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We investigate the Airy–Talbot effect of an Airy pulse train in time-dependent linear potentials. The parabolic trajectory of
self-imaging depends on both the dispersion sign and the linear potential gradient. By imposing linear phase modulations on
the pulse train, the Airy–Talbot effects accompanied with positive and negative refractions are realized. For an input
composed of stationary Airy pulses, the self-imaging follows straight lines, and the Airy–Talbot distance can be engineered
by varying the linear potential gradient. The effect is also achieved in symmetric linear potentials. The study provides oppor-
tunities to control the self-imaging of aperiodic optical fields in time dimension.
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1. Introduction

The Talbot effect refers to the self-imaging phenomenon of a
periodic paraxial1 optical field that was first, to the best of our
knowledge, discovered by Talbot in 1836[1]. The effect has been
extensively investigated ranging from classical optics and non-
linear optics to quantum optics[2]. The applications have also
beenwidely explored, including optical testing, imaging process-
ing, and photolithography[2]. Since the spatial paraxial diffrac-
tion can be analogous to temporal group-velocity dispersion
(GVD) in terms of space–time duality[3], the temporal Talbot
effect can also be obtained by injecting a periodic optical pulse
train into a dispersive medium[4]. In the above Talbot effects,
the transverse periodicity of the incident field is required, and
self-imaging follows a straight line along the propagation
direction[5,6].
Recently, the Airy–Talbot effect was theoretically proposed

and experimentally demonstrated in the spatial domain[6–8].
Unlike the traditional Talbot effect, here, the incident field is
formed by the superposition of a series of transversely displaced
self-accelerating Airy beams[9,10]. The initial intensity pattern
reproduces itself periodically along parabolic trajectories in free
space. The self-imaging period is termed as Airy–Talbot
distance. In addition, the fractional self-images with reduced
repetition periods[2] cannot be obtained in the Airy–Talbot
scenario. The intrinsic acceleration of the Airy beam can be
modified by using external static and dynamic linear potentials,
realized by tailoring the transverse and longitudinal refractive
index distribution of the medium[11–20]. It is proved that
the Airy–Talbot effect in dynamic linear potentials can follow
any predefined trajectories by engineering the index gradient,

while the self-imaging distance is the same as that in free
space[21–23].
Given the space–time duality, the temporal Airy pulse has

also been proposed and demonstrated[9,10,24,25], which possesses
intriguing features of non-dispersion and self-acceleration.
Differing from the curved propagation trajectory of Airy beams
in space, the self-acceleration of Airy pulses leads to varying
group velocity during propagation[26]. Analogously, the tempo-
ral Airy–Talbot effect can be observed when an Airy pulse train
propagates in an optical fiber with GVD[27]. The Airy pulse train
can be formed by imposing a cubic spectral phase on the
Gaussian pulse train via either third-order dispersion[28,29] or
a pulse shaper[30]. The wave train exhibits an accelerating
self-imaging phenomenon along parabolic trajectories in the
parameter space spanned by propagation distance and time.
Compared to the spatial diffraction, the temporal dispersion
can be positive or negative, which provides another degree of
freedom to control the propagation of the optical pulse. On
the other hand, a temporal potential generated by the nonlinear
interaction between a weak signal and strong pump lasers[31,32]

can be used for either temporal or spectral signal manipulation.
In this work, we investigate the temporal Airy–Talbot effect in

time-dependent linear potentials. We show that the accelerating
self-imaging process can be enhanced or reduced by applying a
linear potential, and the parabolic trajectory of self-imaging
depends on both the dispersion sign and the linear potential gra-
dient. By imposing linear phase modulations on the Airy pulse
train, we realize the refractive Airy–Talbot effects with positive
and negative refractions. For the stationary Airy pulse, having
the form of an eigenfunction of the Schrödinger equation for
a particle under a uniform force, the self-imaging follows
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straight lines, and the Airy–Talbot distance can be controlled by
varying the linear potential gradient. The Airy–Talbot effect is
also realized in the symmetric linear potential. All of the results
can be extended to the spatial Airy beams, corresponding to the
anomalous dispersion case here. The study provides a flexible
approach to manipulate the Airy–Talbot effect and may find
applications in optical communication and signal processing
systems based on optical pulses.

