
PHYSICAL REVIEW A 108, 063102 (2023)

Quantum-corrected semiclassical theory for strong-field ionization
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We develop a quantum-corrected semiclassical approach to study the strong-field ionization of an atom. In
this approach, the electron wave packet is propagated using Bohmian trajectories near the center of the Coulomb
potential and a Herman-Kluk propagator away from the center of the Coulomb potential. We employ this
approach to calculate the photoelectron momentum distributions from tunneling and multiphoton ionization of an
atom in strong laser fields. The results agree well with the numerical solutions of the time-dependent Schrödinger
equation. By selecting electrons released within one laser cycle, we remove the intercycle interference structure
from the photoelectron momentum distributions and study the sub-laser-cycle electron dynamics. We show that
the subcycle temporal information of the electron obtained by the quantum-corrected semiclassical approach is
consistent with the quasiclassical result in the tunneling ionization regime, while it differs from the quasiclassical
result in the multiphoton ionization regime. Furthermore, using a semiclassical backpropagation based on the
Herman-Kluk propagator, we obtain the information of the ionized wave packets near the tunnel exit and compare
them with the quasiclassical results.
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I. INTRODUCTION

Atoms or molecules can be ionized in a strong laser
pulse, leading to many highly nonlinear phenomena, such
as above-threshold ionization (ATI) [1], high-order harmonic
generation [2,3], and nonsequential double ionization [4,5].
According to the Keldysh-Faisal-Reiss (KFR) theory [6], two
ionization regimes can be distinguished by the Keldysh pa-
rameter γ = ω

√
2Ip/E0, where Ip is the ionization potential,

E0 is the field amplitude, and ω is the laser frequency. In
general, the tunneling ionization is dominated when γ � 1,
while the multiphoton ionization prevails when γ � 1.

Over the past decades, both tunneling and multiphoton
ionizations of atoms and molecules have been intensively
studied experimentally as well as theoretically. Various theo-
retical approaches have been developed. As the workhorse of
strong-field physics, strong-field approximation (SFA) [7,8]
was widely used, which does not account for the effect
of the excited bound states and the effect of the electron-
ion interaction in the continuum. However, both effects are
found to be particularly important to reproduce the exper-
imental results [9,10]. Generally, the numerical solution of
the time-dependent Schrödinger equation (TDSE) is the most
accurate approach. However, the TDSE approach cannot pro-
vide clear physical pictures for the strong-field phenomena
of interest and requires too much computing resource. Com-
pared to the TDSE method, the classical or quasiclassical
simulations show numerical simplicity and allow us to iden-
tify the mechanism underlying the strong-field phenomena
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in terms of classical trajectories [11–18]. These classical
or quasiclassical simulations include the classical-trajectory
Monte Carlo simulations [12], the quantum-trajectory Monte
Carlo method [16,17], the Coulomb-corrected SFA (CCSFA)
[13–15], which corrects the trajectories from the SFA the-
ory by accounting for the Coulomb field perturbatively, the
Coulomb quantum-orbit SFA [18], and so on. In those sim-
ulations, the classical trajectories start to propagate from the
position of the tunnel exit. Consequently, those classical and
quasiclassical models rely on the assumption of tunneling,
which precludes the applicability of those models to the
multiphoton ionization regime [19]. Moreover, it is still con-
troversial how the initial conditions of the electron trajectories
should be specified, i.e., the tunnel time, the position of the
tunnel exit and the initial velocity of the electron [20–24].
It was found that the final electron momentum distribution
depends sensitively on these initial conditions [20,25,26].
Besides, those classical trajectories ignored the quantum na-
ture of the tunneling ionization. Some studies used Bohmian
trajectories to consider the effect of the quantum potential
on the electron [27–29]. However, it is difficult to obtain a
convergent result for quantum interference using the Bohmian
trajectories.

Alternatively, a semiclassical propagator, developed by
Herman and Kluk [30–32], can also be used to investigate the
strong-field ionization. The Herman-Kluk (HK) propagator
is a semiclassical approximation of the quantum propagator,
involving real-valued classical trajectory [33–35]. Compared
to the classical and quasiclassical approaches, the HK prop-
agator has considered the quantum effect and thus it is
more accurate. More importantly, it can be employed in both
tunneling and multiphoton ionization regimes, providing an
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alternative perspective of the electron dynamics during strong-
field ionization. Previously, the HK propagator was employed
to investigate the problem of tunneling [36–38]. It was also
used in studying high-harmonic generation and strong-field
ionization [39–42]. However, those methods based on the HK
propagator cannot yield a quantitative agreement with the full
quantum result, e.g., TDSE. The main reason is that the HK
propagator is based on a semiclassical approximation to the
full Feynman path integral, which is only exact for a quadratic
potential [30]. For the Coulomb potential of a real atom, the
electron dynamics predicted by the HK propagator strongly
differ from those of the TDSE, especially near the center of
the Coulomb potential.

