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Interpreting attoclock experiments from the perspective of Bohmian trajectories
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We theoretically study the attoclock using the Bohmian trajectory. The Bohmian trajectory includes a nonlocal
quantum potential and the Coulomb potential, allowing us to separately study their effects on the attoclock. We
show that the quantum potential has a significant effect on the photoelectron momentum spread while it only
slightly affects the offset angle in the attoclock. We further show how the Coulomb potential affects the offset
angle, revealing that the Coulomb force before the electron reaches the position of the classical tunnel exit has a
significant contribution to the offset angle. Thus taking the full Coulomb effect into account during the tunneling
ionization is a prerequisite for our understanding of the origin of the offset angle in the attoclock experiment.
Our study also implies that there might be an inertia time for the initial wave function in response to the change
of the laser electric field.
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I. INTRODUCTION

Tunneling is one of the most intriguing phenomena in
quantum mechanics. When an atom or a molecule is exposed
to a strong laser field, the valence electron will be released by
tunneling through the barrier formed by the Coulomb poten-
tial and the laser electric field. Strong-field-induced tunneling
triggers a broad range of strong-field phenomena, includ-
ing above-threshold ionization [1], high-harmonic generation
[2,3], and nonsequential double ionization [4,5], which are ba-
sic for resolving the structure of atoms and molecules, laying
the foundation of strong-field physics. Thus, a complete char-
acterization of the strong-field-induced tunneling is important
to understand those strong-field phenomena.

In elliptically or circularly polarized light fields, the in-
stantaneous ionization time of an electron is mapped to the
angle of the final momentum in the polarization plane. Thus
attosecond-resolved electron dynamics can be investigated
from the photoelectron angular distribution using the mapping
relation [6–9]. This technique, dubbed attoclock, has been
widely used to study the strong-field-induced tunneling. For
instance, the attoclock has been employed to measure the
tunneling time [6,10–14] to determine the position of the
tunnel exit [15] and the nonadiabaticity of the tunneling pro-
cess [16,17], and to reconstruct the electron subbarrier phase
[18]. In the attoclock, an offset angle in the final momen-
tum distribution was actively discussed in the past decade
[10,11,13,14,19–21]. Up to now, whether the offset angle is
related to the tunneling time is still under controversy.

In most previous studies, the attoclock is often interpreted
based on classical or semiclassical models [10,15,19,22–24].
In those models, the classical trajectories start to propagate
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from the position of the tunnel exit. After tunneling, the
electron motion in the combined laser and Coulomb fields is
governed by the Newtonian equation. The experimental re-
sults are compared with the calculated results by the classical
models to identify the possible tunneling time. Alternatively,
the current of the wave function combined with classical
trajectories after the tunnel exit has also been used to study
the attoclock [11,25–32]. Some different tunneling proper-
ties have been found by using this combined model, e.g.,
it is found that the tunneling time and initial longitudinal
velocity are nonzero using the classical tunnel exit as the
tunneling criteria. Due to the quantum nature of tunneling
ionization, the obtained conclusion of finite tunneling time
or not might be incorrect based on those classical models.
Bohmian mechanics is a candidate to investigate the attoclock
which overcomes the above difficulty. In principle, Bohmian
mechanics is equivalent to quantum mechanics, thus it is very
accurate [33–36]. More importantly, Bohmian mechanics re-
lates the wave function dynamics to the particle trajectories,
i.e., Bohmian trajectories [37,38]. Compared with the classi-
cal trajectory, the Bohmian trajectory includes the effect of
a nonlocal quantum potential and follows the current of the
probability density. The Bohmian trajectory has been used
to study the interaction of atoms with intense laser pulses,
showing that the quantum potential becomes negligible af-
ter the electron leaves the atomic core [39,40]. Recently,
the Bohmian trajectory has further been used to explore the
subcycle multiphoton ionization dynamics [35,37,41] and the
tunneling process [34,36], but it has not been used to study the
attoclock.

