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The characterization of attosecond pulses is crucial for attosecond metrology. In this work, we investigate the
isolated attosecond pulse reconstruction with the all-optical method. The results show that this method can charac-
terize isolated attosecond pulses with a duration shorter than 50 attoseconds. Moreover, we develop a deep learning
scheme to characterize isolated attosecond pulses. Through supervised learning, the deep neural network learns the
mapping from the photon spectrograms to attosecond pulses. It allows complete characterization of the amplitude
and phase of isolated attosecond pulses. Compared to the conventional principal component generalized projec-
tions algorithm, the reconstruction with our neural network shows superior quality and robustness to noise. Also,
the reconstruction computation time is significantly reduced to a few seconds. ©2023Optica PublishingGroup

https://doi.org/10.1364/JOSAB.489019

1. INTRODUCTION

The generation of attosecond pulses from high-harmonic gen-
eration (HHG) [1,2] has allowed the investigation of electron
dynamics in atoms, molecules, and condensed matter [3–6].
Nowadays, attosecond light sources can be obtained with a
variety of generation schemes, such as HHG with few-cycle laser
pulses [7,8], polarization gating (PG) [9–11], double optical
gating (DOG) [12], and two-color fields [13–16]. The pulse
duration has been progressively reduced. Isolated attosecond
pulses of duration as short as 53 attoseconds [17] and 43 attosec-
onds [18] were experimentally generated by few-cycle driving
pulses centered near 1.8 µm.

The characterization of the attosecond pulse is a crucial
issue. There are generally two types of attosecond measure-
ment schemes: ex situ and in situ measurements [19]. For ex
situ measurement, the position of modulation and diagnosis is
different from the position of pulse generation. Reconstruction
of attosecond beating by interference of two-photon transitions
(RABBIT) [1] and frequency-resolved optical gating (FROG)
for complete reconstruction of attosecond bursts (CRAB)
(FROG–CRAB) [20] are typically ex situ schemes. In situ mea-
surement modulates attosecond pulses in the same position of
the generation. It was first offered for a train of attosecond pulses
with an all-optical experimental setup [21]. A weak second-
harmonic beam is introduced to gently perturb the generation
process. With the different time delays of the two-color field, the
attosecond pulse duration can be acquired by reading the modu-
lation of the even harmonic signal. Later on, Kim et al. used
the noncollinear in situ measurement to characterize isolated

attosecond pulses [22]. All-optical FROG for isolated attosec-
ond pulse reconstruction was theoretically and experimentally
demonstrated [23]. This in situ scheme enables complete diag-
nostics of the temporal profile of an isolated attosecond pulse.
Recently, the all-optical measurement technique was applied
to characterize the attosecond pulses generated from relativistic
plasma mirrors [24]. And, an all-optical method for the com-
plete spatio-temporal characterization of isolated attosecond
pulses has also been demonstrated [25].

Attosecond pulse reconstruction requires a retrieval
algorithm. There are various retrieval algorithms in ex situ
measurement schemes, such as the principal component gen-
eralized projections algorithm (PCGPA) [26], the least squares
generalized projections algorithm (LSGPA) [27], and the
ptychographic [28]. As for the in situ scheme, the all-optical
FROG also applies the PCGPA to retrieve the temporal profile
of an isolated attosecond pulse from the photon spectrogram.
However, previous works only demonstrated the reconstruc-
tion of pulses with a duration of several hundred attoseconds
[22–25]. In this work, we investigate whether it is valid to recon-
struct isolated attosecond pulses shorter than 100 attoseconds.
Our simulation indicates that the all-optical method works
for a sub-100 attosecond pulse. However, when reducing the
pulse duration (i.e., increasing the spectral bandwidth), it is
difficult to retrieve the sophisticated details of the temporal
profile using the conventional PCPG algorithm. Besides, the
PCGPA requires massive calculations and thus the retrieval is
excessively time-consuming. Therefore, it is necessary to use a
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new algorithm to improve the retrieval quality and reduce the
computation cost in the all-optical measurement.