In this paper, we develop an approach based on the HK
propagator to study strong-field ionization. We propagate the
electron wave packet using the Bohmian trajectories near the
center of the Coulomb potential and the semiclassical HK
propagator away from the center of the Coulomb potential.
This approach is referred to as quantum-corrected semiclas-
sical (QCS) theory in this paper. We employ this approach
to calculate the photoelectron momentum distributions in
the tunneling ionization regime with an 800-nm laser field
and the multiphoton ionization regime with a 400-nm laser
field. The results agree well with the TDSE. Using the QCS
method, we also study the subcycle electron dynamics and
obtain the information of the electron at near the tunnel exit.

This paper is organized as follows. In Sec. II, the theoret-
ical methods are described, and the transformation from the
Bohmian trajectory to the semiclassical HK propagation is
shown. In Sec. III, a comparison of the QCS model with the
TDSE as well as the CCSFA is presented. Finally, we give a
brief summary of the paper in Sec. IV. Atomic units (a.u.) are
used throughout unless specified otherwise.

II. THEORETICAL APPROACH

A. Time-dependent Schrödinger equation

To investigate the ionization of atoms in a strong laser
field, we numerically solve the two-dimensional TDSE of an
Ar atom with the single-active-electron approximation. In the
length gauge, the TDSE reads as

i
∂

∂t
ψ (r, t ) =

[
− ∇2

2
+ V (r) + r · E(t )

]
ψ (r, t ), (1)

where ψ (r, t ) is the time-dependent wave function in coor-
dinate space. The Coulomb interaction between the electron
and the ion is approximated by a soft-core potential V (r) =
−1/

√
r2 + a2 with a = 0.624 to match the ionization poten-

tial of the Ar atom. E(t ) is the laser electric field.
The split-operator spectral method [43] on a Cartesian grid

is used to numerically solve the two-dimensional TDSE. The
Cartesian grid ranges from −450 a.u. to 450 a.u. for each
dimension with a grid spacing of 0.22 a.u. The initial wave
function is prepared by imaginary-time propagation [44]. In
our simulation, the time step of the propagation is �t =
0.0441 a.u. For each 100 time steps, we split the electron wave
function into two parts,

ψ (r, τi ) = Ms(r, Rb)ψ (r, τi ) + [1 − Ms(r, Rb)]ψ (r, τi )

= ψinner (r, τi ) + ψouter (r, τi ), (2)

where Ms(r, Rb) = 1 − 1/(1 + e−(r−Rb)/�) is the absorption
function [45] that separates the propagation space into inner
and outer regions smoothly. In the present simulation, we
choose Rb = 150 a.u. and � = 8.0 a.u. The wave function
in the inner region is propagated under the full Hamiltonian
numerically, while in the outer region, the wave function is
projected to momentum space,

D(p, τi ) =
∫

e−i[p+A(τi )]·r

2π
ψouter (r, τi )d

2r. (3)

Here, A(t ) is the vector potential of the laser field. Then we
propagate D(p, τi ) to the end of the pulse using the Volkov
propagator [46],

D f (p, τi ) = e−i
∫ t f
τi

1
2 [p+A(t )]2dt D(p, τi ), (4)

where t f is the end of the propagation time. Finally, we obtain
the photoelectron momentum distribution (PMD) by

dP(p)

dEdθ
=

∣∣∣∣
∑
τi

D f (p, τi )

∣∣∣∣
2

. (5)

Here, E = p2/2 is the electron energy and θ is the angle of
the emitted electron.

B. Quantum-corrected semiclassical theory

The QCS theory is based on the Bohmian trajectories and
the semiclassical Herman-Kluk propagator. Before formu-
lating the QCS theory, we briefly describe the concepts of
Bohmian trajectories and semiclassical HK propagator.

1. Bohmian trajectories

In Bohmian mechanics [47], the wave function is replaced
by an ensemble of particles. Unlike in quantum mechanics,
which is determined by the TDSE, i.e., Eq. (1), those Bohmian
trajectories are describe by the Hamilton-Jacobi equation and
the continuity equation [47]. In principle, Bohmian mechan-
ics is equivalent to quantum mechanics. Compared with
the classical trajectory, the Bohmian trajectory includes the
effect of a nonlocal quantum potential and follows the cur-
rent of the probability density. In fact, Bohmian trajectories
can be obtained through the time-dependent wave func-
tion in the TDSE, instead of solving the Hamilton-Jacobi
equation [27,28]. As the wave function ψ (r, t ) evolves with
time, the Bohmian trajectories are propagated by solving the
equation of motion,

dr j (t )

dt
= v[r j (t ), t]. (6)

Here, j is the index of each Bohmian trajectory. The velocity
of the particle in Eq. (6) is given by

v = ∇
 = Im
∇ψ

ψ
(7)

in the length gauge. Here, 
 is the phase of the wave function
ψ . After initial discretization of the probability density into
a set of particles, a certain amount of probability within a
volume element ds j (t ), i.e., the trajectory weight, is associ-
ated with each trajectory. At the limit of ds j → 0, the weight
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of each Bohmian trajectory assigned at the initial time is
conserved over the time evolution [48,49].

