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Photoelectron holography in strong-field tunneling ionization by a spatially inhomogeneous field
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Photoelectron holography in strong-field tunneling ionization is an efficient way to probe the structures
and the ultrafast dynamics information of atoms and molecules. Manipulating the process of photoelectron
holography is important for its application. Here, we study theoretically strong-field photoelectron holography
in the spatially inhomogeneous field by solving the time-dependent Schrödinger equation. Our results show
that the returning energy of the rescattering electron is greatly enhanced in the spatially inhomogeneous field,
and the holographic interference pattern can be separated from other types of interference in the photoelectron
momentum distribution. Moreover, our results show that the time window of tunneling ionization wherein the
electron could be driven back to induce holography is broadened in the inhomogeneous field. These properties
are beneficial for the application of photoelectron holography in probing the atomic and molecular structures
and dynamics. The origin for these properties is analyzed with the classical trajectory model.
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I. INTRODUCTION

Strong-field tunneling ionization is a fundamental process
in laser-matter interactions. The tunneling process gives rise
to many important phenomena, such as high-order harmonic
generation (HHG) [1], above-threshold ionization (ATI) [2],
and nonsequential double ionization (NSDI) [3,4]. With the
semiclassical three-step model, the process can be described
well [5,6]. When a laser field interacts with an atom or
molecule, the bound electron is tunneling-ionized through the
potential barrier. The ionized electron is further accelerated by
oscillation laser field. Depending on the tunneling ionization
time, the electron can return to the vicinity of the parent ion
and interact with it to produce ATI, HHG, or NSDI. During the
past decades, the rescattering process has attracted increasing
interest, and it has been widely applied in attosecond pulse
generation [7], laser-induced electron diffraction [8], molecu-
lar orbital tomography [9], etc.

Due to the coherent nature of the electron wave packets
(EWPs), the tunneling ionized electron that interacts with the
parent ion before reaching the detector (rescattering electron)
can interfere with that without interaction with the parent ion
(direct electron), results in strong-field photoelectron hologra-
phy (SFPH) [10]. The holographic structure was first observed
in experiments for xenon [10] and then observed in other
atoms and molecules [11–15]. It is believed that SFPH is an
efficient way to probe the atomic and molecular structures
and the ultrafast electron dynamics [16–30]. Recently, we
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have shown that with the concept of SFPH, the phase of
the elastic-scattering amplitude could be retrieved [21]. More
interestingly, the attosecond charge migration in molecules
could also be probed with unprecedented temporal and spatial
resolutions [22]. The tunneling ionization process itself could
also be probed with SFPH. For example, it has been shown
that the hologram in the photoelectron momentum distribution
(PEMD) encodes the phase structure of the tunneled electron
wave packet [15,18]. This phase structure is directly related to
the launching position of the tunneling electron wave packet
[27]. Therefore, the initial transverse displacement of the
EWP from molecular strong-field tunneling ionization has
been successfully retrieved [27]. Moreover, with the concept
of SFPH, the correspondence between the tunneling ioniza-
tion time and final electron momentum [17], and the initial
longitudinal momentum of the tunneled electron [19] have
been deeply surveyed.