A deep neural network (DNN) is a machine learning tech-
nique that has been used in various scientific fields. Unlike
traditional algorithms, DNNs employs multiple hidden layers
to deal with complicated problems. In ultrafast optics, Zahavy
et al . investigated second-harmonic generation FROG to
reconstruct femtosecond pulses based on deep learning [29].
Lately, deep learning has been applied for phase retrieval from
dispersion scan traces [30] and attosecond streaking traces
[31,32].

In this work, we developed a deep learning scheme to recon-
struct isolated attosecond pulses with the all-optical method.
Our neural network achieves mapping from the photon spectro-
grams to pulses via supervised learning. The DNN model only
spends a few seconds on the prediction of the pulse profile. It
allows the instantaneous reconstruction of isolated attosecond
pulses. Compared to the PCGPA, deep learning reconstruction
achieves higher precision. Moreover, our simulation results
show that our scheme is robust to noise.

2. METHOD AND RESULTS

A. Simulation Model of the All-Optical FROG

The all-optical FROG method is based on the strong-field
approximation (SFA) [33]. A Few-cycle driving laser pulse
drives HHG in the gas, and the cut-off harmonic supports the
generation of an isolated attosecond pulse [34]. Injecting a weak
perturbing pulse in the same position modifies the generation
process. The high-harmonic spectrum is perturbed and shifted
by changing the time delay between the two pulses. The per-
turbing pulse is too weak to affect the ionization procedure, so
it just perturbs the free electron trajectory between the moment
of ionization and the moment of re-collision. For an isolated
attosecond pulse, we just consider a single trajectory. According
to the SFA, the dipole transition matrix element is [21]

d j (t)∝ 〈g |d |e−i S1(t,t ′(t),x ,p∗)+iσp∗ (x ,t,t
′(t))
〉e−iσ(t,φ)

+ c.c.
(1)

Here, the subscript j stands for the corresponding quan-
tum trajectory. S1 is the unperturbed action, including the
effects of the strong field and the ionic core. Ionization starts
at the moment t and returns at the moment t ′, φ is the relative
phase between the two pulses, and p∗ is regarded as an initial
moment. The additional phase includes two parts: σ(t, φ) is
acquired without the effect of coordinates, and σp∗(x , t, t ′(t))
is a coordinate-dependent part. σp∗(x , t, t ′(t)) can be ignored
for the weak perturbation. Equation (1) is simplified as

d j (t)= 〈g |d |e−i S1(t,t ′(t),x ,p∗)〉e−iσ(t,φ)
+ c.c.

= d j
0 (t)e

−iσ j (t,τ )
+ c.c. (2)

We obtain the additional phase σ(t, τ )=∫ t
t ′(t) dt ′′νSFA(t ′′, t)As (t ′′, τ ), which is regarded as a gate. τ

is the time delay between the two fields. νSFA and As (t ′′, τ )
correspond to the velocity of the unperturbed trajectory and the
vector potential of the perturbing field. By changing the time
delay, the 2D spectrogram is approximately represented as [23]

S(ω, τ)∝ |a(ω, τ)|2 =ω4
|d̃(ω, τ)|2

=ω4
|d̃0(ω)⊗ H(ω, τ)|2, (3)

where d̃0(ω) and H(ω, τ) correspond to the Fourier trans-
form of d0(t) and e−iσ(ω,τ). Equation (3) has the same form
as the equation used in the FROG technique. Therefore, the
all-optical FROG can employ the PCGPA as the phase retrieval
algorithm for a photon spectrogram trace [23].

B. Reconstruction of the Isolated Attosecond Pulses
with the PCGPA

Next, we numerically simulate the experimental process of the
all-optical scheme. We apply the driving field and the perturbing
field for HHG in argon. In our simulation, we add a Gaussian
window function on the electric dipole moment to select the
short trajectory.

