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Abstract
The sensitivity of strong-field ionization to atomic orbital helicity has attracted much attention
from physicists, due to its potential application in attosecond spectroscopy and spintronics. In
order to intuitively observe the physical mechanisms of helicity-dependent ionization rates
during photoionization, the concept of the Wigner phase can be used to characterize the
different interactions between the rotating electrons and the Coulomb potential. Here, we find
that in both one- and three-photon ionization schemes, the electrons liberated more easily by
the circularly polarized laser field suffer less influence of the Coulomb potential during the
propagation and then accumulate less Winger phase. This result indicates that the strength of
the interaction between the rotating electrons and the Coulomb potential can explain the
helicity-dependent ionization for different ionization mechanisms universally, which is also
supported by our classical ensemble analysis. Our work provides an intuitive perspective
towards the physics picture of ionization propensity rules.
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(Some figures may appear in colour only in the online journal)

1. Introduction

In a circularly polarized laser field, the sensitivity of ion-
ization rates to atomic orbital helicity (the sign of magnetic
quantum number) is one of the key signatures of strong-
field ionization. It has been indicated that electrons counter-
rotating with respect to the laser field can be liberated more
easily than co-rotating electrons [1–3]. On the other hand,
it is well known that circularly polarized light does pref-
erentially ionize co-rotating electrons in one-photon ioniza-
tion or the ionization of circular Rydberg states [4, 5]. This

∗ Authors to whom any correspondence should be addressed.

sensitivity of ionization is a crucial element in the gener-
ation of spin-polarized electrons, which has many practical
applications like studying chiral molecules [6, 7], magnetic
materials [8] and spintronics [9]. Recently, these various
propensity rules in different ionization schemes had been
understood from a simple classical analogy by Askeland et al
[10] and Wu et al [11]. It is superficially explained that if the
electrons interact strongly with the nucleus, the catalytic of the
nucleus is more pronounced, causing more ionization. How-
ever, how to quantitatively demonstrate the different interac-
tions between the rotating electrons and the Coulomb potential
and find the physical principle to unify the various ionization
propensity rules, is a most interesting but not discussed issue.
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All these diverse Coulomb interactions are expected to
leave different imprints on the phase of the photoelectron wave
packet. In scattering theory [12–14], the phase of the outgo-
ing electron wave packet (EWP) is a direct consequence of
the interaction of the photoelectron and the scattering poten-
tial. The scattering delay (also-called Wigner delay) represents
the delay between an electron scattering in a given Coulomb
potential and a reference potential (V = 0). Namely, the effect
of the interaction potential on the released EWP is expressed
as either a phase or delay. This scattering physics is intrinsic to
the various quantum systems like atoms, molecules, and solids
[15–18], and can provide detailed information on electronic
correlations [19], potential [20], and orbital shapes [21]. Such
Wigner delay had been used to observe the physics dynamics
of the ionization process, for instance, quantifying the time-
resolved dynamics in the tunnel ionization of H2 molecules
[22], revealing the multi-electronic effect in photoionization
of chiral molecules [23], and probing scattering potential in
the small asymmetric molecular system [24, 25]. Hence, we
can use this Wigner phase as a measurement tool to observe
the different interactions between the rotating electrons and the
Coulomb potential in the cases of various ionization propensity
rules.

Generally, the dynamics of the photoionization are encoded
in the phase of the escaping EWP. Traditionally, this phase
cannot be directly observed in the frequency domain, but can
be retrieved by attosecond streaking [26] and reconstruction
of attosecond beating by interference of two-photon transi-
tion (RABBITT) [27, 28]. These methods have been extended
to the above-threshold ionization (ATI) regime for the phase
measurements of ATI electrons by employing the two-color
laser field in a combination of a strong ionizing field and a
weak probing field at half the ionizing laser frequency in ref-
erence [29]. Up to now, this photoelectron interferometry has
been widely applied in ATI, like to experimentally measure the
relative time delays among the resonant ionization with the
orthogonal [30] or parallel [31] two-color laser fields. These
methods are conceptually similar, where the phase proper-
ties of the photoemission process are both extracted from the
oscillation signal of two-path interference.