2. Theoretical Model

The dynamics of optical pulses in a dispersive medium under a
linear potential can be described by[31]

i
∂U
∂Z

� 1
2
k
∂
2 U
∂T2 � αTU = 0, �1�

where T = �t − z=vg0�=t0 refers to the normalized retarded time
in the frame of reference, which is moving at the initial group
velocity of vg0. The real time and propagation distance are
denoted by t and z, respectively. t0 represents the main-lobe
width of the Airy pulse. Z = z=LD2 is the normalized propaga-
tion distance, measured in units of the dispersion length LD2 =
t20=jβ2j with β2 being the GVD parameter of the medium. U =
As=A0 indicates the normalized amplitude of the pulse, whereAs

and A0 are the slowly varying envelope and the input peak
amplitude, respectively. k = 1 (k = −1) denotes the anomalous
(normal) GVD. α is the gradient of linear potential. Here, we
consider long-duration input pulses, where the impact of
higher-order dispersion on pulse propagation is much weaker
than that of GVD and hence can be neglected.

3. Results and Discussion

We first study the evolution of a linearly chirped self-
accelerating Airy pulse train,

U�T ,0� = exp�iCT�
X
n∈Z

cnAi�T − nΔ� exp�a�T − nΔ��, (2)

where Ai�·� represents the Airy function, and cn is an arbitrary
coefficient. Δ is the time interval between the pulses. a is the
truncation factor. C denotes the chirp coefficient. Substituting
Eq. (2) into Eq. (1), one obtains the corresponding intensity dis-
tribution of the propagating solution:
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: (3)

According to Eq. (3), each Airy pulse component has a differ-
ent phase accumulation rate. Consequently, the initial intensity

profile is reshaped during propagation as a result of interference
between the Airy pulses. For ideal Airy pulse trains with a = 0, as
the propagation distance satisfies the condition ΔZ=2 = 2mπ
with m being a nonzero integer, all of the Airy pulses are in
phase. As a result, the input intensity pattern reproduces itself
periodically along a modified parabolic trajectory in space–time.
As C = 0, the trajectory takes the form of T = Z2=4� kαZ2=2,
which is determined by both the dispersion sign and the gradient
of linear potential. In the absence of external potential, i.e., α = 0,
the self-imaging trajectories in anomalous and normal
dispersion regimes are identical. The Airy–Talbot distance is

ZT =
4π
Δ

: �4�

To validate the above analysis, we numerically simulate the
evolution of an Airy pulse train under the combined effects of
dispersion and time-varying linear potential by using the
split-step Fourier method[3]. The input field is composed of
seven Airy pulses, separated in time with a constant interval
Δ = 2, and each multiplied by cn = 1. According to Eq. (4),
we calculate the Airy–Talbot distance of ZT = 2π. Figure 1
shows the numerical results of the Airy–Talbot effect for differ-
ent linear potential gradients in the anomalous dispersion
regime. In the case of α = 0, the self-imaging follows a parabolic
trajectory with the acceleration of d2 T=dZ2 = 1=2 in the T–Z
plane, depicted by the white solid curve in Fig. 1(a). The white
dashed lines denote the two positions of Z = 3.14 and 6.28, at
which the self-images are formed. Another place of interest is
at half of the Talbot length zH = zT=2, where there is a π phase

Fig. 1. Airy–Talbot effects for different linear potential gradients of (a) α = 0,
(b) α = 1, (c) α = −1/2, and (d) α = −1. The white dashed lines indicate the first
and second self-imaging positions. The white solid curve denotes the theo-
retical self-imaging trajectory. Parameters are a= 0, C= 0, k= 1,Δ= 2, cn=
1, and n ∈ [3,3].
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shift between two adjacent Airy pulse components, and the
image is phase-shifted relative to the input[21]. The intrinsic
acceleration of self-images can be modified by an external force
that stems from the linear potential. Figure 1(b) shows the Airy–
Talbot carpet for α = 1, where the self-imaging is accelerated
faster. Interestingly, for α = −1=2, the acceleration of self-
images can be completely canceled, and the self-imaging is along
straight lines, as shown in Fig. 1(c). On the contrary, α = −1 will
lead to the displacement of self-images in the opposite time
dimension, as depicted in Fig. 1(d). In all scenarios, the Airy–
Talbot distances are the same as that without linear potential.
In the normal dispersion regime, the Airy–Talbot effect exhibits
the reversed self-imaging process with respect to that in the
anomalous dispersion case and can be analyzed by the same
method.
As the input pulse train is modulated by a linearly varying

phase, the self-imaging trajectory follows the relation T=
kCZ � Z2=4� kαZ2=2. The parabolic trajectory of self-images
is similar to those of projectiles moving under the action of a
uniform gravitational field, and C plays the role of the initial
launch velocity. If the intrinsic acceleration is restricted by the
external linear potential, the self-imaging follows a straight line
with the slope dT=dZ = kC. Figure 2(a) shows the Airy–Talbot
carpet of a linearly chirped Airy pulse train with C = 5, where
the other parameters are the same as that in Fig. 1(c).
The self-images are linearly shifted along the positive T axis.
On the contrary, the linearly chirped Airy pulse train with