2. Semiclassical Herman-Kluk propagator

To obtain the wave function at time t , in addition to the
direct solution of the TDSE in Eq. (1), we can write it as an
integral over the initial wave function

ψ (r, t ) =
∫

dr′K (r, r′, t, 0)ψi(r′), (8)

where K (r, r′, t, 0) is the full quantum propagator. Physically,
K (r, r′, t, 0) describes the amplitude for a transition from
the point described by coordinates r′ at time 0 to the point
described by coordinates r at time t . Following the work by
Herman and Kluk [30], the quantum propagator is replaced
with the semiclassical approximation by

KHK(r, r′, t, 0) = 1

(2π )N

∫
dp

∫
dqC(p, q, t, 0)

× eiS(p,q,t,0) 〈r|pt qtγ2〉 〈pqγ1|r′〉 . (9)

Here, (pt , qt ) is the phase space point at time t that evolves
classically from the initial phase space point (p, q). N is the
dimension of the system. The classical action S along the
trajectory is

S(p, q, t, 0) =
∫ t

0
dτ [pτ q̇τ − H (pτ , qτ , τ )]. (10)

Here, H is the Hamiltonian of the system. The coherent state
wave packet |pqγ 〉 with average position q and momentum p
takes the form

〈r|pqγ 〉 =
(

2γ

π

)N/4

exp[−γ (r − q)2 + ip(r − q)]. (11)

γ is the width parameter of the coherent state. The prefactor
C(p, q, t, 0) is defined by

C(p, q, t, 0) =
(

π

2

)N/2

(γ1γ2)−N/4

×
∣∣∣∣ 1

2π i

[
− ∂pt

∂q
+ 2iγ2

∂qt

∂q

− 2iγ1(−∂pt

∂p
+ 2iγ2

∂qt

∂p

)]∣∣∣∣
1/2

. (12)

The branch of the square root is chosen so that C(p, q, t, 0)
is a continuous function of time for t > 0. The four time-
dependent factors in Eq. (12) can be obtained by numerically
integrating the following differential equations [35]:

d

dt

(
∂ pti

∂z j

)
= −

N∑
k=1

(
∂2H

∂ ptk∂qti

∂ ptk

∂z j
+ ∂2H

∂qtk∂qti

∂qtk

∂z j

)
,

d

dt

(
∂qti

∂z j

)
=

N∑
k=1

(
∂2H

∂ ptk∂ pti

∂ ptk

∂z j
+ ∂2H

∂qtk∂ pti

∂qtk

∂z j

)
, (13)

where z = p or q. Then, the propagation of the initial wave
function can be approximated by

ψHK(r, t ) = 1

(2π )N

∫
dp

∫
dqC(p, q, t, 0)

× eiS(p,q,t,0) 〈r|pt qtγ2〉 〈pqγ1|ψi〉 . (14)

The HK propagator can be thought of as an expansion
in an overcomplete set of coherent state wave packets. The
centers of the coherent state wave packets follow classical
trajectories up to time t , at which point the coherent state
wave packets are summed up to reconstruct the propagator.
For the original HK propagator, the width parameter is set to
be unchanged during the classical propagation, i.e., γ1 = γ2,
which is also known as the frozen Gaussian approximation
[30–32]. Subsequently, it was shown that these Gaussian
widths can differ from each other to better reflect the char-
acteristic sizes of the initial and final wave functions [42].
Overlaps of the |pt qtγ1〉 to the |pt qtγ2〉 basis are included
in the prefactor C(p, q, t, 0) [34]. In contrast to the famil-
iar Van Vleck–Gutzwiller (VVG) expression [50], the HK
expression describes the propagator in terms of classical tra-
jectories obeying certain initial conditions. Thus, the difficult
and time-consuming search process needed to determine spe-
cial trajectories obeying double-ended boundary conditions
can be avoided in the HK propagator. The HK propagator is
more convenient to establish the classical-quantum correspon-
dence as compared to other semiclassical methods.

3. Quantum correction to the semiclassical propagator

Since the HK propagator is only exact for the quadratic
potentials, the wave functions calculated by the semiclassical
HK propagator for the Coulomb potential would deviate from
the exact solution of TDSE, especially near the origin of the
Coulomb potential. For strong-field ionization, the ionized
electron is influenced by both laser and Coulomb fields. Fre-
quently, the binding potential can be taken as a perturbation
as compared to the laser field at the position sufficiently far
away from the atomic core, and the binding potential itself
can also be expanded to Taylor series up to second order, with
small higher-order terms disregarded. Thus, the semiclassical
HK propagator is only accurate far away from the core. In
contrast, around the center of the core, the electron-ion inter-
action dominates over the influence of the laser field. For this
case, the ionic Coulomb potential cannot be approximated by
a quadratic potential. The electron dynamics near the atomic
core should be described by the full quantum propagation.