The spectrogram trace is shown in Fig. 1(a). We use the
few-cycle pulse centered at 800 nm as the driving field. The
intensity is 3× 1014 W/cm2. The wavelength and duration
of the perturbing field are the same as the driving field. But
the intensity is 1× 1011 W/cm2. A 161 attosecond pulse is
generated by the cutoff harmonic in this condition. Figure 1(b)
shows the retrieved trace, which is nearly consistent with the
original spectrogram trace. The pulse reconstruction is shown
in Fig. 1(c). The retrieved time-domain structure shows a good
agreement with the original pulse, including the intensity profile
and phase.

To investigate the reconstruction of the sub-100 attosec-
ond pulse, we increase the wavelength of the few-cycle driving
fields to generate a broader spectrogram. The wavelength of the
driving field and perturbing field is 2000 nm. Other driving
laser parameters are the same as Fig. 1. A 96 attoseconds pulse is
generated in this condition. As is shown in Fig. 2(a), the photon
spectrogram covers a bandwidth of 40 eV and reaches photon
energies up to 280 eV. Figure 2(b) is the retrieved spectrogram
trace. Figure 2(c) shows that the retrieved pulse agrees well with
the original 96 attoseconds pulse.

Furthermore, we increase the wavelength and intensity of
the driving fields. The wavelength of the two fields is 3400 nm.
The intensity of the driving field is 4.6× 1014 W/cm2. The
perturbing field’s intensity is 1× 1011 W/cm2. The ultrabroad
spectrogram with a bandwidth of 87 eV is obtained. The dura-
tion of the isolated attosecond pulse reduces to 49 attoseconds.
Figures 2(d) and 2(e) present the original spectrogram trace
and the retrieved spectrogram trace. As shown in Fig. 2(f ), the
retrieved pulse’s central peak and pulse duration agree well
with the original pulse, but the small side peaks show obvious
disagreements with the original one.

Next, we consider the computation cost of the PCGPA. We
define the error as

Serror =

∣∣∣∣∣∑
x

∑
y

Sorg[x , y ] −
∑

x

∑
y

Sret[x , y ]

∣∣∣∣∣ , (4)

where Sorg[x , y ] and Sret[x , y ] correspond to the original trace
and the retrieved trace, respectively. x and y are the grid points
in horizontal and vertical coordinates. Figure 3 presents the
error curve in the reconstruction of the 49 attoseconds pulse.
The error drops rapidly in the first 2000 iterations. Then the
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Fig. 1. Reconstruction of the isolated attosecond pulse with the PCGPA. (a) Simulated 2D spectrogram trace. (b) Retrieved trace. (c) Temporal
amplitude (blue dashed line) and phase (red dashed line) of the retrieved attosecond pulse from (a), compared to the original pulse (solid lines).

(a)

(d) (e) (f)

(b) (c)

Fig. 2. Reconstruction of sub-100 attoseconds pulse with the PCGPA. (a) Simulated spectrogram trace generated by the few-cycle driving pulse
centered at 2000 nm. (b) Retrieved trace from (a). (c) Retrieved pulse (dashed lines) from (a), compared to the original 96 attoseconds pulse (solid
lines). (d) Simulated spectrogram trace generated by the few-cycle driving pulse centered at 3400 nm. (e) Retrieved trace from (d). (f ) Retrieved pulse
(dashed lines) from (a), compared to the original 49 attoseconds pulse (solid lines).

falling rate gradually slows down, and the decline almost stops
after 6000 iterations. It means that the PCGP retrieval algo-
rithm requires at least thousands of iterations to complete the
reconstruction. On a standard performance computer, the
retrieval process for a 96 attoseconds pulse takes a few hours. For
the sub-50 attoseconds pulse, the computation cost is more than
10 hours.

