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Abstract: Over the past decades, optical parametric amplification (OPA) has become one of the
most promising sources of ultrafast Mid-IR laser, owing to its outstanding properties including
ultrabroad bandwidth, superior tunability, good beam quality, and scalable energy. In this paper,
we review the recent progress in ultrashort laser pulse generation via chirp manipulated OPA,
which improves the energy scalability and gain bandwidth by strategically chirping both pump and
seed pulses. The gain mechanism is theoretically analyzed and the OPA processes are numerically
simulated. In addition, the concept is verified experimentally. Femtosecond pulses with hundreds of
mJ are generated in a high energy dual-chirped-OPA (DC-OPA), and ultrabroadband µJ-level spectra
supporting sub-2-cycle pulse durations are achieved in BBP-OPA. Furthermore, the obtained pulses
show excellent tunability through the NIR to Mid-IR regions, which makes them a suitable seeding
source for further amplification as well as powerful tools in various applications such as strong field
physics, attosecond science, and ultrafast spectroscopy.

Keywords: ultrafast laser; strong field physics; high-order harmonic generation; optical parametric
amplifier; mid-infrared source

1. Introduction

In the past decades, femtosecond laser pulses have become effective tools in various
fields including high-order harmonic generation (HHG) [1–6], strong-field ionization [6–17],
and time-resolved spectroscopy [18–24] due to their ultrashort pulse duration and high peak
intensity. Benefiting from the Kerr lens mode-locking (KLM) [25,26] and chirped pulse amplification
(CPA) [27–29], the Ti:sapphire lasers have developed rapidly towards shorter pulse durations and
higher pulse energies. However, restrained by the bandwidth of the gain medium, femtosecond pulses
from solid-state laser systems are mostly centered at wavelengths shorter than 1 µm, which cannot
meet the requirements of potential applications.

Particularly, HHG is a well-accepted method of producing fully coherent light in the extreme
ultraviolet (XUV) to X-ray regions, which utilizes femtosecond laser pulses as the driving
source. During the HHG process, the maximum obtainable photon energy follows the cutoff law
Ec = Ip + 3.17 × Up, where Ip is the ionization potential and Up is the ponderomotive energy [1,30,31].
Since Up scales with the square of the laser wavelength λ2, using a driving pulse with a longer center
wavelength is a practical approach to the generation of harmonics with higher photon energy. Besides,
the longer wavelength laser source also meets the strict requirement of tunneling ionization with the
Keldysh parameter γ� 1, where the electron is ionized from the barrier formed by the combination of
the Coulomb potential and quasi-static laser field. Moreover, using tunneling as fundamental concept,
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a lot of strong field phenomena and applications such as photoelectron holography [32], electron
correlation in double ionization [33,34] and molecular orbital tomography [35–38] can be interpreted
or realized.

Motivated by the applications, efforts have been made to exploit ultrashort driving fields with
tunable center wavelengths. Owing to the capability of producing visible (VIS) to mid-infrared
(Mid-IR) pulses with high single-pass gain and ultrabroad bandwidth, optical parametric amplification
(OPA) has been a promising source of tunable laser pulses in ultrafast research [39,40]. OPA is
a parametric process based on the second-order nonlinearity of a crystal, during which the energy of
a high-frequency pump pulse transfers to a low-frequency seed pulse through difference frequency
generation (DFG). The seed pulse is amplified to the signal and the pump pulse gets depleted,
meanwhile an idler pulse with the frequency of ωi = ωp − ωs is generated. Energy conservation

}ωp = }ωs + }ωi and momentum conservation (also known as phase-matching) }
→
kp = }

→
ks + }

→
ki have

to be fulfilled in the three-wave interactions. Comprehensive overviews on the OPA principle and its
development can be found in [41–46].

In an ultrafast optical parametric amplifier, a critical limit on the gain bandwidth is the

phase-mismatch (or wave-vector mismatch) ∆k =
→
kp−

→
ks−

→
ki . In order to compress the obtained pulses

to ultrashort or even few-cycle durations, the phase-mismatch has to be small values for a broad range
of signal/idler wavelengths. Usually, the crystal angle θ is selected to satisfy phase-matching for the

center wavelengths, i.e., ∆k0 =
→

kp0 −
→
ks0 −

→
ki0 = 0, hence the phase-mismatch is calculated to the first

order. As the signal frequency changes with ∆ω, the phase-mismatch becomes ∆k = ∆k1 + ∆k2 + . . .,
where ∆k1 = −∂ks/∂ωs × ∆ω + ∂ki/∂ωs × ∆ω = ∆ω×

(
1/vgi − 1/vgs

)
.

Based on the equation, a straightforward way of obtaining ultrabroadband gain in OPA is to
exploit the phase-matching bandwidth at degeneracy. Using signal and idler pulses centered at the
same wavelength, phase-matching is realized to the first order and the pulses are amplified with
an ultrabroad bandwidth. Degenerate OPA systems have been investigated in a number of previous
works, and the possibility of producing degenerate few-cycle pulses has been confirmed theoretically
and experimentally [47–57].