The QCS method we developed relies on the separation of
the coordinate space into inner and outer regions, as shown
in Fig. 1. The evolution of the electron in the inner region is
calculated by Bohmian trajectories. In the outer region, the
semiclassical HK propagator is used to describe the electron
dynamics. Note that the idea of partitioning the space and
treating each partition separately is similar to the analytical
R-matrix method [51].

In our quantum-corrected semiclassical theory, we first re-
place the position q of the initial phase space in Eq. (14) with
the position r j of the Bohmian trajectory at any propagation
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FIG. 1. Illustration of the quantum-corrected semiclassical ap-
proach. Inside the transformation boundary R with a radius ri (gray
dashed circle), the electron wave function is propagated using the
Bohmian trajectories. The Bohmian trajectories are transformed to a
set of Gaussian wave packets when they reach the transformation
boundary and are subsequently calculated using the semiclassical
HK propagator in the outer region.

time t ′
p,

ψHK(r, t ) = 1

(2π )N

∑
j

ds j (t
′
p)

∫
dpC(p, r j, t, t ′

p)

× eiS(p,r j ,t,t ′
p) 〈r|pt qtγ2〉 〈pr jγ1|ψ (t ′

p)〉 . (15)

This equation can be understood in the following way. Each
Bohmian trajectory is transformed to a bunch of Gaussian
wave packets in the momentum space at the same time t ′

p,
which is similar to the picture of optical diffraction in the spirit
of Huygens’ principle. After the transformation, the Gaussian
wave packets evolve classically with a phase accumulated
along the classical trajectories. For strong-field ionization,
we can replace the electron wave function with the Bohmian
trajectories. The Bohmian trajectories are affected by both
the classical and quantum potential, which are a full quan-
tum propagation. When the Bohmian trajectories reach the
boundary R, which is far from the parent core that the ionic
potential could be approximated by a quadratic potential, we
transform the corresponding Bohmian trajectories to a bunch
of Gaussian wave packets in the momentum space. After that,
the Gaussian wave packets evolve the same way as the semi-
classical HK propagation. Finally, the ionized electron wave
function can be written as

ψHK
ion (r, t f ) = 1

(2π )N

∑
j

ds j (t
c
j )

∫
dpC(p, R j, t f , t c

j )

× eiS(p,R j ,t f ,t c
j ) 〈r|pt f qt f γ2〉

× 〈
pR jγ1

∣∣ψ(
t c

j

)〉
, (16)

where t c
j is the time that the jth Bohmian trajectory crossed

the boundary. R j is the corresponding crossing position on
the boundary. The summation only includes these Bohmian
trajectories that can reach the boundary R, namely, the ionized
Bohmian trajectories.

The volume element ds j (t c
j ) in Eq. (16) can also be written

as

ds j (t
c
j ) = v⊥

(
t c

j

)
dRdτ. (17)

v⊥ is the normal component of the local velocity perpen-
dicular to the boundary at the crossing position. dR is the
corresponding element on the boundary R and dτ is the
crossing time element. Substituting Eq. (17) into Eq. (16) and
using the continuity of the volume elements, Eq. (16) can be
rewritten as

ψHK
ion (r, t f ) = 1

(2π )N

∮
R

dR
∫ t f

0
dτ

∫
dpv⊥(R, τ )

× C(p, R, t f , τ )eiS(p,R,t f ,τ )

× 〈r|pt f qt f γ2〉 〈pRγ1|ψ (τ )〉 . (18)

The first integral is over the boundary R. Based on Eq. (18),
we only need to calculate the local velocity and the projection
of the wave function onto the Gaussian wave packets on the
boundary along the propagation time τ to obtain the final
ionized electron wave function. Using the momentum repre-
sentation of the final Gaussian wave packets, we can obtain the
final ionized electron wave function in the momentum space

ψHK
ion (p′, t f ) = 1

(2π )N

∮
R

dR
∫ t f

0
dτ

∫
dpv⊥(R, τ )

× C(p, R, t f , τ )eiS(p,R,t f ,τ )

× 〈p′|pt f qt f γ2〉 〈pRγ1|ψ (τ )〉 , (19)

which is the main result of this approach. Note that v⊥ is the
velocity of the Bohmian particle perpendicular to the transfor-
mation boundary. Thus, the Bohmian trajectories are involved
in Eq. (19). Actually, we did not solve the Hamilton-Jacobi
equation or TDSE to obtain the Bohamian trajectories in the
inner region. Instead, we use the numerical solutions of the
TDSE to obtain the local velocity of the Bohmian trajectory
on the boundary according to Eq. (7) and then transform
the Bohmain trajectory to a set of Gaussian wave packets
according to Eq. (19). Though the Bohamian trajectories are
not actually calculated in this model, the derivation of Eq. (19)
relies on the concept of the Bohmian trajectories as described
above.