Previous studies of SFPH mostly focused on the spatially
homogeneous field. In recent years, the strong-field ioniza-
tion phenomena in the spatially inhomogeneous field have
attracted much attention [31–59]. When a laser pulse illu-
minated on a metal nanostructure, the near-field is greatly
enhanced and becomes spatially inhomogeneous in the vicin-
ity of the nanostructure [41]. The spatial inhomogeneity of
the near-field can alter the electron dynamics, and its effect
can be characterized by the parameter δ = lF /lq, where lF is
the decay length of the enhanced field and lq = eE/mω2 is
the electron quiver amplitude [31]. For δ � 1, the electron
approximately quivers in a homogeneous field. For δ � 1,
the electron rapidly leaves the vicinity of the nanostructure.
Previous works mainly focused on the regime of δ ≈ 1, where
the electrons can be effected by the spatial inhomogeneity to
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the greatest extent. In the inhomogeneous field, the trajecto-
ries of the electrons after ionization are very different from
that in homogeneous field. With the development of related
research, many interesting phenomena and applications have
been found. For example, the electron ionized from the inho-
mogeneous field can gain a higher energy, even to the keV
regime [34,57]. This high energy leads the extension of the
harmonic cutoff [41–44]. In addition, the potential symmetry
is broken by the spatial inhomogeneity, and thus the odd
and even harmonics appear simultaneously [41,42]. More-
over, the electron trajectory is modified by the inhomogeneous
field, which provides a condition for the generation of pulses
with picometer spatial and attosecond temporal [45–47]. Fur-
thermore, through numerically solving the three-dimensional
time-dependent Schrödinger equation (3 D-TDSE), it is found
that the electron momentum distribution is sensitive to the
carrier envelope phase (CEP) of the laser field [38], and the
higher-energy structure in strong-field ionization is related
to the decay length lF [39]. The latter can provide tool for
near-field characterization [39]. Very recently, it has demon-
strated that changing the direction of the enhanced field can
control the electron trajectories and modify the ellipticity of
the emitted attosecond pulses [40]. The spatially inhomoge-
neous field has also been applied to molecules. For H+

2 in
the inhomogeneous field, a photodissociation path, two-step
transition mediated by vibrationally excited states, is opened
[55], and the electron localization can be controlled [56].

In this study, we theoretically study the SFPH in the
spatially inhomogeneous field. The PEMDs are obtained by
numerically solving the two-dimensional TDSE. We demon-
strate that the electrons ionized in different cycles can be
separated in the momentum space, and the holographic in-
terference patterns can be separated from other types of
interference. With the classical trajectory model, we show
that the time window of tunneling ionization, wherein the
electron rescatters with the parent ion to induce holography,
can be broaden in the inhomogeneous field. In addition, it also
shows that the significant increasing of the electron energy
and the change of the travel time originate from the spatial
inhomogeneity. By changing the CEP and the strength of
spatial inhomogeneity, the effect of the spatial inhomogeneity
on the trajectories can be controlled. These properties benefit
the application of photoelectron holography in probing the
atomic and molecular structures and dynamics.

II. NUMERICAL METHODS

To investigate the tunneling ionization driven by the
spatially inhomogeneous field, we numerically solve the
two-dimensional TDSE (2D-TDSE) with the single-active-
electron (SAE) approximation. The TDSE reads [atomic units
(a.u.) are used throughout unless stated otherwise]

i
∂�(�r, t )

∂t
= H (�r, t )�(�r, t ), (1)

where H (�r, t ) is the Hamiltonian. In the length gauge, it reads

H (�r, t ) = 1

2
�2 + Vatom(�r ) + Vlaser (�r, t ), (2)

where Vatom(�r ) is the atomic potential and Vlaser (�r ) represents
the potential due to the laser field. We choose the effective

soft-core potential to describe the atomic potential:

Vatom(�r ) = − 1√
x2 + y2 + a

, (3)

where a is the soft parameter, which is set to be 0.65 to
match the ground-state energy of hydrogen (Ip = 0.5 a.u.).
Nanostructure with different shapes can generate different
spatially inhomogeneous field, which has a different influence
on the trajectories of electrons [47]. We consider the spatially
inhomogeneous field generated by a nanotip, which decays
exponentially. In previous work, this field is approximated
as linearly decreasing, and this approximation is widely used
in the study of the electron dynamics in the inhomogeneous
fields [34–42]. With this approximation, the laser field can be
written as

�E (�r, t ) = E0(1 + 2εx) f (t )sin(ωt + φ)x̂. (4)

Here, φ is the CEP, ω = 0.0285 a.u. is the central frequency of
the 1600-nm laser field, and f (t ) is the pulse envelope which
has a sin2(πt/Tp) form with a duration of Tp = 4T , where
T is optical cycle period of the laser field. The intensity I
of the 1600-nm laser field is fixed at 1 × 1014 W/cm2. ε is
another parameter characterizing the “strength” of the spatial
inhomogeneity, and the relation between ε and decay length
is lF = 1/2ε. We take two cases, ε = 0.003 (lF = 8.3 nm),
corresponding to the inhomogeneous field where δ = 2.53,
and ε = 0, which means the spatially homogeneous field. It
should be noted that the inhomogeneous field will change its
direction on the negative semi-axis of the x axis due to the
linear approximation. To avoid this unphysical phenomenon,
we take the electric-field strength to be zero in the region of
x < −1/2ε. Therefore, the potential is written as