C = −5 exhibits a mirror-symmetric evolution with respect to
that of C = 5, as shown in Fig. 2(b). More interestingly, by
imparting another linearly time-varying phase onto the pulse
train during propagation, we can realize the refractive Airy–
Talbot effect. In Fig. 2(c), the input pulse train is unchirped with
C = 0 and thenmodulated by a linearly varying phase withC = 5
at Z = 10. The white solid line denotes the theoretical self-imag-
ing trajectory, which agrees well with the numerical results. In
Fig. 2(d), the pulse train is first linearly modulated by C = −5
at Z = 0 and then modulated by C = 10 at Z = 10, leading to
an Airy–Talbot effect with negative refraction.
The above analysis indicates that the input field composed of

ideal Airy pulses can reproduce itself indefinitely. However, the
ideal Airy pulses possess limitless time duration and infinite
energy. In practice, we have to truncate the pulses so as to make
them have finite energy. According to Eq. (3), the finite-energy
Airy pulses (FEAPs) will experience dispersion, and the self-
acceleration feature never maintains after the accelerating range,
which is comparable to the dispersion length. Here, we choose
a = 0.1, and the other parameters are the same as in Fig. 1(c).
The temporal evolution of the pulse train is shown in Fig. 3(a),
where the self-imaging effect disappears. The reason lies in the
fact that the Airy–Talbot distance is beyond the accelerating
range of FEAPs. In addition, the wave train propagates along
a curved trajectory in the T–Z plane when Z is long enough,
which is induced by the linear potential. By enlarging the pulse
separation to Δ = 8, the self-imaging phenomenon appears,
and the Airy–Talbot distance becomes ZT = π=2, as shown in
Fig. 3(b). For a fixed truncation factor, each Airy pulse has a
specific accelerating range and time duration. To decrease the
Airy–Talbot distance, we can enlarge the pulse separation
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Fig. 2. (a), (b) Airy–Talbot effects of linearly chirped Airy pulse trains with C= 5
and C = −5, respectively. (c) Refractive Airy–Talbot effect. The input field at
Z = 0 is unchirped and then linearly chirped with C = 5 at Z = 10. (d) Negative
refractive Airy–Talbot effect. The input field at Z = 0 is linearly chirped with
C=−5 and then chirped with C= 10 at Z= 10. The white solid line denotes the
theoretical self-imaging trajectory. The self-imaging positions are marked by
white dashed lines. Other parameters are the same as in Fig. 1(c).

Fig. 3. (a) Temporal evolution of the finite-energy Airy pulse train with a= 0.1.
Other parameters are the same as in Fig. 1(c). (b) Same as (a) but for Δ = 8.
(e) Maximal and minimal pulse separations to realize the Airy–Talbot effect for
different truncation factors. The insets show CCC variations versus Z for
Δ = 1.88 and 120 in the case of a = 0.02.
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between the FEAPs. The Airy–Talbot distance corresponding to
the minimal pulse separation should be equal to the accelerating
range. On the other hand, owing to the Airy–Talbot effect being
a result of interference of overlapping Airy pulses, the maximal
pulse separation should be less than the time duration of a single
pulse. Figure 3(c) shows the numerical results of the allowable
maximal and minimal pulse separations to realize the Airy–
Talbot effect for different truncation factors. For a = 0.02, the
maximal and minimal pulse separations are Δmax = 120 and
Δmin = 1.88, respectively. As a increases, both the time duration
and the accelerating range of each pulse decrease. Thus, the
maximal pulse separation decreases, and the minimal one
increases. As a > 0.28, the Airy–Talbot effect cannot be
observed. Here, this value is obtained in the framework of a
normalized pulse propagation equation. For the practical
FEAPs with the main-lobe width t0, having the form of
Ai�t=t0� exp�at=t0�[33], the truncation factor should be a=t0,
which is determined by the main-lobe width of the pulse. To
estimate the degree of similarity between the input and the
self-images, we use the cross-correlation coefficient (CCC)[4],
defined as CCC = �∫ �∞

−∞ I�T ,Z�I�T ,0�dT�=�∫ �∞
−∞ I�T , Z�2dT�

�∫ �∞
−∞ I�T , 0�2dT �1=2. Here, I (T , 0) is the intensity pattern at

Z = 0. The value of CCC varies from zero to unity and is equal
to unity only if I (T , Z) and I (T ,0) are identical. The insets in
Fig. 3(e) show CCC evolutions for Δ = 1.88 and 120 when
a = 0.02. In the former case, the self-image can only be formed
at Z = 6.68, where the CCC reaches the maximum value. In the
latter case, the CCC manifests a periodic variation, confirming
the periodic self-imaging effect of the pulse train.
Thus far, we have demonstrated that the parabolic self-

imaging trajectory for the Airy–Talbot distance can be modified
by the external linear potential. In fact, the stationary eigenso-
lution of Eq. (1) is also an Airy wavefunction. Next, we show that
the input field composed of stationary Airy pulses can produce
self-images periodically along straight lines. Moreover, the Airy–
Talbot distance can be tailored by varying the linear potential
gradient. In this case, the input field reads

