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We report on the scaling of the photoelectron holography
with the laser ellipticity in strong-field atomic ionization.
We find that the spacing of the holographic fringe gradually
decreases with increasing of the ellipticity. In terms of the
strong-field approximation, the scaling of the fringe spacing
with the laser ellipticity is explained by the effect of the ini-
tial transverse momenta at the tunnel exit. With increasing
of the laser ellipticity, a ridge structure arising from forward
scattering electrons is observed in the low-energy region
of the electron momentum distribution. An analytic for-
mula is obtained that demarcates the phase diagram for the
observation of the holographic pattern and ridge structure
in elliptically polarized laser fields. © 2018Optical Society of
America
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Electrons released from strong-field ionization of atoms and
molecules can be either emitted directly (direct electron) or
driven back to the parent ion by the oscillating laser field
(rescattering electron) [1]. Both direct and rescattering elec-
trons can be used to image the molecular structure and dynam-
ics thus they are very significant in strong-field physics. The
recollision electron can further trigger a variety of strong-
field phenomena, including high-harmonic generation [2–7],
nonsequential double ionization [8–11], and photoelectron
diffraction [12,13].

The direct and recollision electron wave packets can lead to
a quantum interference effect when their final momenta are the
same. This kind of interference is known as strong-field photo-
electron holography (SFPH), which was first reported by
Huismans et al. [14]. In SFPH, the recollision electron acts as
a signal wave, while the direct electron acts as a reference
wave. The interference of the signal and reference waves in pho-
toelectron momentum distribution (PMD) gives rise to the
hologram, i.e., a spider-like interference structure. Bian and

Bandrauk predicted the backward scattering photoelectron
holography in strong-field ionization of a molecule [15], which
was confirmed by subsequent experiments [16]. Because the
SFPH has encoded spatial and temporal information for both
ions and electrons, it has been used to extract the ion and elec-
tron dynamics in atoms and molecules with attosecond and
angstrom resolutions [16–21].

It has been explored how the photoelectron holographic
structure scales with several laser parameters, such as the pulse
duration, intensity, and wavelength [22]. The criteria for ob-
servation of the SFPH have also been investigated over a broad
range of the laser intensity and wavelength [23]. Ellipticity is
another crucial parameter for the laser pulse. However, to the
best of our knowledge, the dependence of the holographic pat-
tern on the laser ellipticity has not been investigated before. In
the elliptically polarized laser field, the rescattering electron
travels along a two-dimensional trajectory in the laser polariza-
tion plane. This might make the SFPH in the elliptically po-
larized laser pulses more complex than that in linearly polarized
laser fields.

To better understand the SFPH in elliptically polarized laser
fields, we report on the scaling of the holographic pattern with
the laser ellipticity in this Letter. We measure the PMDs from
the ionization of Ar atoms in elliptically polarized laser pulses
with the ellipticities ranging from 0 to 0.3 at the wavelength of
800 nm. We find that the spacing of the holographic fringe
decreases gradually with increasing of the ellipticity. Based
on the strong-field approximation (SFA) model, we show that
the decrease of the holographic fringe spacing comes from
the faster change of the phase difference between the direct
and rescattering electrons due to the larger initial transverse
momenta at larger ellipticities. With increasing of the laser
ellipticity, a ridge structure appears in the low-energy region,
which comes from forward scattering electrons. The critical
conditions are obtained for the observation of the photoelec-
tron holography and ridge structure in the elliptically polarized
laser fields.

Experimentally, we used a cold target recoil ion momentum
spectroscopy (COLTRIMS) to measure the PMDs of Ar atoms
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exposed in strong laser pulses [24] (for the principle, see
Ref. [25]). The laser pulses were generated from a Ti:sapphire
femtosecond laser system with a repetition rate of 5 kHz at the
center wavelength λ of 800 nm. The pulse duration was almost
40 fs. The generated laser pulse was initially linearly polarized,
and its polarization was controlled by a λ∕2 plate and a
λ∕4 plate with rotating of the λ∕2 plate. The laser pulse was
then focused into the supersonic beam in the main chamber of
the COLTRIMS system by a parabolic mirror (f � 75 mm).
A uniformed electric field at about 8.5 V/cm and a uniformed
magnetic field at about 8.7 G were used to collect the photo-
electrons and photoions. The three-dimensional momenta
of the electrons and ions were reconstructed from the time
of flights and the positions of the particles on the detectors.
The laser intensity in the experiment was almost
�1.3� 0.2� × 1014 W∕cm2.