In this paper, we employ Bohmian trajectories to explore
the tunneling property in the attoclock. We find that Bohmian
trajectories deviate from the classical trajectories beyond the
tunnel exit due to the effect of the quantum potential. We
show that the quantum potential has a significant effect on
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the electron trajectory even after the classical tunnel exit. We
also find that the offset angle of the attoclock is rarely affected
by the quantum potential after the tunneling, which is mainly
influenced by the Coulomb effect near the classical tunnel
exit. Using the classical tunnel exit as the tunneling criteria,
we show that there is a nonvanishing time delay between the
maximum ionization rate and the peak of the electric field
for Bohmian trajectories. This time delay might be partially
contributed by an inertia time of the initial wave function in
response to the variation of the laser electric field.

This paper is organized as follows: In Sec. II, the theoret-
ical methods are described. In Sec. III, we present our main
results. The influence of the quantum potential and Coulomb
potential on the final photoelectron momentum distribution
(PMD) is discussed. Finally, we give a brief summary of the
paper in Sec. IV. Atomic units are used throughout unless
specified otherwise.

II. THEORETICAL APPROACH

A. Time-dependent Schrödinger equation

To investigate the ionization of atoms in a few-cycle
circularly polarized field, we numerically solve the two-
dimensional time-dependent Schrödinger equation (TDSE) of
a H atom. In the length gauge, the TDSE reads

i
∂

∂t
ψ (r, t ) =

[
−∇2

2
+ V (r) + r · E(t )

]
ψ (r, t ). (1)

The Coulomb interaction between the electron and the
proton was approximated by a soft-core potential V (r) =
−1/(r2 + a2)1/2. We set the soft-core parameter as a = 0.798
to match the ionization potential of the H atom. The laser
electric field E(t ) is related to the vector potential A(t ) by

E(t ) = −∂A(t )

∂t
. (2)

The vector potential is given by

A(t ) = A0 sin4 (ωt/2n)[cos (ωt )ex − sin (ωt )ey]. (3)

Here ω is the frequency of an 800-nm field. The pulse length
is parametrized with the number of optical cycles n and A
vanishes for |t − tc| > nT/2, where tc = nT/2 corresponds to
the pulse center and T = 2π/ω is laser field period. In the
simulations throughout the article, we use a two-cycle (n = 2)
circularly polarized laser pulse.

The split-operator spectral method [42] on a Cartesian
grid is used to numerically solve the two-dimensional TDSE.
The Cartesian grid ranges from −400 to 400 a.u. for both
directions with a grid size of �x = �y = 0.195 a.u. The ini-
tial wave function is prepared by imaginary-time propagation
[43]. In our simulation, the time step of the propagation is
�t = 0.055 a.u. For each 100 time steps, we split the electron
wave function into two parts,

ψ (r, τi ) = Ms(r, Rb)ψ (r, τi ) + [1 − Ms(r, Rb)]ψ (r, τi )

= ψinner(r, τi ) + ψouter(r, τi ), (4)

where Ms(r, Rb) = 1 − 1/(1 + e−(r−Rb)/�) is the absorption
function [44] that separates the propagation space into the
inner and outer regions smoothly. In the present simulation,

we choose Rb = 150 a.u. and � = 8.0 a.u. The wave function
in the inner region is propagated under the full Hamiltonian
numerically, while in the outer region, the wave function is
projected to momentum space,

C(p, τi ) =
∫

e−i[p+A(τi )]·r

2π
ψouter(r, τi )d

2r. (5)

Then we propagate C(p, τi ) to the end of the pulse using the
Volkov propagator [45],

C f (p, τi ) = e−i
∫ t f
τi

1
2 [p+A(t )]2dtC(p, τi ). (6)

Finally, we obtain the PMD by the relation

dP(p)

dEdθ
=

∣∣∣∣∣
∑
τi

C f (p, τi )

∣∣∣∣∣
2

. (7)

Here, E = p2/2 is the electron energy and θ is the angle of the
emitted electron. At the end of the pulse, the wave function
is further propagated for an additional four optical cycles to
ensure that all the ionized components move away from the
core.