C. Deep Learning Retrieval Method

To reduce the computation time, we developed a reconstruc-
tion scheme by employing deep learning. Figure 4 depicts the

structure of a neural network and training procedure. A neural
network architecture contains an input layer, hidden layers,
and an output layer. The hidden layers can extract information
from the photon spectrograms. Here, the network we used is a
convolutional neural network (CNN), and the hidden layers
in the CNN consist of many convolutional layers. The con-
volutional layer is a collection of processing units designed to
identify underlying relationships between the input and output
[35]. Each unit of the next layer is connected to local patches in
the previous layer through a set of weights called a filter bank.
In the forward propagation of the neural network, units of the
current layer compute a weighted sum of outputs of the previous
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Fig. 3. Error curve of the PCGPA in the reconstruction process of
sub-50 attoseconds pulse.

layer. The current layer then employs the nonlinear activation
function before passing the results. Training with the datasets,
the neural network can learn the feature mapping from the input
to the output.

Initially, we generate the datasets by simulating the all-
optical measurement. We set a strong driving field and a weak
perturbing field in the gas target to generate the 2D photon spec-
trograms and the attosecond pulses. The spectrograms depend
on the laser parameters of the driving fields, e.g., wavelength,
intensity, duration, carrier-envelope phase (CEP) and chirp.
The chirp of the driving laser is approximately written as a high-
order polynomial. Here, we just concentrate on the first three
order polynomials. We change these driving laser parameters
and randomly smooth the first- to third-order coefficients of the
chirp. A huge amount of spectrograms are obtained as a result.

We generated 120,000 spectrograms as the datasets. The
datasets are divided into three parts: training set, validation set
and test set. Their proportions are, respectively, 80%, 10%,
and 10%. Before the training procedure, the dataset must finish
pre-processing because the spectrograms’ bandwidth covers
different photon energies. We externally interpolate blank
points to make all the spectrogram traces with a bandwidth of

90 eV. On the time delay axis, we fix the range from−3.5 to 2.5
cycles of driving pulse. After these processes, the pixel number
of the dataset image is 100(photon energy)× 100(delay).
The spectral step and the time step are 0.9 eV and 0.06 cycles
of the driving pulse, respectively. Then, we normalize the
spectrograms.

We apply supervised learning to train the network. Here,
we employ the temporal profiles of the attosecond pulse as the
labels. The pulse can be written as E (t)= I (t)e i8(t). As for the
temporal intensity I (t) and phase8(t), label ambiguities exist
including the time shift and constant phase shift. To avoid trivial
ambiguities in the training process, we first fix the position of
the central peak in the time domain to avoid the time shift. The
zero-order and first-order terms of the phase have no effect on
the shape of the attosecond pulse profile, so we can set them to
zero to remove the phase ambiguities. Then we normalize the
intensity value. A cost function can measure the discrepancy
between the prediction and the supervised output. We set the
cost function L as

L(y I , y8)=w ∗
[
‖y I − ỹ I‖

‖y I‖
+ η ∗

‖y8 − ỹ8‖
‖y8‖

]
, (5)

where y I and y8 represent the normalized intensity value and
the absolute phase value.η is a ratio factor of y8, so we can set the
value of η to change the weight of the phase in supervised learn-
ing. Here, we set η= 1. By default, every label value innately
has an equal effect on the training process. When it comes to
pulse reconstruction, the weights of the labels should be chosen
according to the temporal pulse structure. Therefore, the weight
factorw is defined as

w[i] =
{
= 1 y I − y th > 0,
= 0 y I − y th ≤ 0,

(6)

where i = 0, 1, . . . , N − 1 corresponds to each time point
of E (t). The intensity threshold y th is set to be 0.01, allowing
the effect of labels to be neglected while the intensity is below
the threshold. Through stochastic gradient descent by mini-
mizing the cost function L , the weights of the neural network
are optimized. Once the supervised learning is complete, the
network model is able to realize the mapping from the photon
spectrograms to the isolated attosecond pulses.