Figures 1(a)–1(c) show the measured PMDs from the
single ionization of Ar atoms by strong laser fields with
different ellipticities (λ � 800 nm). The laser ellipticities for
Figs. 1(a)–1(c) are 0, 0.1, and 0.2, respectively. All the PMDs
reveal distinct spider-like interference patterns, as marked by
the dashed lines in Figs. 1(a)–1(c). Those spider-like structures
come from the holographic interferences between the direct
and forward scattering trajectories [14,22]. In the linearly po-
larized laser field [Fig. 1(a)], the spider-like structure is symmet-
ric with px � 0. As expected, with increasing of the laser
ellipticity, the holographic structure becomes asymmetric
and, the momentum spectra rotate clockwise under the influ-
ence of the long-range Coulomb potential [26], as shown in
Figs. 1(b) and 1(c).

To reveal how the holographic fringe scales with the laser
ellipticity, we show in Fig. 1(d) a series of lineouts taken from
Figs. 1(a)–1(c) at pz � 0.3 a:u: for different ellipticities. One
can see that the fringe spacing slightly changes with the laser
ellipticity. To quantitatively show the scaling laws, we show in
Fig. 2(a) the fringe spacing with respect to the ellipticity. One
can see that the fringe spacing gradually decreases with the in-
crease of the laser ellipticity at both pz � 0.3 and pz � 0.2 a:u.

In the following, we use a generalized strong-field approxi-
mation (gSFA) model to analyze the scaling of the photoelec-
tron holographic pattern with the laser ellipticity, which has
successfully predicted the scaling of the holographic fringe spac-
ing with the laser intensity and wavelength [22]. The final elec-
tron momentum distribution within the gSFA is expressed as
ψ total � ψ sig � ψ ref , where ψ sig and ψ ref indicate the ionization
probabilities of the rescattering electron (signal wave) and direct
electron (reference wave), respectively. The phase of each tra-
jectory is given by the classical action along the path, i.e.,
S � −

R
∞
t0
�v2�t�∕2� I p�dt . Therefore, the phase difference

between the forward scattering and direct trajectories is

ΔS � −
1

2

Z
tc

t sig0

�v2z � v2x�dt �
1

2

Z
tc

t ref0

�v2z � v2x�dt

� I p�t sig0 − t ref0 � � ΔSIm, (1)

where t sig0 and t ref0 are the ionization times for the rescattering
and direct electrons, respectively. Ip is the ionization potential,
tc is the rescattering time, and ΔSIm is the difference of
the classical action in imaginary time. The time-dependent
electron velocities along the major and minor axes of the laser
ellipse can be expressed as vz � vz0 � Az�t� − Az�t0� and
vx � vx0 � Ax�t� − Ax�t0�, respectively. Az�t� and Ax�t� are
the vector potentials along the major and minor axes, respec-
tively. vz0 and vx0 are the initial velocities at the tunnel exit.

Fig. 1. (a)–(c) show the measured PMDs from single ionization of
Ar in linearly and elliptically polarized laser pulses at the intensity of
1.3 × 1014 W∕cm2 (λ � 800 nm) with the ellipticities of 0, ∼0.1,
and ∼0.2, respectively. pz and px are the electron momenta along
the major and minor axes of the laser ellipse, respectively. The momen-
tum spectra are integrated over jpyj < 0.05 a:u:, where py is the
momentum along the laser propagation direction. The dashed lines
show the minima of the holographic patterns. (d) shows the measured
momentum distributions along the px direction at different ellipticities
for pz � 0.3 a:u. The slice range of pz is 0.3� 0.01 a:u. The vertical
dashed lines and the arrows in (d) are used to show the fringe spacing
of the holographic patterns.

Fig. 2. (a) and (b) show the measured and simulated fringe spacing
with respect to the laser ellipticity for pz � 0.3 and pz � 0.2 a:u:
(c) and (d) show the calculated phase difference ΔS and �vsigx0 − vrefx0 �2
between the rescattering and direct trajectories with respect to px ,
respectively. The inset in (d) shows the time difference �tc − t0� with
respect to px .
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The interference patterns are determined by this phase differ-
ence, i.e.,W � cos2�ΔS∕2�. The ionization times and the ini-
tial velocities are obtained by solving the saddle-point equations.
Here we have ignored the pre-exponential terms in the gSFA.