B. Bohmian trajectories

In quantum mechanics, the wave function is described by
the TDSE, i.e., Eq. (1). The wave function is complex and can
be expressed as ψ (r, t ) = R(r, t ) exp[iS(r, t )], where R and S
are real. Then we obtain

∂S

∂t
+ (∇S)2

2
+ Vc(r, t ) − 1

2

∇2R

R
= 0, (8)

∂ρ

∂t
+ ∇ · (ρ∇S) = 0. (9)

Here ρ = R2 is the probability density and j = ρ∇S can be
regarded as the current of the probability density. In Bohmian
mechanics [33], the wave function is replaced by an ensemble
of particles. Equation (9) is the continuity equation for a
current probability density and describes the conservation of
the probability of the ensemble, and Eq. (8) is the Hamilton-
Jacobi equation for the particles. One can see that each particle
trajectory is affected by a classical potential Vc = V (r) + r ·
E(t ) and a nonlocal quantum potential VQ = − 1

2
∇2R

R .
In the simulation process, we solve the TDSE, i.e., Eq. (1),

to obtain the time-dependent wave function. As the wave
function ψ (r, t ) evolves with time, the Bohmian trajectories
are propagated by solving the equation of motion

dr j (t )

dt
= v(r j (t ), t ). (10)

Here j is the index of each Bohmian trajectory. The velocity
of the particle in Eq. (10) is given by

v = ∇S = Im
∇ψ

ψ
, (11)

in the length gauge. Note that the expression of the velocity
depends on the gauge choice. In Eq. (11), the time-dependent
wave function ψ obtained by solving the TDSE [Eq. (1)],
instead of S obtained by solving Eqs. (8) and (9), was used. We
solve Eq. (10) using the fourth-order Runge-Kutta scheme.

013119-2



INTERPRETING ATTOCLOCK EXPERIMENTS FROM THE … PHYSICAL REVIEW A 105, 013119 (2022)

FIG. 1. (a), (b) The PMDs and (c), (d) the wave function proba-
bility distributions at the end of the laser pulse at the laser intensity
I = 1.0×1014 W/cm2. Panels (a) and (c) are the TDSE results and
panels (b) and (d) are obtained from the Bohmian trajectory. The side
lengths of the bins are (b) 0.02 a.u. and (d) 2 a.u.

The wave function at every other step of its propagation is
used to evaluate the velocities of the trajectories at the mid-
point of one Runge-Kutta step to achieve the fourth-order
accuracy. In the current work, 16 million trajectories are
launched with the initial positions sampled as one random
variable in the position interval [−10, 10]×[−10, 10]. Each
Bohmian trajectory is weighted by w j = ds|ψ (r j, t = 0)|2,
where ds is the area occupied by each trajectory on average.
At the limit of ds → 0, the weight w j assigned at the initial
time is conserved over the time evolution [46]. Since the
ionized wave packet is far from the core and does not reach the
absorption boundary at time t = 2.5T , we define the ionized
trajectories as those trajectories satisfying r j (t = 2.5T ) > Rm.
The value of Rm is not important, as long as the value of this
parameter exceeds atomic dimensions. We use Rm = 20 a.u.
in the present work. In the following, we only concentrate on
those ionized Bohmian trajectories. Finally, we obtain each
point in the momentum distribution by collecting a large num-
ber of Bohmian trajectories with a momentum belonging to a
square-shaped bin in the momentum plane at time t = 2.5T
and dividing the sum by the bin area.

III. RESULTS AND DISCUSSION

Figures 1(a) and 1(b) show the PMDs calculated by the
TDSE and Bohmian trajectory at the laser intensity I =
1.0×1014 W/cm2. The PMD from the Bohmian trajectory
is nearly the same as that of TDSE, and their offset angles
between the peaks of the PMDs relative to the −x direction are

identical. In Figs. 1(c) and 1(d), we show the wave function
probability distributions at the end of the pulse. Note that the
ground state has been projected out of the wave function. One
can see that the ionized wave function probability distribu-
tions are also identical for the TDSE and Bohmian mechanics.
For the TDSE, the PMD shown in Fig. 1(a) can be viewed
as the asymptotic photoelectron momentum obtained by the
Fourier transformation of the ionized part of the wave function
shown in Fig. 1(c). It appears that the velocity of the Bohmian
trajectory is a local momentum, while the velocity obtained by
Fourier transformation is a nonlocal momentum. Actually, in
Bohmian mechanics, the velocity is not fully local, since the
Bohmian trajectories are not independent of each other but
linked by the nonlocal quantum potential [33].

