bands are symmetric in both θ and Q. 
Considering the discreteness in the transverse direction, the input field distribution has a 

period of N in the synthetic mesh lattice [Fig. 1(b)], where N is a positive integer. 
Accordingly, the period of the initial pulse train is NΔT, as shown in Fig. 1(a). To satisfy the 
periodic boundary condition, the Bloch momentum Q is in the form of 

 2π / ,lQ l= N  (4) 

in which N = N/2, and l = 0, 1... N – 1 [18,21]. The corresponding propagation constant at jth 
band is 
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where j is the band index. The pulse dynamics is a superposition of Bloch modes 
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where (Uj,l Vj,l)
T and cj,l are the eigen vector and coefficient, respectively. To realize the 

Talbot self-imaging, all modes contained should be able to exhibit recurrence during 
propagation. For mode with θj,l, the recurrence exists only if θj,l satisfies 

 , , ,/ 2 2 π,j l j l j lλ θ μ=  (7) 

where λj,l is the effective wavelength, and μj,l is an integer. Note that λj,l is also an integer 
considering the discreteness in the propagation direction. θj,l should thus be a rational multiple 
of π. Due to θ1,l = − θ2,l, the modes with θ1,l and θ2,l have the same effective wavelength that is 
denoted as λl. The Talbot distance is thus 

 0 1 2 1LCM( , , ,..., ),Tz λ λ λ λ −= N  (8) 

in which LCM is the least common multiple. 

 

Fig. 1. (a) Schematic diagram of two coupled fiber loops. The short loop (marked in magenta) 
and long loop (marked in purple) are connected by a 50:50 directional coupler. OS1 and OS2 
are 1 × 2 and 2 × 2 optical switches through which we can inject the initial pulse train to the 
long loop and couple out the pulse sequences from the loops. PD is photodiode. (b) Equivalent 
mesh lattice model for the two coupled fiber loops. The left path (marked in magenta) and 
right path (marked in purple) in the equivalent lattice correspond to short and long loops, 
respectively. The bottom insert is the stepwise evolution of pulse train in the long loop with the 
initial period being N = 4. (c) Band structure of the synthetic mesh lattice. The green crosses, 
red triangles and black diamonds represent the sets of Bloch modes at 2nd band for N = 2, 4, 
and 8, respectively. 
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We obtain the input periods allowing Talbot effect through enumeration method. Due to 
the existence of noises, the longest valid propagation distance is about ML = 400 steps 
according to the experimental results [29–31]. From a practical point of view, the propagation 
distance that we consider only belongs to the set {1, 2, 3, ..., ML}. Meanwhile, the initial 
period N should be no more than 2ML, otherwise the adjacent input pulses will exhibit 
ballistic spreading separately within ML [26]. Considering the discreteness in the transverse 
direction, N is from {2, 4, 6, ..., 2ML}. Through enumerating all available input periods and 
propagation distances, the incident periods permitting Talbot revivals could be obtained. In 
detail, we choose the value of N at first and then calculate the set of θ2,l according to Eq. (5). 
Note that θ1,l is ignored due to θ1,l = − θ2,l. For mode with θ2,l, the recurrence occurs only if 
there exists a propagation distance m satisfying mθ2,l/2 = 2μ2,lπ among the set of m. The 
Talbot effect is supported only if all modes contained could exhibit revivals. As a result, the 
permitted input periods are N = 2, 4 and 8. 

For N = 2, only the modes with Q0 = 0 are contained. The corresponding propagation 
constant at 2nd band is θ2,0 = π/2, as shown in Fig. 1(c). The mode with θ2,0 exhibits revival 
after 8 steps, which leads to the Talbot distance of zT = 8. For N = 4, the modes with Q0 = 0 
and Q1 = π are contained. The corresponding propagation constants at 2nd band are θ2,0 = π/2 
and θ2,1 = π, as illustrated in Fig. 1(c). The revival distances of the modes with θ2,0 and θ2,1 are 
8 and 4, respectively. The Talbot distance is thus zT = 8 which is the LCM of 4 and 8. For N = 
8, the modes with Q0 = 0, Q1 = π/2, Q2 = π and Q3 = 3π/2 are included therein. The 
propagation constants at 2nd band are θ2,0 = π/2, θ2,1 = 2π/3, θ2,2 = π, and θ2,3 = 2π/3 [Fig. 
1(c)], and the corresponding revival distances are 8, 12, 4, and 12, respectively. The Talbot 
distance is zT = 24 which is the LCM of 4, 8 and 12. 