Despite the ultrabroad gain bandwidth, the concept of degenerate OPA can only be applied to
certain center wavelengths with poor tunability due to the limit on the types of available ultrafast
lasers [46]. At non-degenerate spectral regions, as the center wavelengths of signal and idler move
away from degeneracy, the first-order phase-mismatch increases, which reduces the gain bandwidth
severely. As discussed above, the first-order phase-mismatch ∆k1 is proportional to the group velocity
mismatch (GVM) between the signal and idler pulses δsi = 1/vgs − 1/vgi. The idea of removing
GVM to realize first-order phase-matching leads to the development of noncollinear OPA (NOPA)
schemes [58–74]. In NOPA, the pump and seed beams enter the nonlinear crystal with a noncollinear
angle α in between. As a result, the interacting pulses propagate toward different directions during
the amplification, and group velocity matching between the signal and idler pulses can be met when
vgs is equal to vgi × cosΩ, Ω being the noncollinear angle between the two beams. Furthermore,
the pulse-front tilting method has been proposed to improve the spatial overlap and the conversion
efficiency in NOPA systems [75].

Note that the idler pulse in NOPA is obtained with an angular dispersion, which makes it
impossible to be directly used in the following stages. Compared to the signal pulse, the idler has
advantages such as a longer center wavelength and a passively stabilized carrier-envelope phase
(CEP) [76]. As proposed and experimentally investigated in [76], the white-light continuum pulse
from the self-phase-modulation (SPM) effect retains the same CEP as that of the input pulse. When the
pump and seed are produced from the same laser source, the CEP of the idler pulse is defined by
ψi = −π/2 + ψp − ψs = −π, which is stabilized passively. The CEP stability determines the shape
of the electric field in ultrafast laser pulses, especially when the pulse has a few-cycle duration.
Therefore, the CEP-stable idler pulses have attracted abundant attention in OPA research. In order to
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obtain applicable idler pulses in NOPA, the angular dispersion of the beam has to be compensated,
which requires energy-consuming procedures and complicates the system drastically [77,78].

Other than NOPA, several collinear OPA schemes have been proposed for non-degenerate pulse
generation. Quasi-phase-matching (QPM) has been widely implemented in conditions where normal
broadband phase-matching cannot be achieved. Using a periodically poled nonlinear crystal where the
orientation of the crystalline axis inverts periodically as a function of the crystal thickness, the non-zero
phase-mismatch is compensated during amplification. Few-cycle pulses, ranging from near-infrared
(NIR) to Mid-IR, have been successfully generated from QPM-OPA schemes using crystals such as
PPLN, PPSLT, and PPKTP, etc. [79–92].

Considering the group velocity mismatch between the three interacting pulses in OPA, we have
proposed and experimentally investigated a collinear dual-crystal OPA (DOPA) scheme that
compensates the group delay (GD) during amplification [93,94]. A piece of BaF2 crystal with
an inverted group velocity relationship to the BBO crystal is employed in DOPA to compensate
the temporal walk-off between the pulses and thereby improve the bandwidth and efficiency of the
system. As a result, tunable spectra that support few-cycle pulse durations at non-degenerate regions
are obtained.

A novel frequency-domain OPA (FOPA) was proposed in [95]. Rather than amplifying the pulses
in the temporal domain, FOPA employs frequency-domain amplification. Different ranges of the seed
pulse are dispersed spatially, and the parametric process takes place in several pieces of nonlinear
crystals that amplifies different spectral regions individually [96]. The broadband amplification results
in a few-cycle Mid-IR pulse with millijoule level energy.

As an alternative to directly generating few-cycle pulses in broadband OPA, the employment
of spectral broadening in a hollow core fiber (HCF) accompanied with a narrowband OPA is also
a promising approach. The self-phase modulation (SPM) of an ultrashort pulse in HCF filled with
gas can efficiently broaden the pulse spectrum, and after the dispersion compensation, the broadened
spectrum can be recompressed to few-cycle durations. The HCF compression has manifested its
validity in a number of previous research studies [97–100].

It is significant to point out that, restrained by the damage threshold of the employed components
such as the nonlinear crystal, the periodically poled crystal, or the hollow core fiber, the energy
scalability in the above systems are usually quite limited. The state-of-the-art Ti:sapphire laser system
is capable of producing femtosecond laser pulses with the energy of hundreds of millijoules, which is
difficult to be directly utilized in conventional OPA due to the above limitations. Therefore, the novel
OPA schemes that might achieve better performance via manipulating the chirps of both pump and
seed pulses are proposed. After temporally stretching the input pump pulse, an ultrahigh pulse
energy can be fully utilized while the peak intensity of the incident beam remains lower than the
damage threshold of the nonlinear crystal, hence evidently improving the energy scalability of the
system. On the other hand, the possibility of individually manipulating pump and seed chirps enables
one to match the central frequencies of input pulses in different slices, which is also beneficial for
the system gain bandwidth. Stimulated by the recently proposed multi-plate spectral broadening
scheme [101,102], an intense supercontinuum with ultrabroad bandwidth can be used to pump the
OPA system that further exploits the potential of chirp manipulated OPA scheme.

In this paper, we focus on the chirp manipulated OPA scheme and review the developments
utilizing this method, the structure of the paper is arranged as follows. In Section 2, the theoretical
investigations on the high-energy OPA scheme are reported. In Section 3, the chirp manipulated OPA
pumped by a spectrally broadened laser is analyzed and discussed. In Section 4, the latest experimental
results on broadband pumped chirp manipulated OPA are presented. In Section 5, the prospects of the
chirp manipulated OPA are discussed and the conclusions are drawn.
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2. High-Energy Dual-Chirped-OPA (DC-OPA)

The power scalability of OPA is limited by both the pump laser energy and the size of the nonlinear
crystals. In order to apply more pump energy, naturally, the concept of CPA is transferred to OPA,
forming a new scheme called OPCPA. In an OPCPA, the seed pulse is first stretched to a duration that
is comparable to a pump pulse with a markedly reduced peak intensity, and then a high-energy pump
is used to amplify the seed. Finally a much higher amplified pulse energy than that from an OPA is
obtained. In this scheme, to achieve a good temporal overlap between pump and seed pulses, one can
employ a high-energy laser system with a relative long pulse duration (for example, a picosecond or
nanosecond Nd:YAG system) as the pump source.