The Bohmian mechanics is a trajectory-based method, al-
lowing us to separately study the individual effect of the
Coulomb potential and the quantum potential on the final
result. We first explore the influence of quantum potential on
the PMD. The Bohmian trajectories are acted by the classi-
cal force and quantum force during the propagation. When
the quantum force approaches zero, the Bohmian trajectories
become classical trajectories. To reveal how the quantum po-
tential affects the PMD, we separate the whole coordinate
space into two regions by setting a circle with a radius of
ri, as shown in Fig. 2(a). ri is referred to as the transition
position in the following text. In the inner region, r < ri,
the trajectories are influenced by both classical and quantum
forces, i.e., they are Bohmian trajectories. The inner region
can be called the quantum region. When those trajectories
get out of the inner region, i.e., r > ri, the quantum force
turns off. The Bohmian trajectories become classical trajec-
tories obeying the Newtonian equation. The outer region is
called the classical region. In the outer region, the classical
trajectories are obtained by numerically solving the classical
Newtonian equation, i.e., r̈ = −r/r3 − E(t ), starting from the
transition position. Figure 2(a) shows a typical trajectory. One
can see that the classical trajectory deviates significantly from
the Bohmian trajectory due to the neglect of the quantum
potential.

Figures 2(b)–2(e) show the PMDs with different ri. When
the transition position ri is close to the classical tunnel exit,
which is ≈12 a.u. for the laser parameter used here, the radial
distribution of the PMD is narrow, as shown in Fig. 2(b). With
the increase of ri, the width of the radial distribution increases,
as also shown in Fig. 3(b). When the transition position ri

is as large as 30 a.u., the PMD approaches the result of the
fully quantum model, as shown in Figs. 1(b) and 2(e). In the
previous studies, some classical or semiclassical models, such
as classical-trajectory Monte Carlo [10,15,47] and quantum-
trajectory Monte Carlo [48], are used to study the PMD, in
which it is usually assumed that the electron has an initial
transverse velocity distribution at the exit of the tunnel. The
initial velocity distribution at the tunnel exit is directly related
to the radial distribution of the PMD. Here, using the Bohmian
trajectory, we show that the radial distribution originates from
the effect of the quantum force on the electron trajectory after
the tunnel exit.

To analyze how the quantum force affects the radial dis-
tribution of the attoclock, we calculate the quantum force at
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FIG. 2. (a) Starting from the initial position (green dot), the
Bohmian trajectory (red curve) reaches a transition circle with a
radius ri (gray dash circle). Outside the transition circle, the quan-
tum force is neglected and the trajectory becomes classical (blue
dash curve). The classical trajectory will deviate from the original
Bohmian trajectory because the quantum force is neglected. (b)–(e)
The asymptotic momentum distributions using the Bohmian trajec-
tories with different transition positions. The transition positions of
the Bohmian trajectories are (b) 10 a.u., (c) 15 a.u., (d) 20 a.u., and
(e) 30 a.u. The side lengths of the bins are 0.01 a.u.

different ri and average the quantum force FQ = −∇VQ over
the trajectories as

F Q =
∑

j w jFQ j (ri )∑
j w j

. (12)