In this paper, we theoretically investigate the differen-
tial Wigner phase shifts between the p+ and p− orbitals of
xenon atom by solving the two-dimensional time-dependent
Schrödinger equation (TDSE). We achieve this by calculating
the photoelectron momentum distributions (PMDs) as a func-
tion of time delay between a strong left circularly polarized
(LCP) field and a week linearly polarized field. We tactfully
design one- and three-photon ionization schemes and observe
negative and positive differential Wigner phase shifts between
p± orbitals, respectively, indicating that the Wigner phase shift
in circularly polarized laser field depends on atomic orbital
helicity. On the other hand, we adopt a classical ensemble
scheme for providing the supporting calculations. By analyz-
ing the electronic trajectories, we observe that the co-rotating
electrons prefer to obtain energy from the laser field when
moving away from the nucleus, especially in one-photon ion-
ization. However, as the laser wavelength increases to three-
photon ionization, the period for obtaining energy decreases

for the co-rotating case leading to a reversal of ionization
propensity rules. Atomic units are used throughout unless
stated otherwise.

2. Theory and models

To calculate the photoelectron momentum distributions
(PMDs) for the p± orbitals in xenon [32, 33], we numeri-
cally solve the two-dimensional TDSE with the single-active
electron approximation in two-color laser field,

i∂ψ(r, t)/∂t = [H0 + VE(r, t)]ψ(r, t). (1)

H0 = T + V0(r) is the time-independent Hamiltonian, where
T = −∇2/2 is the kinetic energy operator and V0(r) is the
atom potential. ψ(r, t) is the time-dependent wavefunction.
VE(r, t) = −E(t) · r is the laser-electron interaction potential
under dipole approximation in length gauge. The laser field
E(t) is expressed by

E(t) = E1(t) +E2(t + τ ), (2)

whereEi(t) = Ei
0 f i(t)[cos(ωit)ex + εi sin(ωit)ey], and τ is the

time delay between two laser fields. For the ith pulse (i =
1, 2), its polarization ε1 = ±1 for the circularly polarized
field and ε2 = 0 for the linearly polarized field. The carrier-
envelope phases of the two pulses are both zero. Ei

0 is its
field amplitude, f i(t) = sin2(πt/Ti) is its temporal envelope,
and Ti = Ni(2π/ωi) is its duration with Ni being the num-
ber of cycles. The TDSE is solved by utilizing the split-step
Fourier method [34], where the time step is 0.04 a.u., and
the spatial discretization is 0.2 a.u. with the dimension size of
400 a.u..

Furthermore, the classical approach may facilitate the
interpretation of the results from the quantum-mechanical
calculations, and provide further insight into the underlying
physical mechanisms [35, 36]. It has been proved that the
classical ensemble model can be applied with great care to
describe strong-field laser-atom interactions [37, 38]. The elec-
tronic motion can be described by the classical time-dependent
Newton equation as: ∂2r/∂t2 = −∇V(r) − E(t), where r is
the coordinate of the electron and the atomic potential of
xenon V0(r) = −1/

√
r2 + a2 [39]. To mimic the initial states

with angular momenta L = ±1, we first randomly select the
electronic position x and y from a microcanonical ensemble
[40] to determine the total potential energy of the electrons,
then the electron kinetic energy Ek can be obtained by the
energy conservation. We combine equations L = r × p and
Ek = (p2

x + p2
y)/2, to determine the initial momenta of the

electrons. With these initial conditions, we solve the Newton
equation for 4 × 105 classical trajectories and obtain the ion-
ization probability Pion by taking the ratio between the number
of ionized electrons with energy more than zero and the total
number of electronic trajectories.