Limited by the gain bandwidth of a collinear OPCPA geometry, a picosecond pump laser
usually results in a longer than 100-fs amplified signal pulse [103], which is not sufficient for many
applications. To obtain a relatively short IR pulse, a noncollinear OPCPA of 1.56-µm pulses using
KTA is later proposed and demonstrated [104], in which 100-fs pulses from an erbium fiber laser were
stretched to 100 ps and the KTA crystals were synchronously pumped by high-power 100-ps pulses
from a Nd:YLF regenerative amplifier at 1.053 µm. This work opens the door for power scaling of
OPCPA to simultaneously obtain a high peak power and an ultrashort pulse duration less than 100 fs.
Following this pioneering work, Mucke et al. [100] have demonstrated a 4-stage KTP/KTA OPCPA,
which produce a CEP-stable multi-mJ 1.5-µm ~70-fs pulse based on the fusion of a diode-pumped
solid-state (DPSS) femtosecond Yb:KGW MOPA system and picosecond Nd:YAG solid-state technology.
Even if the abovementioned works show the ability of generating IR output energy reaches the multi-mJ
level in OPCPA, OPCPA in general faces important technical challenges [42], such as the requirement
of a specific pump laser, the difficulty in synchronization with an external pump laser, and the
unwanted generation of parasitic superfluorescence accompanying the primary pulse in broadband
high-parametric-gain configurations [105].

Keep in mind that how much pump energy can be applied is actually determined by whether
the peak pump intensity exceeds the damage threshold of a nonlinear medium. In an OPA, although
periodically poled nonlinear crystals such as LiNbO3 (PPLN) and stoichiometric LiTaO3 (PPSLT) have
high nonlinearity with high conversion efficiency, the available pump intensity in such OPA is quite
low owing to the low damage threshold of the crystal and its AR coatings. Therefore, OPA with PPLN
and PPSLT crystals might be suitable for generating ultrashort pulse durations with moderate pulse
energy but promising for high repetition rates (>1 kHz). On the other hand, beta-BaB2O4 (BBO) is
one of the most outstanding nonlinear optical crystals for obtaining broadband IR pulses, which has
unique properties: a wide transparency region (0.19–3.5 µm), wide phase-matching range (0.41–3.5
µm), large nonlinear coefficient, and high damage threshold. In the OPA scheme with BBO, an output
energy up to 7 mJ with a pulse width of 40 fs [106] was achieved at a signal wavelength near 1.4 µm
using a terawatt Ti:sapphire laser system 0.8 µm. In this work, the pump intensity is already close
to the crystal damage threshold, a further increase in the output power of the OPA must enlarge the
aperture of the BBO crystals. However, the power scalability of the OPA is limited by the available
aperture size of the BBO crystals (typically ~20 × 20 mm2). On the other hand, a BBO OPA pumped
by 800-nm pulses can easily produce a few-cycle IR pulse with a multi-mJ output energy. Since the
maximum output is limited by the damage threshold of the BBO crystals, the power scalability for the
pump laser is inferior to that of the OPCPA. Although Ti:sapphire laser systems with >100 TW peak
power and 10 Hz repetition rate are already available, they cannot be applied in an OPA as they stand
owing to the damage threshold of the BBO crystals. Moreover, the concept of OPCPA does not work if
we employ a high-energy Ti:sapphire laser. If we only stretch the seed pulse in OPCPA, the intensity of
the pump pulse from the high-energy Ti:sapphire laser is still far beyond the crystal damage threshold.
If a Ti:sapphire laser with sufficient energy can be applied to pump an OPA while preventing damage
to BBO crystals, we will conveniently obtain a high IR energy.
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Figure 1. Scheme of dual-chirped optical parametric amplification (DC-OPA).

To this end, a dual-chirped OPA (DC-OPA), which simultaneously obtains high peak power and
ultrashort pulse duration in the IR region, is proposed in [107] and shown in Figure 1. The DC-OPA is
seeded with a chirped, broadband seed pulse and pumped by a stretched, broadband pump pulse.
In our envisaged DC-OPA system, automatically synchronized pump and seed pulses are obtained
because they come from a common source. The pump pulse can be spatially separated into two pulses
on a beam splitter, one strong and the other one weaker. The strong one will be used as a pump
pulse, and the weaker one will be used to generate the seed pulse via white-light generation, e.g., in
a sapphire plate.