Fig. 4. Network architecture for mapping spectrograms to attosecond pulses and training procedure. A huge amount of spectrogram traces and
pulses are generated by simulating the all-optical measurement. We use the traces as datasets and the pulses as labels in supervised learning. The
weights in hidden layers can be updated to minimize the loss function via backpropagation. After training, the DNN model can reconstruct isolated
attosecond pulses.
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In the training procedure, we have attempted to employ three
stable CNN architectures: DesNet [36], GoogLeNet Inception-
v2 [37], and Xception [38]. After applying the last convolution
layer, a flatten layer is used to flatten the multidimensional
arrays. We sequentially add several dense layers following the
convolution layers. The first few dense layers employ the ReLU
activation function, and the last dense layer uses the linear
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Fig. 5. Loss function evaluated on the training set (blue line) and
validation set (red line).

activation function. Among the three network architectures,
the Xception architecture has the best appearance. Therefore,
we will only display results with the Xception architecture in the
following sections.

D. Reconstruction of Isolated Attosecond Pulses
with Deep Learning Method

We initially considered the time cost of the training. The loss
drop curve is shown in Fig. 5. Both the training loss and the
validation loss rapidly drop in the first five epochs. Then they
slow down and tend to stop dropping after 30 epochs. The
validation loss is higher than the training loss after five epochs.
Both of them are reduced to below 0.01 after about 30 epochs.
The training procedure just lasts less than two hours.

To compare to the retrieval quality of the PCGPA, we also
use the DNN model to retrieve pulses from the three spectro-
grams above. Figures 6(a), 6(c), and 6(e) present the original
spectrogram traces. The DNN model spends a few seconds on
pulse prediction. The retrieved attosecond pulses are shown
in Figs. 6(b), 6(d), and 6(f ). The results show that the DNN
reconstruction of the isolated attosecond pulses agrees better
with the original pulses, including the 49 attoseconds pulse.
Concentrating on the sophisticated details of the temporal
profile, the DNN model precisely recovers the shape of the side
peaks, as shown in Fig. 6(f ).

-200 0 200
0

0.5

1

In
te

ns
ity

 (a
rb

.u
ni

ts
)

-2

0

2

4

6

Ph
as

e 
(ra

d)

-200 0 200
Time (as)

0

0.5

1

In
te

ns
ity

 (a
rb

.u
ni

ts
)

-5

0

5

10

Ph
as

e 
(ra

d)

-200 0 200
0

0.5

1

In
te

ns
ity

 (a
rb

.u
ni

ts
)

-2

0

2

4

6

Ph
as

e 
(ra

d)

-20 -10 0 10
240

260

280

Ph
ot

on
 E

ne
rg

y 
(e

V)

0

0.5

1

-20 0 20
Delay (fs)

800

840

880

Ph
ot

on
 E

ne
rg

y 
(e

V)

0

0.5

1

-5 0 5
30

50

70

Ph
ot

on
 E

ne
rg

y 
(e

V)

0

0.5

1
(b)

(d)

(f)

(a)

(c)

(e)

original
DNN retrieved

original
DNN retrieved

original
DNN retrieved

Fig. 6. Reconstruction of isolated attosecond pulses with the DNN model. (a), (c), and (e) Spectrograms as input to the DNN model,
corresponding to Figs. 1(a), 2(a), and 2(d), respectively. (b), (d), and (f ) Reconstruction of isolated attosecond pulses (dashed lines) from (a), (c),
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Research Article Vol. 40, No. 10 / October 2023 / Journal of the Optical Society of America B 2541

Fig. 7. DNN reconstruction of attosecond pulses generated by driving pulses centered at 800 nm. (a) and (c) Simulated spectrograms. (b) and
(d) Reconstruction of attosecond pulses (dashed lines) from (a) and (c) compared to the original pulses (solid lines).