We implement the QCS in a two-dimensional space, simi-
lar to the above TDSE, and the time-dependent wave function
ψ (τ ) in Eq. (19) is provided by the TDSE. At the end of
the propagation time, we select the Gaussian wave packets
with central positions and momenta corresponding to positive
energies. In order to obtain the final photoelectron momen-
tum distribution, we also replace the central momenta of the
Gaussian wave packets at the end of the propagation time
with the the asymptotic momenta derived from Kepler’s laws
[52]. In the present work, we set the radius of the transfor-
mation boundary as ri = 20 a.u., and we have checked that
the obtained results are independent of the radius ri in the
vicinity of 20 a.u. The initial Gaussian width γ1 is set to be
0.02, while the final Gaussian width γ2 = γ1/30. Since the
second partial derivative of the ionic potential with respect to
position is so small in the outer region, the prefactor in Eq.
(12) can be simplified to C(p, R, t f , τ ) = 1

2 (γ1γ2)−1/2[γ2 +
γ1 − 2iγ1γ2(t f − τ )].
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FIG. 2. (a and b) PMDs and (c and d) wave-function probability
distributions at the end of a two-cycle circularly polarized laser pulse
for the laser intensity I = 1.4 × 1014 W/cm2. The laser wavelength
is 800 nm. (a) and (c) are the TDSE results and (b) and (d) are
obtained from the QCS. (e) The angular distributions of the PMDs
from TDSE (gray solid line) and QCS (red dash-dotted line).

III. RESULTS AND DISCUSSION

We first use the QCS theory to study atomic ionization by
a strong circularly polarized few-cycle laser field, which is
widely used for theoretical study of the attoclock [53–56].
The electric field E(t ) = −dA/dt of the laser pulse can be
obtained from the vector potential

A(t ) = A0 sin4(ωt/2n)[cos(ω800t )ex − sin(ω800t )ey]. (20)

Here, ω800 is the frequency of an 800-nm field. The pulse
length is parametrized with the number of optical cycles n. A
vanishes for |t − tc| > nT/2, where tc = nT/2 corresponds to
the pulse center and T = 2π/ω800 is the laser field period. In
Figs. 2(a) and 2(b) we show the PMDs calculated by the TDSE
and QCS in a two-cycle (n = 2) circularly polarized laser
pulse at the laser intensity of I = 1.4 × 1014 W/cm2. One
can see that the PMDs are identical for those two approaches,
both of which did not show clear interference patterns. The
angular distributions of the PMDs using those two approaches
are shown in Fig. 2(e), which also coincide with each other. In
Figs. 2(c) and 2(d) we show the probability distributions of the
ionized wave functions at the instant corresponding to the end
of the laser field. The result from the QCS is also identical to
that from the TDSE. Thus, the QCS approach is accurate for
the case of few-cycle circularly polarized laser fields.

FIG. 3. (a) The distribution of the perpendicular probability flux
j⊥ on the boundary along the propagation time in the 800-nm laser
field (left side) and the corresponding electric field (right side). φ is
the polar angle on the transformation boundary. The shadow area
shows the ionization within a single laser cycle. (b) The angular
distributions of the PMDs calculated by the TDSE (gray solid line)
and QCS (red dash-dotted line). (c and d) The PMDs calculated by
the TDSE (c) and QCS (d) in a seven-cycle elliptically polarized
laser field with the intensity of I = 1.4 × 1014 W/cm2. The laser
wavelength is 800 nm and the ellipticity is 0.85.

Next, we consider the case of an elliptically polarized
multicycle 800-nm laser field, where the quantum interference
becomes important. The electric field of the elliptically polar-
ized laser field is given by

E(t ) = E0 f1(t )[sin(ω800t )ex + ε cos(ω800t )ey]. (21)

Here, the ellipticity of the pulse ε is set to be 0.85. E0 is
chosen to be 0.0481 a.u. corresponding to an intensity of
1.4 × 1014W/cm2. f1(t ) is a trapezoidal envelope which has
seven optical cycles in total with two cycles ramping on and
off. In order to see how the Bohmian trajectories cross the
boundary in this multicycle laser field, we show the distribu-
tion of the perpendicular probability flux j⊥ on the boundary
along the propagation time in Fig. 3(a). One can clearly see
several periodic peaks on the distribution, which correspond
to the ionized wave packets in the strong 800-nm laser field.
The calculated PMDs using the TDSE and QCS are shown in
Figs. 3(c) and 3(d). The result from the QCS model agrees
with that from the TDSE. More importantly, the QCS can
reproduce the quantum interference structures of the ionized
wave packets in the PMD, i.e., the ATI rings in Figs. 3(c)
and 3(d), which is difficult to implement using the Bohmian
trajectory method. The angular distributions of the PMDs
from the TDSE and QCS methods, as shown in Fig. 3(b), also
agree with each other.