Vlaser (�r, t ) =
∫ �r

d�r · �E (�r, t )

= E0x(1 + εx) f (t )sin(ωt + φ). (5)

To solve the 2D-TDSE numerically, we employ the spilt-
operator spectral method on a Cartesian gird [60]. The initial
wave function is obtained by imaginary-time propagation
[61]. For the inhomogeneous field, when the wave function
propagates to the end of the laser pulse, we split it into two
parts: an inner region (0 − Rc) and outer region (Rmax − Rc),
where Rc is the absorbing boundary and Rmax is the boundary
of the whole grid space [62]. After the end of the laser pulse,
we propagate the wave packet without field for two cycles. At
the last time τ , �(τ ) is given by

�(τ ) = �(τ )[1 − Fs(Rc)] + �(τ )FsRc

= �(τ )in + �(τ )out. (6)

Here, Fs(Rc) = 1/(1 + e−(r−Rc )/�) is the absorbing function
and δ is the width of the crossover region. �(τ )out represents
the “ionized part.” The wave-packet propagates for two cycles
after the end of the laser pulse and is far from the nucleus.
Thus the effect of the Coulomb potential can be neglected, and
the wave packet �(τ )out can be transformed into momentum
space as a plane wave,

C( �p, τ ) =
∫

�(τ )out
e−i �p·�r

2π
d2�r. (7)
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FIG. 1. (a), (b) The PEMDs (logarithmic scale) for strong-field
tunneling ionization of a hydrogen atom (Ip = 0.5 a.u.) in an 1600-
nm single-color laser field with intensity I = 1 × 1014 W/cm2. The
top row shows the results of the spatially homogeneous field (ε = 0)
obtained by solving the TDSE. The middle and bottom rows corre-
spond to the results of the spatially inhomogeneous field (ε = 0.003)
obtained by (c), (d) the TDSE and (e), (f) the classical model, respec-
tively. The left and right columns represent the results of (a), (c), (e)
φ = 0 and (b), (d), (f) φ = π of the laser field, respectively.

Then, the final PEMD is obtained by

dP(�r )

dEdθ
= |C( �p, τ )|2, (8)

where E = | �p|2/2 is the final energy of electrons and θ is its
emission angle.

In our simulation, the time step of propagation is �t =
0.2 a.u. The Cartesian grid space ranges from −2000 a.u.
to 2000 a.u. for both the x-axis and y-axis directions with a
grid size of �x = �y = 0.3 a.u. The inner space boundary
is Rc = 200 a.u. with � = 4 a.u. The choice of Rc should be
large enough so that the Coulomb potential is negligible. But
if Rc is too large, some electron wave packets that propagate
not far enough will be lost, and the low-energy part of the
PEMD will be missing. Thus we choose Rc = 200 a.u., which
is an appropriate size.

III. RESULTS AND DISCUSSIONS

In Fig. 1, we show the PEMDs for strong-field tunneling
ionization of a hydrogen atom. Figure 1(a) shows the result
in the 1600-nm homogeneous field with I = 1 × 1014 W/cm2

and φ = 0. Figure 1(c) displays the PEMD driven by an inho-
mogeneous field with the same laser parameters as Fig. 1(a).
In Fig. 1(a), the momentum distribution is clustered in the
region of px ∈ [−3, 2] a.u. Due to the few-cycle pulse (Tp =
4T ), the PEMD is asymmetric about px = 0 in homogeneous
field. In Fig. 1(c), PEMD substantially shifts to the negative
direction and reaches px = −5 a.u. Moreover, the energy of
electrons with positive momentum is suppressed. This means
that the electrons obtain extra kinetic energy by traveling in
the inhomogeneous field, and the high-energy electrons only

focus on the region of negative momentum. In addition, the
PEMD is distinctly separated at about px = −2.6 a.u. and
these two parts represent electrons ionized in different half
cycles (as will be explained below). Figures 1(b) and 1(d) are
the same as Figs. 1(a) and 1(c), respectively, but for φ = π .
In the spatially homogeneous field, the PEMDs for φ = 0 and
φ = π are inversion symmetric, but this symmetry is broken
in the inhomogeneous field [45].