3. Results and discussion 

3.1 Fundamental discrete temporal Talbot effect in synthetic mesh lattice 

To verify the above theoretical analysis, we also perform numerical simulations for the pulse 
intensity evolutions by solving Eq. (1). As illustrated in Fig. 2(a) where we choose the 
incident period as N = 2, the input field recurs after the integer multiple of 8 steps, forming 
the typical pattern of Talbot carpet. The Talbot carpets with N = 4 and 8 are shown in Figs. 
2(b) and 2(c), in which the revival distances are 8 and 24, respectively. The simulations can 
agree well with the above theoretical analysis. For other N, the Talbot effect cannot be 
supported, and we take the intensity evolution with N = 12 as an example to visualize the 
failure of Talbot self-imaging. As N = 12, the modes with Q1 = π/3 should be contained. The 
corresponding propagation constant at 2nd band is θ2,1 = arccos(1/4) that is not rational 
multiple of π [32,33], and Eq. (7) will not be satisfied. The Talbot self-imaging is thus 
destroyed, as illustrated in Fig. 2(d) where the spread pattern becomes nonperiodic. 

Similar to the continuous Talbot effect [3–5], the fractional Talbot images also appear 
during the process of discrete temporal Talbot effect. For N = 2, the fractional Talbot image 
exists at m = 4, as shown in Fig. 2(a). Note that the field at m = 4 has the same intensity 
distribution with the input one but accumulates a phase delay of π. For N = 4, the fractional 
Talbot images exist at m = 2, 4 and 6, as shown in Fig. 2(b). The intensity distributions at m = 
2 and 6 have a period of 2 which is a half of N = 4. Accordingly, the repetition rate of the 
pulse train is doubled compared to the incident one. For N = 8, the period of intensity 
distribution at m = 12 is 2 which is a quarter of N = 8, as shown in Fig. 2(c). Accordingly, the 
repetition rate of pulse sequence is thus increased to 4 folds of the input one. 

It should be mentioned that the fractional Talbot effect here could find applications in 
pulse repetition rate multiplication, passive amplification and temporal cloaking [8,15,16]. 
Specifically, as the pulse train propagates from the integer to the fractional Talbot distance or 
vice versa, as discussed above, the pulse repetition rate is scaled up (or down) by 2 or 4 times, 
making the intensity of each pulse being scaled down (or up), accordingly. So the processes 
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can realize the intensity redistribution of the pulse train, which can be applied to the pulse 
repetition rate multiplication from integer to fractional Talbot distance and pulse 
amplification vice versa. The mechanism of pulse amplification here does not rely on the 
active medium, which is termed as passive amplification, as firstly proposed in [16]. Note that 
from fractional to the integer Talbot distance, the pulse amplification is accompanied by the 
increase of time gap between adjacent pulses. And the enlarged time gap will be more 
beneficial to the realization of temporal cloaking within which an event could be hidden from 
being detected [15]. Compared to the continuous Talbot effect based on dispersive fiber 
system, the time gap here can be modified by changing the length difference of the two loops, 
which could be enlarged easily. 

 

Fig. 2. (a)–(d) Pulse intensity evolutions in the long loop for N = 2, 4, 8 and 12, respectively. 