In the above 800-nm laser field, tunneling ionization is
dominated. In the following, we validate our QCS theory in
the multiphoton ionization regime. To this end, we use an el-
liptically polarized multicycle 400-nm laser field. The electric
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FIG. 4. The PMDs calculated by the (a) TDSE and (b) QCS in
the 400-nm laser field with the intensity of I = 1.4 × 1014 W/cm2.
The maxima of the PMDs for the second to fourth orders of the ATI
are indicated by the green arrows.

field is given by

E(t ) = E0 f2(t )[sin(ω400t )ex + ε cos(ω400t )ey]. (22)

The ellipticity of the pulse and the laser intensity are the
same as the 800-nm laser field. This corresponds to a Keldysh
parameter of 2.55 for the atom, indicating that multiphoton
ionization dominates under these conditions. f2(t ) is a trape-
zoidal envelope which has ten optical cycles in total with
three cycles ramping on and off. The PMDs calculated by the
TDSE and QCS methods are shown in Figs. 4(a) and 4(b).
Again, the result predicted by QCS theory resembles the full
quantum calculation. The QCS can also reproduce the ATI
rings in the TDSE. Previously, the attoclock experiment has
been extended to the case of the 400-nm laser field [57,58].
It was found that the angular offset with respect to the minor
axis increases with the electron energy. In Figs. 4(a) and 4(b),
one can clearly see the same trend for the offset angle in the
PMDs calculated by the TDSE as well as the QCS theory.

Because the QCS is a trajectory-based method, we can
study the electron dynamics within one laser cycle using the
QCS method. To this end, we only select those trajectories
that cross the transformation boundary within a time interval
of one cycle of the laser field, as shown by the shadow area
in Fig. 3(a). Consequently, the intercycle interference patterns
[59] can be removed from the PMDs. In Figs. 5(a) and 5(b),
we show the single-cycle ionized PMDs for the 800-nm and
400-nm laser fields. The remaining interference patterns in
Figs. 5(a) and 5(b) are due to the quantum interference of
the electron wave packets at the beginning and the end of the
selected time window in Fig. 3(a). One can observe that the
single-cycle ionized PMD for the 400-nm laser field shows
a larger angular offset than that for the 800-nm laser field,
which mainly comes from a larger Coulomb effect in the
400-nm laser field. Meanwhile, the ionized wave packets are
less distinguishable from each other for the 400-nm laser field.
To compare the QCS theory with previous trajectory-based
quasiclassical models, we also employ the CCSFA model [15]
to calculate the single-cycle ionization for the 800-nm and
400-nm laser field, as shown in Figs. 5(c) and 5(d). One can
see that the result from the QCS qualitatively agrees with
the CCSFA result for the 800-nm laser field, as shown in
Figs. 5(a) and 5(c). However, for the 400-nm laser field, the
PMD calculated by the CCSFA differs significantly from that
of the QCS. Particularly, the angular offset in the PMD cal-

FIG. 5. PMDs calculated by the (a and b) QCS and (c and d)
CCSFA by selecting the electrons released within a single cycle.
(a) and (c) are the results in the 800-nm laser field and (b) and (d) are
the results in the 400-nm laser field.

culated by the CCSFA is clearly smaller than the QCS result,
as shown in Figs. 5(b) and 5(d). This is because the CCSFA
model ignores many wavelike properties of the electron, e.g.,
diffraction, during the wave packet propagation, though a
phase is encoded in each trajectory. As a result, the CCSFA
method is less accurate in the multiphoton ionization regime.

The QCS theory involves real-valued classical trajectories
in the outer region, which allows us to study the subcycle
ionization dynamics. In the CCSFA, each point on the PMD is
linked to one trajectory released at a specific ionization time,
establishing a time-to-momentum mapping relation. However,
the QCS theory is based on an approximation to the Feynman
path integral. There are many trajectories corresponding to
each point on the PMD. Thus, in the QCS model, the time
is not a deterministic number, but a probability distribution.
Since all the real-valued trajectories in the QCS are born on
the transformation boundary, we use this beginning time to
explore the ionization dynamics in the following. According
to Eq. (19), the ionization amplitude for final momentum p′
can be written as

ψHK
ion (p′, t f ) =

∫ t f

0
F (p′, τb)dτb. (23)

Here, τb is the time when the Bohmian trajectories arrive at
the boundary. τb is referred to as crossing time in this paper.
F (p′, τb) is the crossing time probability amplitude, which is
given by

F (p′, τa) = 1

(2π )N

∮
R

dR
∫

dpv⊥(R, τb)

× C(p, R, t f , τb)eiS(p,R,t f ,τb)