Next, we changed other generation parameters instead of
the wavelength to test our model. The wavelength is fixed at
800 nm. In Fig. 7(a), we set the intensity of the driving pulse to
4× 1014 W/cm2 and selected the spectrogram bandwidth of
40 eV (40 eV to 80 eV). The duration of the generated pulse is
121 attoseconds. In Fig. 7(c), the gas target has changed from
argon to neon, and the intensity is set to 3× 1014 W/cm2.
The generated pulse duration is 154 attoseconds. As is shown
in Figs. 7(b) and 7(d), both the amplitude and the phase of the
retrieved pulses agree well with the original pulses.

The methods in [31,32] are also based on the neural network
for attosecond characterization. Comparing our method to
their methods was valuable. Their methods retrieve the spec-
tral phase from the modulated photoelectron spectroscopy.
The measurement of the photoelectron spectra always faces
the space charge effect and therefore the efficiency of the data
accumulation is low. Our method is based on the all-optical
measurement scheme, which can overcome this problem and
the data accumulation efficiency is much higher. Besides, the
all-optical measurement technique could introduce less noise.
On the other hand, we also compared the retrieved results
between [31] and our method. In Figs. 7(b) and 7(d), the mean
square error (MSE) values of the pulses are calculated as 0.0048
and 0.0093, respectively. Both of the MSE values are as low as
those in [31]. Moreover, we have demonstrated that our method
still has a good retrieval quality for the shorter pulse including
sub-50 attoseconds pulse. These indicate that our method is a
more convenient and reliable approach.

E. Robustness of the Deep Learning Method

To improve the robustness of our DNN model and make the
simulations resemble the noisy conditions of the real experi-
ment, we add noise to the spectrogram traces and mix them
into the dataset to train the DNN model. We apply the SNR
to quantify the noise level in the spectrogram traces. Here, the
SNR is defined as

SNR= 10 log10

[∑
x

∑
y Ssignal[x , y ]∑

x

∑
y Snoise[x , y ]

]
, (7)

where Ssignal is the spectrogram without noise and Snoise[x , y ]
is the noise in the spectrogram. We add the noise of
SNR≈ 3, 5, 7, 10, 15 to a spectrogram. The original spectro-
gram traces are shown in Figs. 8(a)–8(e). Figures 8(f )–8(j)
present the retrieval results with the PCGPA. One can see that
the PCGPA retrieved pulse shows disagreements with the origi-
nal pulse when SNR≈ 7. The reconstruction of the isolated
attosecond pulse appears rather distorted when SNR≈ 3. The
retrieval results with the DNN model are shown in Figs. 8(k)–
8(o). All of the retrieved pulses are nearly consistent with the
original pulse, including the amplitude and the phase.

The spectra measured at different times would introduce
different levels of noise. Therefore, more noise would be present
along the time axis. This type of more time-dependent noise is
common in laboratories. To test our model’s robustness to such
noises, we added different variances of the spectral noise as the
delay changed. The spectrogram is shown in Fig. 9(a). We set
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Fig. 8. Retrieval results from the spectrograms with the noise of different SNRs. (a)–(e) Spectrograms with the noise of SNR≈ 3, 5, 7, 10, 15.
(f )–(j) Retrieved pulses (dashed lines) from (a)–(e) with the PCGPA, compared to the original pulses (solid lines). (k)–(o) Retrieved pulses (dashed
lines) from (a)–(e) with the DNN model, compared to the original pulses (solid lines).

Fig. 9. Reconstruction results for testing robustness to more time-dependent noise. (a) Simulated spectrogram with noise. (b) Reconstruction of
attosecond pulses (dashed lines), compared to the original pulse (solid lines).

SNR≈ 7. As shown in Fig. 9(b), the retrieved amplitude and
phase are consistent with the original pulse.

To evaluate the reconstruction ability of the DNN models,
we qualified the performance for the pulse predictions. The
error quality criterion is defined as

Q =
[∑

i w[i] ∗ (y I − ỹ I )
2∑

i w[i]

]1/2

+ γ ∗

[∑
i w[i] ∗ (y8 − ỹ8)∑

i w[i]

]1/2

.