3.2 The influence of coupling ratio on Talbot distance 

We can tune the Talbot distance by controlling the splitting ratio of the coupler that connects 
two loops. We denote the splitting ratio as sin2α:cos2α (0 ≤ α ≤ π/2), and the band structure 
becomes 

 2 2cos cos cos sin .Qθ α α= −  (9) 

We firstly consider the situation where 0 < α < π/2. For arbitrary choice of N and α, the 
modes with Q0 = 0 are contained necessarily, and the corresponding propagation constant at 
2nd band is θ2,0 = 2α. To ensure the revival of the mode with θ0,2, θ0,2 must satisfy Eq. (7), and 
thus α should be a rational multiple of π. Here we denote α as 

 π / ,p qα =  (10) 

in which p and q are the relatively prime positive integers. Moreover, q ≥ 3 and q/4 ≤ p < q/2 
considering θ2,0∈[π/2, π]. 

For N = 2, the corresponding propagation constant at 2nd band can only be θ2,0 = 2pπ/q. 
The Talbot distance is 

 2 .Tz q=  (11) 

Considering q ≥ 3 and zT ≤ ML, zT should belong to {6, 8, 10, ..., ML}. For N = 4, the 
propagation constants at 2nd band are θ2,0 = 2pπ/q and θ2,1 = π. The corresponding revival 
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distances are 2q and 4, respectively. The Talbot distance is the LCM of 4 and 2q, which can 
be expressed as 
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Due to q ≥ 3 and zT ≤ ML, zT should be from {8, 12, 16, ..., ML}. We show the Talbot distance 
varying with α and N in Fig. 3(a). For N = 2, the Talbot distance becomes 12 (18) as q is 6 
(9). For N = 4, we can tune the Talbot distance to 12 by choosing q as 6. The Talbot carpets 
shown in Figs. 3(b)–3(d) coincide well with the above theoretical analysis. For N > 4, we also 
study the Talbot revivals through enumeration method. To guarantee that the mode with θ2,0 = 
2pπ/q could revive within ML, q should be no more than ML/2. Considering 3 ≤ q ≤ ML/2 and 
q/4 ≤ p < q/2, α should be from a finite set, which enables us to enumerate the values of α for 
the purpose of finding the allowed ones. It turns out that the Talbot revivals occur only if α = 
π/4 and N = 8. Because α = π/4 corresponds to a coupling ratio of 50:50, this case has been 
discussed in Sec. 2. 

 

Fig. 3. (a) Talbot distance zT versus q. (b) (c) Talbot carpets for q = 6 and 9 as N = 2. (d) Talbot 
carpet for q = 6 as N = 4. 
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Fig. 4. (a) The variation of Talbot distance zT versus the input period N as α = 0 and π/2. (b) (c) 
Talbot carpets with N = 6 and 10 as α = 0. (d) Talbot carpet for N = 6 as α = π/2. 

We now focus on the Talbot effects for α = 0 and π/2. For α = 0, corresponding to a 
splitting ratio of 0:1, the band structure reads 

 .Qθ = ±  (13) 

For arbitrary choice of N, the corresponding propagation constants at 2nd band should be in 
the form of θ2,l = 2πl/N. The Talbot distance is thus zT = N. We illustrate the Talbot distance zT 
varying with the input period N in Fig. 4(a). Due to zT ≤ ML, zT belongs to {2, 4, 6, ..., ML}. 
We show the Talbot carpets of N = 6 and N = 10 in Figs. 4(b) and 4(c) where the incident 
fields exhibit recurrence after 6 and 10 steps, respectively. For α = π/2, corresponding to a 
coupling ratio of 1:0, the band structure is 

 π.θ =  (14) 

For arbitrary choice of N, all modes have a propagation constant of θ = π. The Talbot distance 
is zT = 4 which is independent of the input period N, as shown in Fig. 4(a). The Talbot carpet 
with N = 6 is shown in Fig. 4(d) where the input field exhibits revivals after every 4 steps. In 
the above two cases, the repetition rate of pulse train shows no change during propagation 
because no coupling exists for α = 0 and the coupler acts as a circulator for α = π/2. 