× 〈p′|p′
t f

qt f γ2〉 〈pRγ1|ψ (τb)〉 , (24)
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FIG. 6. (a) The distribution of the crossing time at the transfor-
mation boundary for the peak of the PMD in an 800-nm laser field.
(b) The momentum-resolved average crossing time spectrum. (c) The
average crossing time as a function of the radial momentum for
several emission angles. (d) The average crossing time distributions
calculated by the QCS (red solid line) and CCSFA (green dash-dotted
line). The dashed lines with light color in (d) shows the average
crossing time distributions calculated by the short-range Yukawa
potential.

where p′
t f

is the asymptotic momentum of the final momen-
tum. In Fig. 6(a), we show the crossing time probability
distribution |F |2 for the peak of the PMD in Fig. 5(a) in
the 800-nm laser field. One can see that the crossing time
distribution is similar to a Gaussian distribution with a width
of around 10 a.u., reflecting the quantum property of the
QCS theory. In some previous studies, the Feynman path
integral was employed to explore the problem of the tunneling
time [60–64]. It is found that the tunneling time also shows
a probability distribution. Similar to that case, we define a
complex-valued average time as

〈τb〉 =
∫ ∞

0 τbF (p′, τb)dτb∫ ∞
0 F (p′, τb)dτb

. (25)

We find that the imaginary part of this average time is negli-
gible. Thus, we next discuss the real part of the average time.

Figure 6(b) shows the momentum-resolved average cross-
ing time spectrum calculated from the single-cycle ionization
of the 800-nm laser field. One can see that the average cross-
ing time increases along the clockwise direction, i.e., the
rotating direction of the elliptical electric field, consistent with
the principle of the attosecond angular streaking [53,65]. In
Fig. 6(c), we show the average crossing time as a function of
the radial momentum for momentum angle of θm, θm + 10◦,
and θm − 10◦. θm is the angle of the peak of the PMD in
Fig. 5(a). The average crossing time increases with the mag-
nitude of the radial momentum, indicating that the electron
with higher energy crosses the boundary later. In Fig. 7, we
show the result of the 400-nm laser field. The crossing time

FIG. 7. The same as Fig. 6 but for a 400-nm laser field. The
shadow area in (d) shows the difference of the average crossing time
distribution between the QCS and CCSFA methods.

distribution of the peak of the PMD also shows a width
of around 10 a.u., as shown in Fig. 7(a). The momentum-
resolved average crossing time spectrum calculated from the
single-cycle ionization of the 400-nm laser field is shown in
Fig. 7(b). The average crossing time also increases along the
rotating direction of the 400-nm elliptical electric field, which
is similar to the case of the 800-nm laser field. However, the
average crossing time as a function of the radial momentum,
shown in Fig. 7(c), is different from that of the 800-nm laser
field. The average crossing time increases with the radial
momentum at the low-energy region (pr < 0.4 a.u.), while
it decreases with the radial momentum for the high-energy
region (pr > 0.4 a.u.). This means that, at pr > 0.4 a.u., the
electron with lower energy has a smaller offset angle, which
is consistent with Fig. 4.

Using the QCS theory, we can achieve a momentum-to-
time mapping according to the average crossing time. In
Fig. 6(d), we show the calculated average crossing time dis-
tribution by the QCS in the 800-nm laser field, in comparison
with the result by the CCSFA. In the CCSFA, the crossing
time corresponds to the instant when the classical trajectories
arrive at the transformation boundary R. One can see that the
result from the QCS agrees closely with that from the CCSFA.
The average crossing time distribution in the 400-nm laser
field is shown in Fig. 7(d). Compared to the QCS result, there
are more electrons released at an earlier time in the CCSFA
method, as shown by the shaded area in Fig. 7(d), which
indicates that the electrons in the CCSFA simulation reach the
boundary earlier than those in the QCS. Since the electron-ion
interaction mainly occurs in the inner region, compared to
the QCS, the electrons in the CCSFA experience a shorter
interaction time and thus the ionic potential has a smaller
influence on the electrons. As a result, a smaller angular shift
appears in the CCSFA simulation, as compared to the QCS
method. For comparison, we also show the average crossing
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FIG. 8. (a and b) The wave-function probability distributions at
the peak of the electric field for the (a) 800-nm and (b) 400-nm
laser fields obtained by the QCS model. The instantaneous tunneling
direction is indicated by the white arrows. (c) The wave-function
probability distribution along the tunneling direction for the 800-
nm (red thick line) and 400-nm laser (blue thin line) fields. The
vertical dashed lines show the positions of tunnel exit calculated by
the CCSFA for the peaks of the PMDs. (d) The transverse velocity
distributions at the instant of the laser-field peak extracted from the
QCS (solid lines) and CCSFA (dashed lines).

time distributions for the short-range Yukawa potential [53]
in Figs. 6(d) and 7(d). One can see that the result from the
QCS agrees with that from the CCSFA when the Coulomb
tail is screened. There is also a clear time shift between the
results of the Coulomb potential and the short-range potential
in the 400-nm laser field, while the time shift becomes small
for the case of the 800-nm laser field. That indicates a larger
influence of electron-ion interaction in the 400-nm laser field
than the case of the 800-nm laser field.