Figure 2(b) shows the fringe spacing of the holographic
structure with respect to the ellipticity at pz � 0.3 and pz �
0.2 a:u: calculated by the gSFA model. One can see that the
spacing of the holographic fringe calculated by the gSFA also
decreases gradually with the laser ellipticity, which is consistent
with the experimental results in Fig. 2(a). Comparing Fig. 2(a)
with Fig. 2(b), one finds that the fringe spacing of the gSFA is
larger than the experimental results, and the calculated shift in
fringe spacing is smaller than those observed experimentally.
This might be due to the effect of the Coulomb potential,
which is neglected by the gSFA. It has been shown before that
the long-range Coulomb potential has a significant influence
on the SFPH [27]. As a result, the gSFA can only give quali-
tative agreement with the experiment [22].

We next analyze the scaling of the fringe spacing with the
ellipticity by simplifying the phase difference in Eq. (1). The
phase difference is simplified based on the following three as-
sumptions: (1) the phase difference in imaginary time plays a
minor role in the holographic pattern, (2) the interference pat-
tern is mainly determined by the phase difference acquired in
the x axis, and (3) the ionization times of the direct and rescat-
tering electrons are nearly the same, i.e., t sig0 � t ref0 � t0. Thus,
the phase difference in Eq. (1) can be expressed as

ΔS ≈ −�vsigx0 − vrefx0 �2 · �tc − t0�∕2. (2)
In a linearly polarized laser field, Eq. (2) can be rewritten as

ΔS � −p2x�tc − t0�∕2, because vsigx0 � 0 and vrefx0 � px . This
phase difference has been identified as the key term responsible
for the formation of the hologram in a linearly polarized laser
field [14,22]. Figure 2(c) shows the phase difference calculated
by Eq. (1) with respect to px at pz � 0.3 a:u: for three ellip-
ticities. One can see that the phase difference ΔS increases
faster with px for larger ellipticities. According to Eq. (2),
the holographic pattern (or the phase difference) scales with
�tc − t0� and �vsigx0 − vrefx0 �2. Figure 2(d) shows �vsigx0 − vrefx0 �2 with
respect to px , and the inset of Fig. 2(d) shows the time differ-
ence �tc − t0� with respect to px for different ellipticities. One
can see that �tc − t0� is nearly the same for ε � 0 and 0.2, while
the differences of the initial transverse momentum deviate
with each other for different ellipticities. The dependence of
�vsigx0 − vrefx0 �2 on px [Fig. 2(d)] is very similar to the dependence
of the phase difference on px [Fig. 2(c)] for different ellipticities,
which indicates that the assumptions 1, 2, and 3 are valid under
our experimental condition. With increasing of the ellipticity, a
larger initial transverse momentum for the rescattering electron
is needed to counteract the electron motion along the minor
axis of the laser ellipse. Because the phase difference between
the rescattering and direct trajectories is proportional to
�vsigx0 − vrefx0 �2, the phase difference will increase faster as a func-
tion of px . As a result, the fringe spacing becomes narrower with
increasing of the ellipticity. Thus, the scaling of the fringe spac-
ing with the ellipticity is mainly determined by the effect of the
initial transverse momentum at the tunnel exit.

With increasing of the ellipticity to ∼0.3, we see a clear ridge
structure at almost px � 0 in Fig. 3(a), which is separated from
the common two-lobe structure. This ridge structure has also
been observed recently in elliptically polarized laser fields at a

long wavelength of 3400 nm with small ellipticities of [0.07,
0.11] [28]. It was shown that the ridge structure comes from
the forward scattering electrons, while the two-lobe structure
comes from the direct electrons.

The question of the conditions under which the ridge struc-
ture appears in the PMD remains a key issue that should be
addressed. We next investigate the critical ellipticities for the
observation of the ridge structure in the elliptically polarized
laser field. The ridge structure appears when two conditions
are satisfied: (a) the direct electron and the rescattering electron
are separated from each other in the PMD; and (b) the ioniza-
tion probability of the rescattering electron is comparable to
that of the direct electron. The conditions of (a) and (b), re-
spectively, give the lower and upper limits for the ellipticities to
observe the ridge structures.