Figure 2 shows the dependence of conversion efficiency and bandwidth for output signal on
the GDD values of seed pulses. The pump pulse at 800 nm has a Gaussian temporal profile with
a duration of 35 fs that is stretched to 792 fs by adding a GDD of −10,000 fs2. The added GDD values
of 35-fs seed pulse at 1400 nm are varied by a step of 2000 fs2. Under a pump intensity of 100 GW/cm2

and a designed energy gain of 103, it is found that the optimized seed GDD ranges from 3000 fs2 to
5000 fs2 for signal pulse (Figure 2a) and 3500 fs2 to 5500 fs2 for idler pulse (Figure 2b). Relatively high
total conversion efficiency (over 40%) with a broad bandwidth supporting a sub-40-fs signal and idler
pulses can be obtained, when we choose the proper GDD values (Pump: −10,000 fs2; Seed: +4000 fs2)
for avoiding gain by narrowing and maintaining good temporal overlap.
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Figure 2. Signal pulse conversion efficiency (blue circle) and bandwidth (red triangle) from the DC-OPA
with respect to the seed GDD (0–10,000 fs2). (a) Type-I and (b) Type-II phase matching. The conversion
efficiency and bandwidth are calculated at the gain saturation point in the BBO crystal.

Before recompression of the signal and idler pulses, it is essential to know their spectral properties.
We chose a set of GDD values (pump: −10,000 fs2, seed: 4000 fs2) within the optimized range to
treat this issue. It is shown in Figure 3a that an amplified signal pulse at 1.4 µm exhibits a smooth
distribution with a bandwidth of 79 nm, which is just slightly narrower than the injected spectra of the
seed pulse. Furthermore, it maintains a good beam quality for the signal pulse, as shown by the inset
plot. After phase compensation, the pulse duration of the obtained signal is 40 fs (Figure 3b), which
is the inset plot for the spatial profile of the obtained signal. At present, the 10 TW-class (e.g., 40 fs,
0.4 J) Ti:sapphire laser system is commercially available. From the conversion efficiency of DC-OPA, if
we apply all the laser energy (0.4 J) for DC-OPA with an optimized GDD condition, we can expect
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to generate more than 100 mJ signal energy before compression. Although our estimation does not
include an optical loss by compressor, we will obtain more than enough TW IR laser power. Using the
concept of DC-OPA, a total output energy of 1.4 µm (signal) and 1.9 µm (idler) of 210 mJ has recently
been experimentally realized [108], pumped by a 700-mJ Ti:sapphire laser source.Appl. Sci. 2018, 8, x FOR PEER REVIEW  6 of 22 
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3. Theory on Broadband Pumped OPA

In order to further broaden the bandwidth obtained from DC-OPA, the broad bandwidth of
a comparatively lower energy Ti:sapphire laser can be helpful in such a case. In this section, we discuss
the physics in the DC-OPA system pumped with a spectrally broadened pulse from a multi-plate
system [109]. We attend to and focus upon how the spectral-temporal manipulation of broadband
pump and seed pulses affect the gain mechanism during the parametric amplification.

The OPA process is in principle the amplification of the initial signal and idler pulses through
the three-wave interaction. Therefore, the achievable output bandwidths are limited by the initial
bandwidths of the seed and idler pulses. The initial signal bandwidth is defined by the input seed
continuum, while the initial idler bandwidth is the bandwidth obtained in the very beginning of the
amplification. In an infinitely thin layer of the nonlinear crystal, the idler pulse is produced as the
DFG happens between the input pump and seed pulses. The idler bandwidth in such a crystal is not
affected by the phase-matching condition but by the present pump and seed wavelengths. In further
propagation through the nonlinear crystal, the gain bandwidth of both signal and idler pulses is
influenced by the phase-matching condition between the three interacting pulses.

Regarding DC-OPA, the instantaneous wavelengths of the initial pump and seed can be
individually manipulated, which gives us more degrees of freedom compared to conventional
OPCPA, as the pump chirp is variable as well as the seed. Consequently, the system performance
is largely dependent on the instantaneous wavelengths of the input pump and seed pulses. In the
following, we will discuss the gain mechanism in the chirp manipulated OPA for signal and idler
pulses respectively.

3.1. Gain Mechanism of Signal Pulse

With a given initial seed, the gain bandwidth of the signal pulse is mainly determined
by the phase-matching condition, which in the case of DC-OPA, depends on the initial
bandwidth and chirp of the input pump and seed pulses. As previously investigated in
various works [110–114], the chirp-compensation scheme is favorable in such conditions. Here,
we investigate the chirp-compensation scheme in the NIR to Mid-IR spectral region and the result is
depicted in Figure 4. The pump and seed wavelengths cover 740–860 nm and 1000–1800 nm respectively,
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and a BBO crystal cut at θ = 20◦ is employed. The phase-matching efficiency is given by sinc2(∆kL/2),

where ∆k =
→
kp −

→
ks −

→
ki is the phase-mismatch and L = 2 mm is the crystal thickness.Appl. Sci. 2018, 8, x FOR PEER REVIEW  7 of 22 
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Figure 4. Phase matching efficiency with respect to the pump and seed wavelengths in a θ = 20◦ BBO
crystal, the blue line denotes the linear chirp-compensation fitting.

As observed in the figure, signal wavelength components spanning 1100–1700 nm can be
phase-matched to pump wavelength components in the 740–860 nm range, and the relationship
of the phase-matched pump-signal wavelengths is almost linear in this range. When pump and seed
pulses of enough bandwidths are injected into the BBO crystal with the appropriate chirps, broadband
phase-matching can be expected with a linear chirp-compensation fitting.