3.3 The influence of initial Bloch momentum on Talbot distance 

We now impose a stepwise phase modulation on the incident pulse sequence, and the interval 
between phase shifts imposed on adjacent pulses is denoted as φ0. Accordingly, the incident 
field acquires an initial Bloch momentum φ0 in the synthetic mesh lattice, as shown in Fig. 
5(a). The Bloch momenta should thus be in the form of 

 02π / .lQ l φ= N +  (15) 

For N = 2, the Bloch momenta is Q0 = φ0, and the corresponding propagation constant at 
2nd band reads 

 2,0 0arccos[(cos 1) / 2].θ φ= −  (16) 

The Talbot effect exists only if θ2,0 satisfies Eq. (7). θ2,0 is in the form of 

 2,0 π / ,a bθ =  (17) 

                                                                                                   Vol. 26, No. 15 | 23 Jul 2018 | OPTICS EXPRESS 19241  



where a and b are the relative prime positive integers. Moreover, b ≥ 1 and b/2 ≤ a ≤ b due to 
θ2,0∈[π/2, π]. The Talbot distance is 

 
4    (  is odd),

2    (  is even),T

b a
z

b a


= 
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 (18) 

and zT∈{4, 6, 8, ..., ML}. The corresponding initial Bloch momenta φ0 is derived from Eq. 
(16), which can be expressed as 

 0 0,2arccos(2cos 1).φ θ= +  (19) 

Considering that the band structure is symmetric in Q axis, φ0 and − φ0 have the same impacts 
on θ2,0, and thus the corresponding Talbot distances are same. We illustrate the Talbot 
distance zT varying with |φ0| in Fig. 5(b). The Talbot carpet with φ0 = 0.71π is shown in Fig. 
5(c) where the Talbot distance is tuned to zT = 10. 

For N = 4, the modes with Q0 = φ0 and Q1 = π + φ0 are included. The propagation 
constants at 2nd band read 

 
2,0 0

2,1 0

arccos[(cos 1) / 2],

arccos[( cos 1) / 2].

θ φ
θ φ

= −
 = − −

 (20) 

We find the allowed values of φ0 through the enumeration method. To support the Talbot 
effect, θ2,0 and θ2,1 are both in the form of aπ/b. Due to λ0, λ1 ≤ ML, b is no more than ML/2. 
Considering 1 ≤ b ≤ ML/2 and b/2 ≤ a ≤ b, θ2,0 and θ2,1 should belong to a finite set, which 
enables the enumeration method. The Talbot revivals are supported only when |φ0| is π/2 or π, 
and the corresponding Talbot distances are 6 and 8, respectively. We illustrate the Talbot 
carpet with φ0 = π/2 in Fig. 5(d) where the Talbot distance is tuned to 6. For N = 8, we also 
use the enumeration method to find the available values of φ0. The Talbot recurrence occurs 
as |φ0| is chosen from {π/2, π}, but the Talbot distance is not influenced. 
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Fig. 5. (a) Schematic of the incident field under stepwise phase modulation. (b) Talbot distance 
zT versus initial momentum φ0. (c) Talbot carpet with N = 2 and φ0 = 0.71π. (d) Talbot carpet 
with N = 4 and φ0 = 0.5π. 

3.4 Talbot effect with fractional incident period 

In the spatial lattice, the incident beams can only be coupled into the input ports, otherwise 
they will decay exponentially. The period number of periodic incident field must thus be an 
integer. Nevertheless, the pulse train with arbitrary period could be injected into the two 
coupled fiber loops. Accordingly, the input period could be an arbitrary positive number in 
synthetic mesh lattice. We firstly consider the situation where N is rational. The incident 
period is represented as 

 2 / ,N K L=  (21) 

in which K and L are the relative prime positive integers. 
From the aspect of the coupled loops, the incident pulse sequence could be treated as a 