To further study the electron dynamics near the tunneling
exit, we propagate the ionized electron wave packet back-
wards to the instant of the laser-field peak tp, at which the
electron location is very close to the tunnel exit position. Thus,
we can obtain the information of the electron near the tunnel
exit position using the QCS method. This backpropagation
method is similar to that used in Ref. [54], but it is based on
the HK propagator. Note that the HK propagator can still be
used near the the tunnel exit position if the backpropagated
wave packet spends a short time around the ionic core. The
ionized electron wave function at time tp can be written as

ψHK
ion (r, tp) = 1

(2π )N

∮
R

dR
∫ t f

0
dτ

∫
dpv⊥(R, τ )

× C(p, R, tp, τ )eiS(p,R,tp,τ )

× 〈r|ptpqtpγ2〉 〈pRγ1|ψ (τ )〉 . (26)

Here, we only backpropagate those trajectories that released
within one half laser cycle. In Figs. 8(a) and 8(b), we show
the wave-function probability distributions at the peak of the

electric field for the 800-nm and 400-nm laser fields. One can
see that the ionized wave packet for the 800-nm laser field at tp

is symmetric about the x axis, i.e., the tunneling direction, as
shown in Fig. 8(a). However, the ionized wave packet for the
400-nm laser field reveals a long tail in the upper half plane.
This tail is related to the low-energy electrons of the PMD in
Fig. 5(b).

A cut along the −x direction of Figs. 8(a) and 8(b) is
shown in Fig. 8(c). One can see that at the peak of the electric
field, the electron starts to propagate from some positions
which are very close to the tunnel exit. The most probable
position for the 400-nm laser field is closer to the nucleus
than that for the 800-nm laser field. For comparison, we also
show the positions of the tunnel exit obtained by the CCSFA
by the vertical dashed lines. In the CCSFA, the tunnel exit
for the 400-nm laser field is also closer to the nucleus than
that of the 800-nm laser field. This is because of the stronger
nonadiabatic effect in the 400-nm laser field [57]. The most
probable release position calculated by the QCS agrees quali-
tatively with the tunnel exit position calculated by the CCSFA.
However, one can still see a comparably large difference
between those two methods, especially for the case of the
400-nm laser field. This reflects a stronger wave nature of the
electron wave packet propagation for the 400-nm field, which
was ignored in the CCSFA method. Moreover, we can obtain
the transverse velocity of the ionized electron at the peak of
the electric field by calculating the local velocity v⊥ = (∇S)⊥.
Here, the transverse direction means the +y direction at the
instant of the electric-field peak. In Fig. 8(d), we show the
transverse velocity distributions for the ionized wave function
at the peak of the electric field calculated by the QCS model,
in comparison with the result by the CCSFA. One can see
that the peak of the transverse velocity distributions are the
same for those two models. The most probable transverse
velocity for the 400-nm laser field is larger than that for
the 800-nm laser field, indicating a stronger nonadiabatic ef-
fect for the tunneling ionization in the 400-nm laser field [57].
One can further see that the transverse velocity distributions
of the ionized electron at the peak of the electric field from
the QCS are narrower than those from the CCSFA and show
some sharp features on one side. Those result from the effect
of the HK propagator on the electron when the electron-ion
distance is larger than the classical tunnel exit position, sim-
ilar to the effect of the quantum potential on the electron in
Bohmian mechanics [28].

IV. CONCLUSION

In summary, we have developed a QCS approach to ex-
plore the electron dynamics in both tunneling ionization and
multiphoton ionization. The QCS method transforms each
Bohmian trajectory to a bunch of Gaussian wave packets
in analogy to optical diffraction, enabling a combination
of Bohmian trajectory and HK propagator during the wave
packet propagation. Using this method, we have reproduced
most of the relevant features in the PMDs of the attoclock in
both tunneling and multiphoton ionization regimes. By select-
ing the electron trajectories released within one laser cycle, we
remove the intercycle interference pattern from the PMDs and
obtain sub-laser-cycle electron dynamics during the ionization
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process. We find that the average crossing time of the electron
calculated by the QCS agrees with that using the quasiclassi-
cal method in the tunneling ionization regime while it differs
from the quasiclassical result in the multiphoton ionization
regime. We have also obtained the electron position and the
transverse velocity distributions near the tunnel exit by back-
propagating the ionized electron wave packets semiclassically
to the instant of the peak electric field. We hope the QCS can
be employed to study strong-field processes of more complex
targets in the near future, such as molecules and solids.
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