The instantaneous frequency of the interacting pulses in a chirp manipulated OPA can be
expressed as follows:

ωp(t) = ωp0 + Cpt (1)

ωs(t) = ωs0 + Cst (2)

ωi(t) = ωp(t)−ωs(t) = ωi0 + Cit (3)

in which ωm(t) (m = p, s, and i) is the time-dependent frequency of the pump, signal, and idler pulses,
respectively, ωm0 [rad] is the central angular frequency and Cm [rad/fs] is the temporal chirp of each
pulse, Ci = Cp − Cs. The linear chirp-compensation fitting is denoted as the blue line in Figure 1,
the line is slightly curved because of the reciprocal relationship between the wavelength λ and the
angular frequency ω, the “linear” fitting actually refers to the linear chirp of the frequency, i.e., Cm

being a constant value. In order to obtain phase-matching for as many signal wavelengths as possible,
a pump-to-seed chirp ratio A = Cs/Cp = 1.8 is selected. The feasibility of the chirp-compensated OPA
scheme will be experimentally verified in the following section.

3.2. Gain Mechanism of Idler Pulse

According to the above illustrations, the gain mechanism of the idler pulse is dependent on not
only the instantaneous wavelengths of the input pulses, but also on the phase-matching condition
during the propagation. Firstly, we investigate how the pump and seed chirps affect the initial idler
bandwidth in the infinitely thin crystal. The seed pulse is stretched to a duration of 60 fs and pump
pulses with different bandwidths are stretched to a same duration of 50 fs. The seed pulse with a TL
duration of 13 fs is stretched with a negative GDD of −180 fs2. The pump pulses with TL durations of
10 fs, 20 fs, 30 fs, and 50 fs are stretched with GDDs of±90 fs2,±165 fs2,±215 fs2, and 0 fs2, respectively.

The time-dependent frequencies of the initial pump, seed, and idler pulses are plotted in Figure 5.
Figure 5a denote the frequencies when both the input pulses are negatively chirped, and Figure 5b
denote the frequencies when the pump pulse is chirped positively the while seed pulse is chirped
negatively. In order to stretch different pump pulses to the same duration, a larger pump chirp Cp
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is required for a pump pulse with broader bandwidth, which explains the slopes of different solid
lines in Figure 5. As given above, the temporal chirp of idler Ci is equal to Cp − Cs. Now that the seed
chirp Cs is fixed at a negative value (dashed line in Figure 5), Ci becomes Cp + |Cs|, which means that
a larger positive Cp corresponds to a larger Ci. By comparing the dotted lines in Figure 5a,b, it is easily
seen that the TL = 10 fs pump pulse with a GDD of 90 fs2 (black solid line in Figure 5b) has the largest
temporal chirp among all the studied case, hence resulting in the largest idler chirp as the black dotted
line in Figure 5b.
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Figure 5. (a) Time-dependent frequencies of pump (solid lines), signal (dashed line), and idler (dotted
lines) when the pump and seed pulses are chirped with GDDs of the same sign. (b) Time-dependent
frequencies of pump (solid lines), signal (dashed line), and idler (dotted lines) when the pump and
seed pulses are chirped with GDDs of opposite signs. The black, blue, red, and yellow lines represent
pump pulses with TL durations of 10 fs, 20 fs, 30 fs, and 50 fs, respectively.

The initial idler pulse is produced in a time window where the input pump and seed pulses are
temporally overlapped. Since the pump and seed pulses have similar durations after being chirped
in all cases, the durations of the initially generated idler are also similar. According to the equation
ωi(t) = ωi0 + Cit, when the idler duration is fixed, the major factor that decides the idler bandwidth
becomes its temporal chirp. As a result, the broadest initial idler bandwidth is obtained with oppositely
chirped pump and seed pulses.

As the initial pulses further propagate in the crystal, the nonlinear interaction between the pulses
begins, during which the phase-matching condition plays an important role in deciding the idler
performances. The phase-matching efficiency with respect to the pump chirp and idler wavelength is
shown in Figure 6, the seed pulse is still chirped with a negative GDD of −180 fs2. The initial idler
bandwidth is included in the figure as the white dotted lines for reference, the bandwidth is defined as
the wavelength components inside the temporal window of −50 fs ≤ t ≤ 50 fs. Since the temporal
durations of all initial idler pulses are the same, this definition is a reasonable standard for the idler
bandwidth comparison. Pump pulses with TL durations of 10 fs, 20 fs, 30 fs, and 50 fs are marked by
the black, blue, red, and purple lines, respectively. All pump pulses are stretched to ~50 fs, and the line
lengths stand for the idler bandwidths in each case.

Regarding the phase-matching efficiency, the bottom half of Figure 6 where the pump and
seed pulses are chirped with the same sign is preferred, in which high efficiency phase matching
can be achieved for a bandwidth up to 300 nm. The maximum phase-matching bandwidth is
realized with a pump GDD of −40 fs2, which is equivalent to the aforementioned linear fitting
to the chirp-compensation scheme. Nevertheless, limited by the range of the white lines, the initial
idler spectrum starts from >1700 nm, restraining the idler gain bandwidth to <200 nm.
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Figure 6. Phase-matching efficiency at different idler wavelengths and pump GDDs. The white lines
represent the idler bandwidth within the temporal range of −50 fs ≤ t ≤ 50 fs. The black, blue,
red, and purple lines indicate the pump pulses when their TL durations are 10 fs, 20 fs, 30 fs, and
50 fs respectively.

Comparatively, the high efficiency phase-matching bandwidth is slightly narrower in the top half
of Figure 6 where the pump and seed pulses are oppositely chirped. However, the moderately
phase-matched bandwidth in such condition is much broader. It is worth mentioning that
phase-matching in OPA is an accumulated effect during the process, even though the perfect
phase-matching bandwidth is slightly narrower. As long as the crystal angle and thickness are selected
appropriately, the amplified components with moderate phase-matching still cover a broad range.