In the absence of laser field, the time evolution of a non-
relativistic photoelectron is described by the time-independent
Schrödinger equation [41],

H0ψα(r) = εαψα(r), (3)

2
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Figure 1. (a) Ionization schemes for the p± orbitals in xenon atom.
The ATI is induced by a strong LCP laser field (blue arrows). The
inset describes in the presence of a week linearly polarized laser
field, new peaks, called sidebands, generate from the ATI peak by
absorbing or emitting an additional photon (red arrows). (b) The
photoelectron momentum distribution at zero time delay in the
three-photon ionization scheme for the p+ orbital. The first order of
ATI peak (ATI1) and the first sideband is denoted by the white
arrows, respectively. (c) The oscillation signal of ATI1 in
three-photon ionization scheme for the p+ orbital in the 0◦–9◦ slice
as a function of τ fitted by a cosine form S(τ ) (red curves).

where εα is the eigenvalue of the solution and ψα(r) is
labelled by a set of quantum numbers α (α = [n,λ, m]). In
spherical potential with states on a spherical basis, the one-
dimensional Schrödinger equation for effective radial states
μn,λ(r) (r > 0) is written as [T + V0(r)]μn,λ(r) = εαμn,λ(r).
The propagation of a photoelectron wave packet is governed
by the way in which the phases of continuum states μn,λ(r)
vary as a function of energy ε (ε > 0). Considering that the
Wentzel–Kramers–Brillouin (WKB) approximation is well
suited for studying continuum states within a semi-classical
framework [42]. For the potential which vanishes at infinity
i.e. limr→∞ V0(r) = 0, the radial wavefunction is taken to be

uε(r) ∝ ξ{exp[iφ(ε, r)]} = sin[φ(ε, r)], (4)

inserting this radial wavefunction into the equation (3) leads to
a differential equation for the phase of the state:

− i
∂2φ

∂r2
+

(
∂φ

∂r

)2

= ε − V0(r). (5)

Furthermore, assuming that the local momentum of photo-

electron varies slowly, |p(r)| ≡ |∂φ/∂r| 

(
∂2φ/∂r2

)1/2
, the

above equation can be simplified,

∂φ

∂r
=

√
2 m [ε− V0(r)], (6)

Figure 2. The differential Wigner phase shifts Δφ
p/m
Wigner between the

p+ and p− orbitals as a function of the photoelectron ejection angle
θ (◦), (a) in three-photon ionization and (b) in one-photon ionization.

and then integrated,

φ (ε, r, r0) =
∫ r

r0

dr′
√

2 m [ε − V0 (r′)], (7)

where ε is the energy of the electron, r0 is where the electron
‘starts’, and V0(r) is the atomic potential determined by the
classical trajectories in the absence of the laser field. We can
see that the electron at a given energy is classically allowed to
pass through the potential and acquires a quantum phase which
depends on the potential V0(r) and the starting position r0. If
the electron suffers less influence of the Coulomb potential,
the phase the electron accumulates during the propagation is
smaller.

3. Results and discussion

We present the basic concepts of photoelectron interferometry
for analyzing the direct photoionization dynamics described
in figure 1. Firstly, the electrons from the p± orbitals are ion-
ized by a strong LCP laser field (counterclockwise, ε1 = +1,
ω1 = 2ω) by absorbing n-photon. The energy of the ATI peak
follows Ek = nω − Ip − Up, where n is the number of photons
absorbed in the ionization process, Ip is the ionization poten-
tial, and Up = I/(2ω)2 is the ponderomotive energy. Here, the
energy of the first ATI peak is at 0.92 eV and 2.78 eV in
one- and three-photon ionization, respectively. Next, we probe
this ATI process using a week linearly polarized laser field
(ε2 = 0), at half the frequency of the LCP laser field (ω2 = ω).
Sideband peaks appear in the ATI spectrum, at energies that
correspond to the absorption or emission of a probe photon.
Due to the interference of these two paths, the ATI peaks
have a cosinoidal modulation with respect to the relative time
delay τ between the pump and probe laser fields, similar to
RABBIT analysis [27, 28]. The probability of the ATI peaks