Figures 1(e) and 1(f) show the results obtained from the
classical model. In this simple model, the trajectory evolution
is determined by solving the classical Newton equation of
motion, and the influence of the Coulomb potential is ne-
glected. At a given time, which called the ionization time ti,
the electron is released at the position x(ti ) = 0, y(ti ) = 0,
with a zero longitudinal velocity vx(ti ) = 0 and a nonzero
transverse velocity vy. The weight of the classical trajectories
is given by the Ammosov-Delone-Krainov theory [63,64].
After being released, the electron is driven by the laser electric
field and reaches the detector directly or through a rescattering
process. For the latter, the electron returns back to the plane
where the parent ion is located at the rescattering time tr ,
i.e., x(tr ) = 0, and is elastically scattered at an angle which is
assumed to be uniformly distributed between 0 and π . After
the end of the laser field, the electron travels for two more
cycles (about 440 a.u.) without the field. Finally, the classi-
cal trajectories of both the direct and rescattering electrons
form the momentum distribution of the classical model. From
Figs. 1(e) and 1(f), it is shown that the results from the simple
classical model agree well with the TDSE results in Figs. 1(c)
and 1(d).

With the classical model, the tunneling ionization time of
electrons in different regions of the PEMD can be obtained.
Thus we separately calculated the PEMD of electrons released
from 1.5–2 T and 2–2.5 T by the classical model. The results
are shown in Figs. 2(b) and 2(c), respectively. In Figs. 2(d)
and 2(e), we show the enlarged views of the TDSE results in
Fig. 1(c). It is shown that the electrons ionized in different half
cycles are completely separated by the spatial inhomogeneity
of the laser field. The electrons of the high-energy region
are mostly ionized within 1.5–2 T, and the electrons ionized
within 2–2.5 T are concentrated in the low-energy region.
To show more intuitively the dynamic process of separation,
we show the evolution of the classical electron momentum
in Fig. 3. For the spatially homogeneous case in Fig. 3(a),
the final momentum of the electrons ionized within 1.5–2 T
(the thin light blue curves) and 2–2.5 T (the thick dark red
curves) are distributed in the same region px ∈ [−2, 1.5] a.u.
But for the spatially inhomogeneous case in Fig. 3(b), the
two parts are separated at about px = −2.6 a.u., which is
consistent with the PEMDs from the TDSE and the classical
model. It indicates that the separation is essentially due to the
different initial motion directions. This phenomena is caused
by the form of the spatial inhomogeneity of the electric field,
namely E (�r, t ) = (1 + 2εx)E (t ). The strength of the electric
field increases with the distance in the region of x > 0 but
decreases as the distance increases in the region of x < 0.
Thus, the electron moving in the positive direction can be
affected by the stronger electric field and gain more energy
from the field. But for the electron moving in the negative
direction, it feels a much weaker field and thus achieves a
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FIG. 2. (a) The electric field of the laser pulse at the origin. The
middle and bottom rows are the PEMDs for strong-field tunneling
ionization of a hydrogen atom. The middle row corresponds to the
electron tunneled out within (b) 1.5–2 T [the dashed blue curve
in panel (a)] and (c) 2–2.5 T [the dotted red curve in panel (a)],
respectively, which is calculated by the classical model. (d), (e) The
same as in panels (b) and (c) but calculated by the TDSE. The laser
parameters are the same as in Fig. 1 and φ = 0.

lower final energy. Therefore, the inhomogeneous field can
provide an efficient tool to separate the electrons ionized in
different cycles.