The result is shown in Fig. 3(c). One can see that the average
quantum force decreases with the increase of the distance ri.
Because of the quantum force, the trajectories are not classical
near and even after the exit of tunnel. When the electron-core
distance becomes larger, the quantum force approaches zero
and the trajectories become classical. The quantum force acted
on the electron after the tunnel exit position causes the radial
spread of the final PMD, as shown in Figs. 2(b)–2(e). To see
more clearly how the quantum force causes the radial spread
of the final PMD, we calculate the quantum force along the
trajectories corresponding to different points in the final PMD
in Figs. 1(b). In Fig. 3(d), we show the quantum force as a
function of the transition position for three points in the PMD,
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FIG. 3. The (a) angular and (b) radial distribution of the asymp-
totic momentum distributions for different transition positions.
(c) The averaged quantum force of the Bohmian trajectories as a
function of the transition position. (d) The quantum force along the
Bohmian trajectories with different asymptotic momenta.

i.e., pm, 0.85pm, and 0.7pm, in which pm corresponds to the
maximum of the PMD. For the maximum pm of the PMD, the
quantum force approaches zero quickly, while for the cases
of 0.85pm and 0.7pm, the quantum force along the trajectories
reveals a long tail. The long tail of the quantum force causes
the radial spread of the final PMD. This means that the quan-
tum potential has a significant effect on the electron trajectory
even after the classical tunnel exit.

Next, we use the Bohmian trajectory to explore the origin
of the offset angle in the attoclock of a H atom. We note
that the angular shift of the PMD in an elliptically polarized
laser field has also been called Coulomb asymmetry [49,50].
Disentangling the influence of the Coulomb field from the
Coulomb asymmetry remains a key issue to understand the
dynamics of the strong-field ionization. We first study the in-
fluence of quantum force on the offset angle of the PMD after
the tunnel exit. We show in Fig. 3(a) the angular distribution of
the PMDs with different ri. One can see that the offset angles
of the maximum of the PMD with respect to the −x direction
are nearly the same (≈17.5◦). Therefore, the offset angle is
not related to the quantum force after the tunnel exit. We then
investigate the influence of Coulomb force on the offset angle
in the PMD. For this purpose, we employ a similar model used
in Fig. 2 but ignore both Coulomb force and quantum force
at the classical region (r > ri). We calculate the offset angle
of the final momentum with respect to the −x direction as a
function of ri, as shown in Fig. 4. We can see that the offset
angle increases with increasing ri. The offset angle changes
rapidly with respect to ri near the classical tunnel exit, as
shown by the open circle, which means that the offset angle
is mainly contributed by the Coulomb force near the tunnel
exit. Here the classical tunnel exit is obtained by using the
Landau’s effective potential theory [51]. Using the tunnel exit
obtained from nonadiabatic tunneling model [30] would not
change the above result.
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FIG. 4. The offset angle of the asymptotic momentum with re-
spect to the transition position ri for different laser intensities. Here
both quantum potential and Coulomb potential are ignored for the
outer classical region. The open circles indicate the classical tunnel
exit calculated by the Landau’s effective potential theory.

We also show in Fig. 4 the offset angle as a function
of ri for different laser intensities. The final offset angles
decrease with increasing the laser intensity. For all laser in-
tensities, the offset angle changes rapidly as a function of
ri near the classical tunnel exit. One can also see, before
the Bohmian trajectory reaches the tunnel exit position, the
action of the Coulomb force has led to part of the offset angle
for the final momentum. Thus the Coulomb force before the
classical tunnel exit has a non-negligible contribution to the
offset angle in the attoclock experiment [52]. The dashed
line in Fig. 4 represents the offset angle in the short-range
Yukawa potential, V (r) = −Ze−r/as/(r2 + b2)1/2, with Z =
2.05, as = 2, and b = 1.2 for matching the ionization poten-
tial of the H atom. Compared with previous studies [13,14],
the screening parameter of as is chosen to be 2 a.u. to ensure
a comparably large ionization probability. In this short-range
potential, the Coulomb tail is almost completely screened, and
the quantum force does not affect the offset angle. Conse-
quently, the offset angle in the short-range potential is close to
zero.