3
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Figure 3. The cosine of the angle α between the force of the laser field on the electron and its displacement, and the velocity (∂r/∂t) as a
function of time, (a) and (b) for the p+ orbital and (c) and (d) for the p− orbital. We stipulate that the energy reaches zero at tion defined as the
ionization moment marked by the vertical arrows. The insets show the schematic diagrams of the relative movement between the laser field
and the electron. The green arrow and the black arrow represent the direction of the force of the laser field (F) and the electron displacement
(S), respectively. The circle with an arrow represents the direction of the rotating electron. The LCP laser field is at 250 nm with the intensity
of 4.5 × 1014 W cm−2 and N = 6 in three-photon ionization, and at 95 nm with the intensity of 6.8 × 1015 W cm−2 and N = 6 in one-photon
ionization. After the pulse end (at tend marked by the purple arrows), the electron is in free propagation with the duration of two cycles.

modulates as

Sn = α+ β cos[2ωτ −Δφlight −ΔφWigner −Δφcc]. (8)

The total phase shift Δφ = Δφlight +ΔφWigner +Δφcc, where
Δφlight is the phase difference between the two laser fields.
The Wigner phase shift ΔφWigner is the phase shift between
the ionized electron scattering in the atomic potential, and
a reference potential [13]. Moreover, the weak probe field
introduces an additional phase shift Δφcc, by inducing con-
tinuum–continuum transitions of the electrons from the main
ATI peaks to the sidebands. Here, the total phase shift
can be converted into the time delay by the relation of
τ = Δφ/2ω.

By analyzing the oscillation signal of the first ATI peak, we
extract the differential phase shifts between the electrons emit-
ted from the p+ and p− orbitals, whereΔφp/m = Δφp −Δφm.
This procedure naturally eliminates Δφlight, which is strictly
common for the same laser fields. On the other hand, we can
selectively render the equality of Δφcc for the p± orbitals by

using a linearly polarized laser field. In this case, Δφ
p/m
cc = 0,

and Δφp/m = Δφ
p/m
Wigner. The differential Wigner phase shift

Δφ
p/m
Wigner has been investigated in two kinds of ionization

schemes described in figure 1(a). We tactfully design the one-
and three-photon ionization schemes to compare Wigner phase
shifts in the cases of opposite ionization propensity rules,
where the photoelectrons for the p± orbitals have the same
energy but different yields. Here, the one-photon ionization is
induced by a strong LCP laser field at 95 nm with the intensity
of 6 × 1013 W cm−2 and probed by a week linearly polarized
laser field at 190 nm with the intensity of 2.4 × 1012 W cm−2

and N2 = 60. In the three-photon ionization scheme, we

employ a strong LCP laser field of 250 nm at 4 × 1013 W cm−2

and a week linearly polarized laser field of 500 nm at
1.6 × 1012 W cm−2 and N2 = 30. In both ionization schemes
the intensity ratio between the ionizing laser field and the probe
laser field is Iω/I2ω = 1/25, which ensures that this technique
is in a RABBIT-like regime and no higher-order phenomenon
(4ω or higher orders) affects the phase measurements.

The Δφ
p/m
Wigner in two ionization schemes are calculated by

integrating the photoelectron signal in slices of 9◦ around dif-
ferent ejection angles θ starting from the x-axis in figure 1(b).
The photoelectron angular distribution composed of ATI peaks
and sidebands appearing between the ATI comb. The energy
interval between the neighboring ATI peaks are equal to the
ionizing laser photon energy of 4.96 eV. The ATI peaks and
sidebands is separated by the probe photon energy of 2.48 eV.
The superposition of the LCP laser field and the linear polar-
ized laser field produces an electric field that is stronger in
the x-axis direction, which causes the amplitude modulation
of the sideband oscillation signal is stronger near the laser
polarization direction (x-axis). Hence, for electrons emitted
beyond 60◦, the signal is too low to extract reliable values.
In order to extract the phase, the oscillation signal of the first
ATI peak as a function of the time delay between the two
laser fields is fitted with the four-parameter cosine formula
S(τ ) = σ + β cos(2ωτ − φ) shown in figure 1(c). We also ana-
lyze this signal by the Fourier transform, and find that these
results are in good agreement.