To analyze the interference structure, Fig. 4 shows the
enlarged views of the interference patterns. Figures 4(a) and
4(c) enlarge the interference patterns on the left part of the
PEMDs in Figs. 1(a) and 1(c), respectively. In Fig. 4(a), the

FIG. 3. The classical momentum evolution of the electrons tun-
neled out within 1.5–2 T (the thin light blue curves) and 2–2.5 T (the
thick dark red curves), for the case of spatial (a) homogeneity and
(b) inhomogeneity. The dashed green curves are the laser field at the
origin. Its parameters are same as Fig. 1 and φ = 0.

FIG. 4. (a), (b) Enlarged views of the interference patterns on
the left and right parts of the PEMD in Fig. 1(a), respectively. (c),
(d) Enlarged views of the interference patterns on the left and right
in parts of the PEMD of Fig. 1(c), respectively.

nearly horizontal fringes (the dashed lines) are referred to
the SFPH pattern, which originates from the interference of
the direct electrons and the near-forward-scattering electrons.
The other nearly vertical fringes (the solid curves) come from
the interference of the direct electrons tunneling ionized dur-
ing two adjacent quarter cycles of the laser pulse [65,66]
and are identified as the intracycle interference. However,
for the spatially inhomogeneous case, as shown in Fig. 4(c),
the intracycle interference pattern becomes invisible. In other
words, the electrons in the high-energy region come from a
single half cycle, and these electrons do not interfere with
other electrons ionized in adjacent quarter cycles. Moreover,
the holographic fringes in Fig. 4(c) (the dot-dashed lines)
shrink as px increases, which is the opposite of that in the
homogeneous field. This is because the relationship between
the travel time and the final momentum is different in the
two cases, as will be analyzed below. The interferences of
the electrons ionized within 2–2.5 T are shown in Figs. 4(b)
(the homogeneous field) and 4(d) (the inhomogeneous field).
It is shown that, for the homogeneous field, the holographic
interference still exists, while it is strongly suppressed for
the inhomogeneous field. The intracycle interference can only
be observed at low electron energies in the inhomogeneous
field [39].

The holographic pattern is determined by the phase dif-
ference between the direct and the near-forward rescattering
electrons, which can be written as [21,22,28–30]

�ϕ(py) = 1
2 p2

y(tr − ti ) + α + O(ζ 1). (9)

The first term corresponds to the phase difference between
the direct and rescattering electrons accumulated during the
propagation in the laser field, where ti and tr are the ioniza-
tion and rescattering time, respectively. The ionization time
is determined by the time of the electron released from the
atom, and the rescattering time is obtained when the electron
returns back to the plane that contains the parent ion and
is perpendicular to the direction of the electron motion. The
first term has been revealed by the strong-field approximation
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FIG. 5. Classical electron final kinetic energies as a function of
the ionization (blue dots) and rescattering (red diamonds) times in
the (a) homogeneous and (b) inhomogeneous fields, respectively. The
shaded parts represent the ionization time window of the rescattering
electrons which can be retrieved. The middle row shows the travel
time between ionization and scattering as a function of the final
momentum for the spatial (c) homogeneity and (d) inhomogeneity,
respectively. (e), (f) The same as panels (a) and (b), respectively, but
for the rescattering energies. The dashed green curves are the laser
field at the origin. The laser parameters are same as in Fig. 1 and
φ = 0.

and the semiclassical trajectory model [10,18,20]. It makes
the largest contribution to the phase difference. Furthermore,
the difference of the holographic fringes between the homo-
geneous and inhomogeneous fields is mainly caused by this
term, namely, the travel time (tr − ti ). The second term α is the
phase of the scattering amplitude, which denotes the phase of
the rescattering electrons obtained during scattering with the
parent ion [21]. The third term ζ ∼ ω/Ip is a small term that
can be ignored [21].