combination of several sparse sequences that evolve in coupled loops independently. From 
the aspect of synthetic mesh lattice, the incident field with period 2K/L is decomposed to 
certain identical fields with period 2K. Moreover, these individual fields are uniformly spaced 
in the transverse direction and injected to separated lattices, as shown in Fig. 6(a). The 
coupled loops is thus multiplexed in the time domain, which leads to that several independent 
synthetic mesh lattices exist at the same time. In an individual lattice, the incident period 
allowing Talbot effect is not affected, the Talbot distance zT also shows no change. 
Interestingly, the allowed input periods could be extended vastly and denoted as N = 2KT/L, 
where KT = 1, 2, and 4. We illustrate the Talbot distance varying with K and L in Fig. 6(b). 
The Talbot carpets of N = 2/3, 4/3 and 8/3 shown in Figs. 6(c)–6(e) agree well with the above 
theoretical analysis. As the incident period N is irrational, the Talbot effect will not be 
supported because the input field cannot be decomposed to several fields with period being 2, 
4 or 8. 
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Fig. 6. (a) Schematic of the separated synthetic mesh lattices uniformly spaced in the 
transverse direction. The incident field with period N = 2K/L is decomposed to several 
identical fields with period 2K distinguished by color which evolve in the lattices in the same 
color independently. (b) Talbot distance zT versus K and L. (c)-(e) Talbot carpets of N = 2/3, 
4/3 and 8/3, respectively. 

Since bandwidth is an essential issue in the context of optical pulse propagation, now we 
compare the dispersion effects of discrete temporal Talbot effect with conventional 
continuous temporal Talbot effect in dispersive fibers. The continuous temporal Talbot effect 
depends on the second-order dispersion, the bandwidth of which is limited by the higher-
order dispersions of fiber [17]. Here the discrete temporal Talbot effect is based on the 
diffraction in the periodic time lattice created by two coupled fiber loops. The bandwidth is 
limited by both the second- and high-order dispersions, such that wide pulses should be 
chosen. However, due to the short length for the fiber loop that is about several meters, the 
pulse width can still be chosen as short as picosecond to get rid of dispersions [34]. Therefore, 
the discrete temporal Talbot effect can still manifest comparable bandwidth with the 
continuous case. Compared to the continuous Talbot effect in fiber, we can further increase 
the bandwidth by reducing the loop length or using the dispersion compensation components 
[35]. For practical applications, broad bandwidth will be benefit to the realization of discrete 
Talbot effect for even shorter pulses. 

In terms of the applications, the features of period dependence and Talbot distance 
tunability of discrete temporal Talbot effect will benefit the following application aspects. For 
the pulse amplification and repetition rate multiplication, different choice of the incident 
period can be used to select different amplification factors. For temporal cloaking, different 
incident period can also benefit the precise control of time cloaking window. All the 
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processes could be flexibly tuned by the Talbot distances via changing the splitting ratio of 
coupler or the length of fiber loops. 

Finally, the discrete temporal Talbot effect is also affected by the length of fiber loops and 
the loop propagation loss. The Talbot effect requires sufficient long fiber loop with more 
pulses to mimic the periodic input condition, while the presence of dispersions requires short 
loop to increase the bandwidth. The tradeoff can be balanced by choosing a relative long fiber 
loop to accommodate more pulse while compensating the dispersions. For the propagation 
loss, although it has no influence on the conditions of Talbot effect, we can utilize optical 
amplifier to compensate the loss, such that the discrete Talbot effect could be more readily to 
observe. Moreover, the two coupled loops might be transferred into the integrated waveguides 
with the geometric structure and dispersion property being carefully designed. 

4. Conclusion 

In conclusion, we have investigated the discrete temporal Talbot effect in the synthetic mesh 
lattice based on two coupled fiber loops. The Talbot revivals occur only if the normalized 
incident period are N = 2, 4 and 8, and the corresponding Talbot distances are 8, 8 and 24, 
respectively. Due to the existence of fractional Talbot effect, the repetition rate of pulse train 
can be increased at fractional multiple of Talbot distance and become 4 multiples of the input 
one at most. By controlling the splitting ratio of the coupler which is related to the band 
structure, the Talbot distance can be flexibly tuned, and the set of available Talbot distances 
becomes {2, 4, 6, ..., ML} with ML being the longest valid propagation distance. By imposing 
stepwise phase modulation on the incident pulse sequence, the Talbot distance is tunable 
since the initial momentum of the incident field varies. Through the time-multiplexing of 
coupled loops, the incident periods allowing Talbot effect can be extended to 2/L, 4/L and 8/L 
with L being an integer. The study may find great applications in temporal cloaking, passive 
amplification, and pulse repetition rate multiplication. 
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