The evolution of the differential Wigner phase shifts
Δφ

p/m
Wigner with the photoelectron ejection angle is shown in

figure 2. The positive Δφ
p/m
Wigner are observed in three-photon

ionization shown in figure 2(a). For electrons emitted in the

4
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Figure 4. (a) and (b) Photoelectron energy spreading at the end of the laser field for the one- and three-photon ionization schemes,
respectively. (c) and (d) The energy Ee (the potential energy plus the kinetic energy) of the ionized electron as a function of time. The
colorful arrows represent the ionization moments tion where Ee = 0. (e) and (f) The distance R between the ionized electron and the nucleus
as a function of time. The purple arrows represent the position at the end of the laser field.

0◦–9◦ slice, Δφ
p/m
Wigner reaches 0.24π radians. The differential

Wigner phase shifts strongly vary with ejection angle and can
reach a higher value of 0.54π radians when electrons are emit-
ted away from the polarized axis of the probe light (x-axis).
The co-rotating electrons (ionized from the p+ orbital) have
more Wigner phase shift than the counter-rotating electrons
(ionized from the p− orbital). On the contrary, in the one-

photon ionization scheme, it is found the negative Δφ
p/m
Wigner

ranging from −0.66π to −1.47π radians with the increas-
ing ejection angle shown in figure 2(b), which means that the
Wigner phase shift in the co-rotating case is smaller than that
in the counter-rotating case. These results demonstrate that
the Winger phase shift is sensitive to atomic orbital helic-
ity in a circularly polarized laser field, due to the diverse
interactions between the rotating electrons and the Coulomb
potential.

We make supporting calculations by using a classical
ensemble scheme. The results of the classical calculation are
shown in figures 3 and 4. We calculate the cosine of the angle
α and the velocity (∂r/∂t) of the electron as a function of
time in figure 3. The angle α is between the force of the laser
field F, and the electron’s displacement S. The work done by
the laser field on the electron is calculated by W = FS cos(α),
where the positive (negative) cosine represents positive (neg-
ative) work. We define the direction away from the nucleus as
positive, corresponding to positive velocity (∂r/∂t > 0). The

evolution of the electron’s motion with time can be divided
into three stages. The first stage is that the electron oscillates
around the nucleus before the ionization moment tion marked
by vertical arrows in figure 3. Then the electron can escape
from the nucleus and move away in the laser field. After the
laser field end, the free electron continues to move away. In
the first oscillating process, it can be seen that the electron can
obtain or lose energy from the laser field shown in figure 3. In
the co-rotating case, the cos(α) and the velocity have the same
sign, which means that the force of the laser field does the posi-
tive (negative) work when the electron moves away from (close
to) the nucleus. On the contrary, in the counter-rotating case,
the cos(α) and the velocity have the opposite sign. Therefore,
the force of the laser field does the positive work, when the
electron moves close to the nucleus. The insets show schematic
diagrams of these movements in figure 3. On the other hand,
the period of doing work is longer in the co-rotating case than
in the counter-rotating case, due to that the circularly polarized
laser field slows down the co-rotating electrons and speeds up
the counter-rotating electrons.