U�T ,0� =
X
n∈Z

cnAi�−T0�T − nΔ��, (5)

where T0 = �2α=k�1=3. The corresponding intensity pattern of
the propagating solution is given by

I�T ,Z� =
����
X
n∈Z

cnAi�−T0�T − nΔ�� exp�inαΔZ�
����
2

: (6)

Unlike the above cases, the self-imaging is along straight lines
regardless of the value of α, and the Airy–Talbot distance
becomes

ZT =
2π
jαjZ : �7�

The theoretical analysis can be verified by performing
numerical simulations. Figure 4(a) shows the Airy–Talbot car-
pet for α = 1, where the other parameters are the same as in

Fig. 1. The self-imaging is along straight lines, and the corre-
sponding Airy–Talbot distance is ZT = π. The white dashed
lines in Fig. 4(a) denote the first and second self-imaging posi-
tions. The self-imaging effect can also be validated throughCCC,
which varies periodically with Z and reaches CCC = 1 at Z =
mZT (m = 1,2, : : : ), as shown in Fig. 4(b). For α = 2, the Airy–
Talbot distance becomes ZT = π=2. The corresponding Airy–
Talbot carpet and the CCC evolution with respect to Z are
shown in Figs. 4(c) and 4(d), respectively. All results agree well
with the theoretical predictions. Note that as α = −1=2, Eqs. (5)–
(7) are reduced to Eqs. (2)–(4) for C = 0, respectively. Thus, the
self-imaging shown in Fig. 1(c) is also along straight lines.
Finally, we investigate the Airy–Talbot effect in symmetric

linear potentials. The theoretical model can be described by

i
∂U
∂Z

� 1
2
k
∂
2 U
∂T2 ± αTU = 0, �8�

where we choose “+/−” forT < 0 orT > 0. The eigensolution of
Eq. (8) takes the form of the Airy function[34]

U�T ,Z� = AAi�∓T0�T∓δ�� exp�iαδZ�, (9)

where “−(+)” corresponds to T < 0 (T > 0), respectively. A is
an arbitrary amplitude coefficient, and δ characterizes the main-
lobe position of each Airy wave packet. Based on the continuity
ofU and dU=dT atT = 0, we can obtain the discrete set of values
of δ[34]. For an input composed of many Airy pulses with differ-
ent δ in a symmetric linear potential, the self-imaging effect can
be observed when all of the Airy components are in phase during
propagation.
Figure 5(a) depicts the temporal profile of an input formed by

the superposition of two Airy pulses with δ = 2.588 and 3.882 in
the case of α = −1. Here, we choose A = 1 and k = 1. The cor-
responding Airy–Talbot distance is ZT = 4.86. Figure 5(b)
shows the Airy–Talbot carpet in the T − Z plane. The white
dashed lines in Fig. 5(b) denote the two positions of Z = 4.86
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Fig. 4. (a) Temporal evolution of the input composed of stationary Airy pulses
with a specific stretch factor of T0 = (2α/k)1/3. Here, we choose α = 1, and
other parameters are the same as in Fig. 1. (b) Corresponding CCC variation
with respect to Z. (c), (d) Same as (a) and (b) but for α = 2.
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and 9.71, at which the self-images are formed. Comparably, for
α = 1, the Airy–Talbot effect in symmetric linear potential can
also be obtained by choosing δ = −2.588 and −3.882. The cor-
responding temporal waveform of input is plotted in Fig. 5(c).
The temporal evolution of input is shown in Fig. 5(d), where
the Airy–Talbot distance is the same as that for α = 1.

4. Conclusion

In summary, we have studied the Airy–Talbot effects of Airy
pulse trains in time-dependent linear potentials. The parabolic
space–time trajectory of self-imaging is determined by both the
dispersion sign and the linear potential gradient. For the FEAPs,
the effect can be observed only in a limited distance. The self-
imaging trajectory can also be engineered by imposing linearly
time-varying phases on the pulse train. For an input composed
of stationary Airy pulses, the self-imaging follows straight lines,
and the Airy–Talbot distance can be controlled by varying the
linear potential gradient. The study provides a promising way
to manipulate the self-imaging of aperiodic optical fields. The
extension of the effects to other wave systems, such as Airy plas-
mons[11], spatial Airy beams[12], and Airy water waves[18], may
find great applications in information transportation and
reconstruction systems.
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