To analyze the dynamics of electrons in the PEMDs, we
trace the classical trajectories of the near-forward rescattering
electrons. Figures 5(a) and 5(b) show the final energy of elec-
tron as a function of the tunneling ionization time (blue dots)
and the rescattering time (red diamonds), in the homogeneous
and inhomogeneous fields, respectively. In Fig. 5(a), only
electrons ionized along the falling edge of the electric field
can be scattered, and the maximum kinetic energy is about
2 a.u. But in the inhomogeneous field, it is shown that all
electrons ionized during 1.5–2 T can be scattered, and the
kinetic energy can reach 13.7 a.u., which is much higher than
that in the homogeneous field. For electrons ionization during
other laser cycles, the final energy is much lower. Thus, the
holographic interference in Fig. 4(c) is exclusively from the
electrons ionized during 1.5–2 T. Furthermore, it has been
shown that the SFPH could be employed to probe the attosec-
ond electron dynamics in atoms and molecules [22]. There,
the electron dynamics during the time window for tunneling

ionization of the rescattering electrons could be retrieved. In
the homogeneous field, the time window is about 1/8 of a
cycle, as shown in Fig. 5(a). However, for the inhomogeneous
field, the time window is as wide as 1/4 cycle, as shown in
Fig. 5(b). It means that the inhomogeneous field provides a
broaden time window for probing the electron dynamic with
SFPH.

In Figs. 5(c) and 5(d), we show the travel time between
ionization and rescattering of the electrons liberated within
1.5–2 T (green solid curve) in homogeneous and inhomoge-
neous fields, respectively. From Eq. (9), it can be seen that
the phase difference of the holographic fringes depends on
the travel time. For the case of the spatial homogeneity, the
fork-like structure of the holographic interference in Fig. 4(a)
is caused by the travel time decreases as the final momentum
increases. However, in the inhomogeneous field, the travel
time increases with px, which causes the interference fringes
to shrink as px increase in Fig. 4(c), as opposed to that in the
homogeneous field. Therefore, the difference in time changes
with px in the two cases leads to the difference in the holo-
graphic fringes.

In probing the atomic and molecular structure and electron
dynamics with rescattering electrons, the returning kinetic
energy is a very important parameter. In Figs. 5(e) and 5(f),
we show the returning energy of electron as a function of
the tunneling ionization time (blue dots) and the rescattering
time (red diamonds), in the homogeneous and inhomogeneous
fields, respectively. For the energy as a function of the ioniza-
tion time in Fig. 5(e), the left and right arms of peaks have
positive and negative slopes with different ionization times,
which are the long and short paths, respectively. In the inho-
mogeneous field, the long path disappears, and the returning
energy is mainly contributed by the short path [42,45]. It
indicates that the electron ionized at earlier times and scattered
at later times can gain more rescattering energy. The returning
energy of the electrons ionized during 1.5–2 T can be up
to 16.4 a.u. (18.7Up), much higher than 2.67 a.u. (3.05Up)
in the homogeneous field. As shown in Fig. 6, the electron
ionized during 1.5–2 T moves in the positive direction [dashed
red curve in Fig. 6(a)]. Due to the linear form of the spatial
inhomogeneity, as the distance from the origin increases, the
electron is subjected to a stronger the electric field [dotted
blue curve in Fig. 6(b)]. It should be noted that the largest
distance the electrons can reach is about 400 a.u., where the
maximum field enhancement factor is about 3.5. After the
electric field reverses its direction, the electron is adequately
accelerated by the electric field with a strong intensity and
returns back to the parent ion with a large energy [dot-dashed
violet curve in Fig. 6(c)]. When this electron moves into
the negative semi-axis, the strength of the electric field be-
comes too small to reduce the high kinetic energy of this
electron. This explains why the electron can obtain much
higher rescattering energy and final energy than that in the
homogeneous field. Moreover, the high returning energy can
also influence the scattering process. For example, it can re-
duce the scattering angle of the electrons at the same location.
Consequently, the density of the PEMD near py = 0 for the
inhomogeneous field is higher than that in the homogeneous
field.
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FIG. 6. The evolution of (a) the classical trajectory and (c) the
classical energy of the electron which has the high rescattering en-
ergy and final energy, and this electron is released at about 1.6 T.
(b) The strength enhancement evolution of the electric field the
electron feels, where Eo is the electric field at the origin. The vertical
solid black lines indicate the time when the electron return back to
the parent ion. The solid green curves are the laser field at the origin.
The laser parameters are the same as in Fig. 1.