The Bohmian trajectories represent the flux of the prob-
ability. They begin at the initial positions in the box
[−10, 10]×[−10, 10], instead of the exit position used in the
classical models [10,15,48]. In previous works [25,26], it has
been shown that the arrival time for the maximum of the
flux at the tunnel exit is after the laser electric-field peak
using the virtual detector approach. Here, we also study the
arrival time te of the Bohmian trajectories at the position of
the classical tunnel exit. The arrival time distribution is shown
in Fig. 5(a). The open circles are the calculated results and
the solid line is the Gaussian fitting curve. One can clearly
see a time delay between the peak of the electric field and
the peak of the arrival time distribution at the tunnel exit.
We note that in Refs. [25,26] the whole current including
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FIG. 5. (a) The distribution of the arrival time at the classical
tunnel exit calculated by the Bohmian trajectories. The solid line
is the Gaussian fitting curve. The time delay between the Gaussian
distribution peak and the laser-field peak is indicated by δt . (b) The
time delay of the arrival time (green line) and the inertia time (blue
line) as a function of the laser intensity. See text for details.

the ionized and the nonionized parts is considered using the
virtual-detector approach while here we only concentrate on
the ionized part. The whole current j = ρv is also related to
the probability density of the ground state, which will contam-
inate the observed time delay of the ionized wave function. In
comparison, the arrival time distribution in Fig. 5(a) is derived
from the postselected final Bohmian trajectories, correspond-
ing to the weak measurement value for the exit time [32,38].
For the short-range Yukawa potential, there is still a large exit
time delay between the arrival time peak and the instant of
the laser electric-field peak even though the offset angle of
the PMD is near zero. In Fig. 5(b), we show the time delay
δt between the arrival time peak and the instant of the laser
electric-field peak with respect to the laser intensity. One can
see that the time delay decreases with increasing the laser
intensity.

In the Bohmian mechanics, we can link any part of the
time-dependent wave function to the initial wave function at
t = 0 by the Bohmian trajectories. Thus, we can see the initial
position distribution of the ionized wave packet in the atto-
clock, as shown in Fig. 6. The initial position of the ionized
wave packet surrounds the center of the initial wave function.
Since the peak of the electric field (along the +y direction)
corresponds to the highest ionization rate, the angular distri-
bution of the initial position should peak in the −y direction.
Surprisingly, the angular distribution of the initial position
does not peak at the reverse direction of the peak electric
field. Rather, there is a deflection angle φ for the peak of the
angular distribution of the initial position relative to the −y
axis.

The origin of the deflection angle shown in Fig. 6 could
probably be understood as a result of the intrinsic inertia for
the wave function in response to the change of the electric field
in quantum mechanics. Previously, the Mandelstam-Tamm
time has been defined to investigate the wave function inertia
for a system with a time-independent Hamiltonian, i.e., the
inability to adopt instantaneously to a field [26]. Here, the
inertia time of the initial wave function in the strong field
might be intuitively related to the deflection angle in Fig. 6
by �t = φ/ω. In Fig. 5(b), the blue dashed line with squares
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FIG. 6. The initial position distribution of the ionized Bohmian
trajectories at the laser intensity I = 1.0×1014 W/cm2. There is
a deflection angle φ between the maximum of the initial position
distribution (solid line) with respect to the maximum field direction
(white dashed line). The white circle centered on the origin is used
to guide the eyes.

shows the inertia time with respect to the laser intensity. One
can see that the inertia time of the initial wave function is
almost 100 as for the H atom and it does not change with the
laser intensity.

IV. CONCLUSION

In summary, we have explored the attoclock with the
Bohmian trajectories. By turning off the quantum force of the
Bohmian trajectories, we found that the spread of the radial
distribution of the final PMD results from the effect of the
quantum force after the classical tunnel exit, which means
that the trajectory after the classical tunnel exit cannot be
simply considered to be classical. Furthermore, we ruled out
the influence of the quantum force after the classical tunnel
exit on the offset angle of the final PMD. We show that
the offset angle is mainly determined by the Coulomb effect
near the position of the classical tunnel exit. We also find
a deflection angle between the direction of the maximum of
the initial wave function distribution for the ionized Bohmian
trajectories and the direction of the electric-field peak. This
deflection angle might be relevant to the inertia time of the
initial wave function in response to the change of the laser
electric field.
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