Based on the above analysis of the electron motion, we
investigate the electronic trajectories to understand the physi-
cal origin of the propensity rules. Firstly, we discuss the clas-
sical calculations in the one-photon ionization scheme shown
in the left panels of figure 4. It is shown that the co-rotating

5
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case has a wider energy spreading and more high-energy elec-
trons than the counter-rotating case as shown in figure 4(a).
For one thing, the co-rotating electrons can lose (W < 0) or
obtain (W > 0) energy from the laser field when moving close
to or far away from the nucleus. Another critical element is
the period of doing work by the laser field, where the longer
the period is, the more energy the electron can obtain or lose
from the laser field. It can be seen that this period is longer in
the co-rotating case than in the counter-rotating case shown in
figure 3(a). Consequently, the co-rotating electrons can be pro-
moted into lower or higher energy states, which leads to wider
energy spreading. However, in the counter-rotating case, the
work done by the laser field in the opposite process can ham-
per the electrons promoting into higher or lower energy states,
leading to narrow energy spreading. The corresponding ioniza-
tion probability in the co-rotating case (Pion = 0.33) is greater
than that in the counter-rotating case (Pion = 0.05). Further-
more, the co-rotating electron has more oscillation energy in
the laser field after ionization than the counter-rotating elec-
tron when moving away from the nucleus shown in figure 4(c).
Hence, the co-rotating electron can move farther before the end
of laser field shown in figure 4(e) and then suffer less influ-
ence by the Coulomb potential. With the trajectories starting
from the position marked by the vertical arrows in figure 4(e),
the Wigner phase shift will be calculated by equation (7). It
is obtained that the phase shift is 3.6 a.u. for the p+ orbital
and 3.9 a.u. for the p− orbital. The differential phase shift
between the p± orbitals is −0.3 a.u., indicating that the Wigner
phase shift in the co-rotating case is smaller than that in the
counter-rotating case.

As the laser wavelength increases, in three-photon ion-
ization, the laser field rotates more slowly and dramatically
reduces the effect on the electrons’ rotation speed, especially
for the co-rotating case resulting in a significantly shorter
period of doing work shown in figure 3(b). In this case, the
energy spreading of the co-rotating case becomes narrow, but
the counter-rotating case has little impact. Figure 4(b) shows
that the counter-rotating case has more high-energy electrons
than the co-rotating case. We obtain the ionization probabil-
ity of 0.19 for the co-rotating case and 0.35 for the counter-
rotating case. Moreover, the counter-rotating electron has more
oscillation energy in the second process and can move farther
from the nucleus shown in figures 4(d) and (f). The calculated
differential phase shift between the p± orbitals is 0.27 a.u.,
indicating that the Wigner phase shift of the co-rotating elec-
tron is more significant than that of the counter-rotating elec-
tron. As expected, these classical results can strongly support
the quantum-mechanical calculations.

4. Conclusion

In summary, we calculate the differential Wigner phase shifts
between the p± orbitals as a function of the ejection angle in
a two-color laser field and find negative and positive differen-
tial Wigner phase shifts in the one- and three-photon ionization
schemes, respectively. The reason is that the Wigner phase can

be used as a fingerprint of the diverse interactions between
the rotating electrons and the Coulomb potential. It is indi-
cated that the high ionization rate is associated with a small
Wigner phase shift regardless of the ionization scheme. We
also make supporting calculations by using a classical ensem-
ble scheme. Analyzing the classical electron trajectories in
both cases shows that in the case of high ionization proba-
bility, there are more high-energy electrons, which have more
oscillation energy in the laser field and can move away from
the nucleus to accumulate less Wigner phase. The inversion
of ionization propensity rules from one- to three-photon ion-
ization is caused by the rapidly decreasing period of doing
work by the laser field with the increasing of laser wave-
length in the co-rotating case. Our results provide an intuitive
perspective towards the interaction between the rotating elec-
trons and the Coulomb potential and open up a new avenue to
experimentally observe the sensitivity of ionization to atomic
orbital helicity. Our work provides a prospect for measuring
photoelectron dynamics in atom, molecular and solid targets.
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