(8)
Here, we set γ = 0.05. Figure 10 presents the performance

of the different retrieval algorithms in the all-optical schemes.
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When SNR≤ 11, the PCGPA’s error quality rapidly increases
to more than 0.1. The error quality of the DNN reconstruction
is still below 0.1 when SNR= 3. It’s obvious that the error
quality of the reconstruction with the DNN model is much
lower than PCPG algorithm. When increasing the noise, the
performance of the DNN model is much better than that of the
PCGPA.

F. Retrieve the Sophisticated Temporal Profiles of
Isolated Attosecond Pulse

The chirp with high-order dispersion can be sophisticated
in HHG. For the ultrabroad spectrum, the attosecond pulse
usually has a complicated shape in the time domain. It requires

the algorithm to have abilities to retrieve the sophisticated
temporal profile. To test this ability, we employ the few-
cycle pulses centered at 2000 nm as the driving fields. The
intensity of the driving field is 3× 1014 W/cm2. The per-
turbing pulse has the same wavelength, but the intensity is
1× 1011 W/cm2. Figure 11(a) presents the entire ultrabroad
bandwidth spectrogram. As is shown in Figs. 11(b)–11(d), we
select the spectrogram bandwidth of 40 eV (240 eV to 280 eV),
60 eV (240 eV to 300 eV) and 70 eV (230 eV to 300 eV), respec-
tively. When the bandwidth is 40 eV, the retrieved pulses with
both the PCGPA and the DNN model agree well with the
original pulse, as shown in Figs. 11(e) and 11(h). When the
bandwidth is increased to 60 eV, the central peak of the retrieved
pulse with the PCGPA is the same as the original one, but the
retrieved small side peaks show disagreements, as shown in
Fig. 11(f ). The duration of the original pulse is 128 attoseconds,
and the retrieved pulse duration is only 73 attoseconds. In con-
trast, the DNN method can recover the details of the original
pulse, including the central peak and the small side peaks, as
shown in Fig. 11(f ). When the spectrogram bandwidth is fur-
ther increased to 70 eV, the original pulse has an obvious second
peak. As shown in Fig. 11(g), the PCGPA can just retrieve the
central peak, and the retrieved pulse duration is only about
one-third of the original duration. The DNN method, however,
still retrieves the shape of both the central peak and the second
peak, as shown in Fig. 11(j). The duration of the DNN retrieved
pulse is 188 attoseconds and agrees well with the original pulse
duration.

3. CONCLUSION

We investigated isolated attosecond pulse reconstruction with
the all-optical method. Our results show that the all-optical
method enables diagnosis of the isolated attosecond pulses with
a duration shorter than 100 attoseconds. However, it is difficult
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Fig. 11. Retrieval of the sophisticated temporal profiles with the PCGPA and the DNN model. (a) Entire ultrabroad spectrogram trace. (b)–
(d) Spectrograms with different bandwidths: 40 eV, 60 eV, and 70 eV. (e)–(g) Reconstruction of attosecond pulses (dashed lines) with the PCGPA
from (b)–(d), compared to the original pulses (solid lines). (h)–(j) Reconstruction of attosecond pulses (dashed lines) with the DNN model from
(b)–(d), compared to the original pulses (solid lines).
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to retrieve the sophisticated profile using the conventional
PCPG algorithm, and the retrieval process is time-consuming.
Therefore, we demonstrated a deep learning approach to recon-
struct isolated attosecond pulses with the all-optical method.
Our DNN method achieves the mapping from the spectro-
grams to isolated attosecond pulses via supervised learning.
It has a superior retrieved quality compared to the PCGPA,
especially at high noise levels. Our DNN method also is able to
recover the sophisticated details of the pulse profile. Moreover,
it spends only a few seconds on pulse reconstruction. We believe
our approach provides a reliable and effective way to characterize
isolated attosecond pulses.
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