It is also observed that the phase-matching efficiency is barely affected by the pump GDD in the
top half of the figure, which makes the initial idler bandwidth the decisive factor that determines the
output idler bandwidth. Corresponding to Figure 5b, a pump pulse of 10-fs TL duration is capable of
generating the broadest idler spectrum in the four conditions. The potentially largest bandwidth for
idler is obtained with a pump GDD of 40 fs2, a pump bandwidth supporting a TL duration of 4.5 fs
is required in this case. With the state-of-the-art technique, multi-microjoule Ti:sapphire laser pulses
with even broader bandwidth are readily available [102]. Idler pulses with simultaneously optimized
bandwidth and efficiency can be expected using such a pump pulse.

3.3. Simulations on BBP-OPA

The performance of broadband-pumped chirp-manipulated OPA (referred to as BBP-OPA in the
following text for simplicity) is quantified by numerically simulating the process with coupled-wave
equations. Various pump bandwidths and chirps are studied for a thorough comparison. Details on
the numerical model can be found in [107,109]. The output signal and idler pulses are characterized
by the full width at 1/e2 maximum (FW1/e2M) bandwidth and energy-bandwidth product (EBP).
Pump pulses with the energy of 300 µJ and TL durations of 10 fs, 20 fs, 30 fs, and 50 fs are employed.
For simplicity in the following illustrations, the TL = 50 fs pump is referred to as the narrowband pump
(NBP, although its bandwidth is considerably broad), as opposed to the broadband pump (BBP) with
TL durations less than 30 fs. Since the current bandwidth broadening techniques inevitably stretch the
femtosecond pulses, the pump will be used as positively chirped pulses, with the designed durations
ranging from 50 fs to 120 fs. The 1400-nm seed pulse is obtained from our previous experiment [94],
with a FWHM bandwidth of >200 nm and the energy of ~1 µJ. The seed pulse is chirped with a negative
GDD of −180 fs2.

The simulation results are compared in Figure 7. As seen from the triangles in the figure, the
signal bandwidth barely changes with different pump bandwidths, and the signal EBP even decreases
when a broader pump bandwidth is employed. Nevertheless, in accordance to the above analysis,
the BBP is evidently beneficial to the idler bandwidth and efficiency when the input pump and seed
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pulses are oppositely chirped. The larger pump bandwidth increases both the idler bandwidth and
EBP in Figure 7.
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Figure 7. (a) Bandwidth and (b) energy-bandwidth product (EBP) variations of signal (triangles) and
idler (circles) pulses with respect to the duration of the stretched pump pulses. The black, blue, red,
and yellow lines denote pump pulses with TL durations of 10 fs, 20 fs, 30 fs, and 50 fs, respectively.

With a longer stretched pump duration, the gain narrowing is less affective to the process,
resulting in broader output bandwidths. Meanwhile, the longer pulse duration indicates a lower pump
peak intensity, thus realizing lower conversion efficiencies and EBPs. The highest EBP is achieved
with a BBP pulse when its stretched to 50 fs, the idler spectrum with 858-nm bandwidth is obtained
with a EBP of 6.9 GW, which is an impressive improvement compared to the 314-nm bandwidth and
4.0-GW EBP. The 72.6% higher EBP is mainly originated from the broader idler bandwidth and shorter
TL duration.

The signal and idler spectra obtained with pump pulses stretched to 50 fs are presented in
Figure 8. The input seed spectrum is plotted in Figure 8a, and the idler spectrum from an unchirped
BBP-OPA is plotted in Figure 8b as the dashed lines for comparison. As shown in Figure 7a, the output
signal bandwidths are similar with different pump bandwidth, hence only one spectrum is plotted as
an example. The identical stretched pump duration is selected to ensure similar conversion efficiency
for all systems, so the system performance can be directly revealed by the idler bandwidth. A BBO
crystal with 2.5-mm thickness is used in all cases.
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Figure 8. (a) Input (dashed line) and output (solid line) spectra of the signal. (b) Output spectra of
idler pulses from systems with different pump bandwidths. Idler spectrum from an unchirped OPA
(black dashed line) is plotted for comparison.
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It is observed that the signal experiences gain-narrowing effect during the process, which results
in ~100-nm narrower bandwidth than the initial seed. On the contrary, owing to the opposite GDDs of
pump and seed pulses, the idler pulses are obtained with a much broader bandwidth compared to the
signal. Not only do the idler bandwidth increase with the pump bandwidth in Figure 8b, the one from
chirp-manipulated system is also much broader than the unchirped case, indicating the validity of the
BBP-OPA in broadening the idler bandwidth.

Moreover, the tunability of the BBP-OPA is investigated and the results are plotted in Figure 9.
The phase-matching efficiency in the BBP-OPA scheme is insensitive to the center wavelengths of the
signal and idler pulses. As a result, idler pulses tunable from the NIR to Mid-IR regions can be obtained
with over 600-nm bandwidth. The conversion efficiencies and TL durations of the tunable idler pulses
are plotted in Figure 9b. All idler spectra can support TL durations of less than 9 fs, corresponding to
<1.5 optical cycles, meanwhile a conversion efficiency of >14% can be achieved. Note that the nonlinear
crystal selected here is BBO, which has strong absorption in the Mid-IR range. However, the presented
concept of chirp manipulation in OPA is not limited by the crystal, therefore the BBP-OPA scheme
shows great potential for the generation of few-cycle Mid-IR pulses in non-degenerate regions.
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tunable idler pulses.