Finally, we study the effect of ε and the CEP on PEMDs.
Figure 7 shows the PEMDs for different ε. As expected, the
stronger the spatial inhomogeneity, the higher the final kinetic
momentum. On the other hand, with the increase of the spatial
inhomogeneity, the electrons ionized in different cycles are
gradually separated. In the case of ε = 0.003, the distinct
dividing line appears, and the holographic fringes change
significantly. Figure 8 shows the PEMDs for the different
CEPs. It can be seen that the PEMDs are very sensitive to the
CEP [38]. As the CEP changes from 0 to π , the interference
structure becomes more complex, and the separated part on
the left in the PEMD gradually disappears. For φ = 0.8π–π ,
the electrons ionized during 1.5–2.5 T are concentrated in
the region of px ∈ [−2,−0.5] a.u., and the separated part on
the left is formed by the electrons ionized within 1–1.5 T,

FIG. 7. The PEMDs for strong-field tunneling ionization of a
hydrogen atom for (a) ε = 0 (homogeneous field), (b) ε = 0.001,
(c) ε = 0.002, and (d) ε = 0.003. The laser parameters are the same
as in Fig. 1.

where the ionization probability is low. The former leads to
the complexity of the interference structures, and the latter
results in the reduction of the density of the separated part
on the left. Then as the CEP goes from π to 2π , the parts of
the electrons coming from the different cycles are separated
again. In general, by changing ε and the CEP, the effect of
the spatial inhomogeneity on the electron trajectory can be
controlled. Completely separating electrons ionized in differ-
ent cycles requires the laser field with a strong enough spatial
inhomogeneity and an appropriate CEP.

In our calculations, the inhomogeneous field was approx-
imated as a linear form. Our extra calculations show that, in
the more realistic inhomogeneous fields, such as those in the
vicinity of the nanotip illuminated by a laser pulse, the main
properties of the PEMDs, i.e., the separation of the holograms,
the enhancement of the electron energy, and the change of the
holographic fringes, are similar to the results for the linear
approximation.

IV. CONCLUSIONS

In this paper we study the strong-field photoelectron
holography in the inhomogeneous field. The spatially inho-
mogeneous field can be generated, for example, in the vicinity
of the metal nanotip irradiated by a laser field. In our model,
we use the linear approximation for the inhomogeneous field
to demonstrate the control of the spatial inhomogeneity on
the strong-field photoelectron holography. The photoelec-
tron momentum distribution for a hydrogen atom is obtained
by numerically solving the 2D-time-dependent Schrödinger
equation. It is shown that the final kinetic energy of the
electron is substantially increased. With the classical model,
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FIG. 8. The PEMDs for strong-field tunneling ionization of a
hydrogen atom in the inhomogeneous field (ε = 0.003). The laser
parameters are same as Fig. 1 but for (a) φ = 0, (b) 0.4π , (c) 0.8π ,
(d) π , (e) 1.4π , and (f) 1.8π .

we find that the electrons released in different cycles gain
different energies and are separated in momentum space. In
addition, we show that the electrons in the inhomogeneous
field could achieve much higher returning energy and final
energy than those in the homogeneous field. Through the
analysis of the relationship between ionization time and fi-
nal energy, it is shown that the time window of tunneling
ionization wherein the electrons could be driven back to in-
duce holography is broaden in the inhomogeneous field. By
changing the spatially inhomogeneous strength and the carrier
envelope phase, we demonstrate that the electron trajectories
can be controlled. The details of these phenomena depend on
the form of the spatially inhomogeneous field. Therefore, it
will have different details if the electron driven by the field
with other forms of the spatial inhomogeneity. But the main
properties of the holography in the inhomogeneous fields,
i.e., the separation of the holograms from different half laser
cycles, the enhancement of the electron energy and the change
of the holographic fringes, will be reserved for different forms
of the spatial inhomogeneity. Our results show the effect of
the inhomogeneous field on the electron trajectory. These in-
teresting properties will benefit the application of strong-field
photoelectron holography.
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