According to condition (a), the ridge structure appears
when the difference of the final momenta between the direct
and forward scattering electrons is larger than the width of
the PMD. The direct electron achieves a drift momentum
pdrift � εE0∕ω from the laser field along the minor axis while
the rescattering electrons mainly appear at almost px � 0.
According to Delone–Krainov theory [29], the transverse
momentum spread is a Gaussian distribution with a width

of σ⊥ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E0∕

ffiffiffiffiffiffiffi
2I p

pq
. Thus, the critical condition to separate

the direct and rescattering electrons in the PMD is pdrift � σ⊥.
As a result, the lower limit of the ellipticity to observe the ridge
structure is

ε � 2πc
λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

E0

ffiffiffiffiffiffiffi
2I p

p
s

, (3)

where c is the light speed.
According to condition (b), the ridge structure disappears

when the ionization probability of the rescattering electron
is much lower than that of the direct electron. The initial trans-
verse momentum of the rescattering electron is vsigx0 � εE0∕ω
[30]. For a Gaussian distribution, the probability of the rescat-
tering electron decreases to 0.01 of the maximal probability
when v⊥ �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ln 10

p
σ⊥. Experimentally, it is difficult to ob-

serve the contribution of the rescattering electron with such

Fig. 3. (a) Measured PMD of Ar at the ellipticities of ∼0.3. The
same conditions are used as in Figs. 1(a)–1(c). (b) shows the phase
diagram (laser ellipticity with respect to wavelength) for the holo-
graphic patterns and ridge structures in elliptically polarized laser
pulses. The dashed and solid lines are the demarcation lines according
to Eqs. (3) and (4), respectively. Three regions labeled I, II, and III are
dissected by those two lines (see text for details). The squares and
circles are the experimental data of this Letter, and the blue diamonds
are the experimental data in Ref. [28].
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low probability. Thus, the upper limit of the ellipticity to
observe the ridge structure is vsigx0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ln 10

p
σ⊥, i.e.,

ε �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ln 10

p 2πc
λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

E0

ffiffiffiffiffiffiffi
2I p

p
s

: (4)

Because the critical ellipticities in Eqs. (3) and (4) are weakly
dependent on the laser intensity and the ionization potential, in
Fig. 3(b), we show the phase diagram (the ellipticity with respect
to the wavelength) for the observation of the holographic pattern
and ridge structure in elliptically polarized laser pulses. The
dashed and solid lines are plotted according to Eqs. (3) and (4),
respectively. The holographic pattern appears in region I, the
ridge structure appears in region II, and neither of them appears
in region III. When considering the Coulomb focusing effect,
those two demarcation lines might be slightly shifted.

To validate the results in Eqs. (3) and (4), we show the ex-
perimental data of this Letter (λ � 800 nm) in Fig. 3(b). The
holographic patterns appear at the ellipticities of 0.1 and 0.2
(green squares), and the ridge structure appears at 0.3 (red
dot). These predictions agree well with the experimental results,
as shown in Figs. 1 and 3(a). The blue diamonds in the region
II of Fig. 3(b) show the experimental results in Ref. [28], where
the ridge structure was observed at the ellipticities of 0.07 and
0.11 for the wavelength of 3400 nm. As expected, these two
ellipticities are located in the region II of Fig. 3(b).

In summary, we measured the PMDs from single ionization
of atoms in linearly and elliptically polarized laser pulses. We
investigated the scaling of the photoelectron holography with
the laser ellipticity for small ellipticities. We found that the
spacing of the holographic fringe becomes gradually narrower
with increasing of the ellipticity. The physical origin of the scal-
ing of the photoelectron holography with the ellipticity is differ-
ent from the scaling with other laser parameters, e.g., wavelength
and intensity, in a linearly polarized laser field, where the time
difference between the rescattering and ionization plays the
crucial role [22]. In elliptically polarized laser fields, the initial
transverse momenta become larger for larger ellipticity, leading
to faster changes of the phase difference between the direct and
forward scattering trajectories as a function of the final transverse
momenta. With increasing of the laser ellipticity, the forward
scattering electrons are separated from the direct electrons in
the PMD, forming a ridge structure in the low-energy region.
We have obtained the critical condition to observe the photo-
electron holography and ridge structure in the PMDs, shedding
light on the rescattering effect in elliptically polarized laser fields.
The separation of the direct and forward scattering electron
in the PMD is potentially valuable and may open a new door
towards probing molecular structure and dynamics using the
forward scattering electrons [31].
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