4. Experiments on Broadband Pumped DC-OPA

In this section, we present the experimental results on the chirp-manipulated OPA system
pumped by a spectrally broadened Ti:sapphire laser. The NIR seed and Mid-IR idler pulses are
investigated separately.

4.1. BBP-OPA in NIR Region

The experimental setup of NIR BBP-OPA is depicted in Figure 10. A 800-nm Ti:sapphire
femtosecond laser system (Legend Elite Duo - COHERENT.inc, US) with a pulse duration of 35 fs and
energy of 300 µJ is employed. The NBP is focused by a f = 1.3 m convex lens and sent into an array of
4 fused silica (FS) plates for spectral broadening based on self-phase modulation effect in the plates.
The position and angle of incidence of the FS plates are carefully adjusted to the realized maximum
spectral bandwidth for the pump pulse. The 210-µJ BBP is obtained with a FWHM bandwidth of
73 nm, which is 2.7 times broader compared to the NBP (27 nm). The seed pulse is generated from
white light continuum (WLC) in a 3-mm sapphire crystal. The BBP and WLC are synchronized and
combined in a piece of 2.4-mm BBO crystal cut at θ = 20◦. The phase-matching condition is optimized
for a signal centered at 1400 nm, as shown in Figure 4. A very small noncollinear angle between the
pump and seed beams is employed for the convenience of separating the output pulses.
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Figure 10. Schematic design of broad band pumped-OPA (BBP-OPA) in the NIR region.

The BBP is characterized with a second harmonic generation frequency-resolved optical gating
(SHG-FROG), and the results are shown in Figure 11. The FWHM bandwidth of the pump spans
770–850 nm range, which is broad enough to support high-efficiency phase-matching for signal
components from 1170 nm to 1660 nm according to Figure 4. The measured pump pulse duration is
87 fs, with a near-quadratic spectral phase (green dashed line in Figure 11b) corresponding to a GDD
of 450 fs2. The seed GDD is around 240 fs2 resulted from the transmissive optical components on the
path, setting the pump-seed chirp ratio A = Cp/Cs at 1.8 and a broadband signal is therefore expected.
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Figure 11. Spectral-temporal properties of BBP pulse. (a) Intensity (blue line) and temporal phase
(green dashed line) of the pulse. (b) Retrieved (purple line) and measure (red dotted line) spectrum
and spectral phase (green dashed line).

The amplified signal spectrum is plotted as the red line in Figure 12a, covering the 1000–2000 nm
range with a FWHM bandwidth over 400 nm. The signal spectrum from NBP-OPA system is measured
and shown as the blue line in Figure 12a, and the achieved FWHM bandwidth is only 141 nm.
The difference between the spectra can be well explained by the analysis based on Figure 4. According
to the chirp-compensation theory, more signal wavelength components can be phase matched with
more pump wavelengths. Since the BBP has a 2.7 times broader bandwidth than the NBP, it is
reasonable to realize a signal bandwidth from the BBP system that is 400/141 ≈ 2.8 times broader than
the signal from the NBP system.

As mentioned above, high wavelength tunability is also expected from the BBP-OPA, therefore it
is further investigated and plotted in Figure 12b. The signal wavelength is tuned by slightly rotating
the BBO crystal and changing the pump-seed delay, which is equivalent to shifting the blue line in
Figure 1 so that the high efficiency phase-matching wavelength is adjusted. The signal spectra in
Figure 12b reveal high tunability throughout the non-degenerate NIR region from 1100 nm to 1500 nm,
meanwhile the broad bandwidth is preserved.
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Figure 12. (a) Signal spectra obtained from NBP-OPA (blue) and BBP-OPA (red). (b) Signal spectra
centered at 1200 nm (blue), 1300 nm (red), and 1400 nm (yellow). Inset: beam profile of the output signal.

Using identical pump pulse energy (180 µJ), the conversion efficiencies in BBP-OPA and NBP-OPA
are both ~3%, and the energy stability of <1% RMS is achieved for signal from BBP-OPA over 3 h.
The beam quality is measured by loosely focusing the output signal into a 5-megapixel CCD camera
and the beam profile is shown as the inset in Figure 12. The cross-sections of the beam on x and y
axes both show an excellent Gaussian profile, which makes it a suitable laser source for successive
amplification stages or further applications.

The temporal properties of the signal pulse are measured with a SHG-FROG and the results
are shown in Figure 13. The uncompressed pulse duration of 34 fs is obtained with a GDD of
240 fs2. The obtained signal spectrum supports a sub−2-cycle TL pulse duration as short as 7.5 fs,
which is plotted in Figure 13a. According to the near-quadratic spectral phase in Figure 13b, the pulse
is linear-temporal-chirp dominant, which can be compressed to a near TL duration using various
approaches such as prisms, gratings, chirped mirror pairs, or acoustic-optic programmable dispersive
filter (AOPDF) accompanied by a bulk material.
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Figure 13. Spectral-temporal properties of uncompressed signal pulse. (a) Intensity (blue line), phase
(green dashed line) of the pulse, and TL pulse profile (red line). (b) Retrieved (purple line) and measure
(red dotted line) spectrum and spectral phase (green dashed line).

4.2. Preliminary Results on Mid-IR BBP-OPA

Despite the ultrabroad bandwidth and excellent tunability of BBP-OPA in the NIR region,
the signal wavelength is inherited from the white light continuum. Since the WLC can only be
extended to ~2 µm [50], it is technically difficult to directly amplify the WLC and obtain broadband
pulses centered at >1.6 µm. In this case, the idler pulse with longer wavelength and passive CEP
stability can be utilized for further investigation. The schematic design of the BBP-OPA system for
generating Mid-IR pulses is presented in Figure 14. The main difference between this system and
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the previous one is that instead of using a positively chirped BBP pulse, a pair of chirped mirrors is
employed to introduce negative GDD to the BBP, therefore a broadband Mid-IR idler can be expected
according to the theoretical analysis. Furthermore, the recollimation of BBP is accomplished by
a silver-coated concave mirror instead of a convex lens (L4 in Figure 10) in order to avoid undesired
temporal and spatial distortions.
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According to the theory, unlike the signal pulse, the idler pulse in chirp-manipulated OPA is more
sensitive to the initial pump parameters. Taking that into account, we will study the idler property
with various pump chirps in this section, which is realized by inserting a bulk FS material on the
pump path for adjustable positive GDDs. In this way, the GDD of both NBP and BBP can be precisely
manipulated by using a bulk FS of different thickness or rotating the material. In this proof-of-principle
experiment, the preliminary results are obtained using NBP and BBP pulses chirped with a similar
GDD around −400 fs2.

The pump energy of 100 µJ is used in both cases. Owing to the optimization of the pump quality,
the conversion efficiencies in the NBP and BBP systems are both enhanced compared to the previous
experiment. Output signal energies of 6.0 µJ and 5.6 µJ and idler energies of 3.8 µJ and 3.4 µJ are
obtained in NBP and BBP systems, respectively. The higher efficiency is achieved in NBP-OPA due to
the higher peak intensity of the pump pulse.

Even though the efficiency in BBP-OPA is slightly lower, the achieved bandwidth can easily
compensate the energy loss. As plotted in Figure 15, the signal spectra from two systems are similar,
whereas the idler spectra show an observable difference. The idler bandwidth from NBP-OPA is
only 175 nm, and the idler bandwidth from BBP-OPA reaches 434 nm, which is 2.5 times larger than
NBP-OPA. The spectrum is measured up to 2100 nm due to the limitation of available spectrometer
(Ocean Optics NIRQuest512-2.2) in our lab. The ultrabroad bandwidth of the idler supports
a sub-2-cycle TL pulse duration of 10.6 fs, which makes it a much more useful tool than the idler from
NBP-OPA in potential applications, despite its slightly lower pulse energy.
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5. Prospects and Conclusions

The BBP-OPA scheme has been proven capable of generating microjoule broadband tunable pulses
in the IR region. More detailed results will be needed to further confirm this concept. Meanwhile,
the potential of the proposed scheme is not limited to the present results. Broadband pump pulses with
energy from several tens microjoule to the millijoule level has been realized with various techniques
including the multi-plate scheme and HCF compression. Utilizing such pulses in a BBP-OPA scheme
enables the generation of a more intense supercontinuum that supports few-cycle pulse duration.

On the other hand, the achieved spectra are limited to 2100 nm due to the spectrometer in our lab.
Since the idler bandwidth is insensitive to the phase-matching condition, tuning the idler frequency
as well as the signal is feasible by simply rotating the nonlinear crystal and changing the pump-seed
delay. Considering the absorption of BBO crystal in the Mid-IR region, other nonlinear crystals such
as AGS, LN or LT can be introduced owing to their higher transmission range up several microns,
which will allow more efficient conversion in the Mid-IR spectral region.

The ultrashort pulses generated from chirp manipulated OPA can be a powerful tool in a number
of related researches owing to its unique characteristics over commercially available Ti:sapphire lasers,
including longer carrier wavelength, broader spectral bandwidth, and shorter pulse duration. The low
requirement on a multi-plate scheme allows BBP generation with a wide variety of initial laser energy
of only several tens to hundreds µJ. With the reported conversion efficiency, µJ-level few-cycle Mid-IR
pulses can be directly obtained from a single-stage BBP-OPA pumped by a laser system with moderate
pulse energy, which can benefit applications that do not require the ultrahigh energy of femtosecond
laser pulses [115–119].

In particular, femtosecond IR pulses have been widely employed in ultrafast spectroscopy to investigate
the carrier dynamics in semiconductor structures using pump-probe measurements [120–122]. Due to the
wavelength tunability of chirp manipulated OPA accompanied with the ultrashort pulse duration,
the generated pulses with lower photon energy compared to Ti:sapphire laser can be helpful in probing
the carrier relaxation process. The widely variable photon energy provided by the tunable Mid-IR
laser might uncover essential information about the evolution during the decay of excited states at
different energy levels.

In conclusion, we introduced the chirp manipulated optical parametric amplification scheme in
this paper and reviewed some of the results on the latest developments. The superb energy scalability
of DC-OPA is a promising route to fully utilize the hundreds millijoule energy of a Ti:sapphire laser
in an OPA system. In addition, the dual-chirped geometry allows the simultaneous manipulation
of the pump and seed chirps, which can also remarkably benefit the gain bandwidth of the system.
The broadband pumped OPA shows potential in generating an intense supercontinuum and few-cycle
pulses spanning the whole IR spectral region, which we believe will contribute to the future
developments of ultrafast optics and strong field physics.
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