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Abstract: By solving the three-dimensional time-dependent Schrödinger equation, we investi-
gate the angular distributions of the low-energy electrons when an intense high-frequency laser
pulse is applied to the hydrogen atom. Our numerical results show that the angular distributions
of the low-energy electrons which generated by the nonadiabatic transitions sensitively depend on
the laser intensity. The angular distributions evolve from a two-lobe to a four-lobe structure as the
laser intensity increases. By analyzing nonadiabatic process in the Kramers-Henneberger frame,
we illustrate that this phenomenon is attributed to the intensity-dependent adiabatic evolution
of the ground state wavefunction. When the laser intensity further increases, the pathway of
nonadiabatic transition from the ground state to the excited state and then to the continuum
states is non-negligible, which results in the ring-like structure in the photoelectron momentum
distribution. The angular distributions of the low-energy electrons provide a way to monitor the
evolution of the electron wavefunction in the intense high frequency laser fields.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

The development of the free-electron laser technology, which is capable of generating extreme
ultraviolet (XUV) lasers pulses with unprecedented intensity [1–6], has attracted quite a lot
of attentions on the laser-matter interaction in high-frequency regime. Many remarkable and
counterintuitive phenomena in high-frequency regime have been actively studied in recent
years. One of them is the atomic stabilization, which has been understood as the formation of
metastable Kramers-Henneberger (KH) states of the dressed potential [7–12]. Experimentally,
this phenomenon has been observed in Rydberg states [13–15].

Numerous investigations on the atomic stabilization in high-frequency regime focus on
monochromatic laser pulse, and the high-frequency Floquet theory (HFFT) has been employed
to explore the underlying dynamics. However, for real laser pulse, the pulse duration is finite and
there are the rising and falling edges, which could induce many interesting effects not accounted
for by the HFFT. An adiabatic version of the HFFT taking account of the pulse envelope has
been proposed [16,17]. This approach has been successful in understanding the pulse envelope
variation induced phenomena, such as the dynamic interference, which originates from the
interference of the electron wave packets ejected on the rising and falling edges of the laser pulse
[17–25].

Another interesting issue due to the finite pulse duration is the ionization by nonadiabatic
transition. As one of the most basic mechanisms of the universe, nonadiabatic transition occurs
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when the adiabatic parameter changes quickly [26,27]. One of the most well-known examples
of the nonadiabatic transition is the transition between the adiabatic electronic states defined
by the Born-Oppenheimer approximation when the nuclear motion is involved [28,29]. In the
intense high-frequency laser pulses with short duration, the rapid turn-on and turn-off of the laser
pulse could induce nonadiabatic transition. It has been shown that the turn-on of the short pulse
could induce nonadiabatic transition from the ground state to the excited states, which has been
revealed by tracing the time-dependent electrons wave packet of the bound state in the intense
high-frequency pulses [7,30–34]. The nonadiabatic transition also occurs from ground state to
continue states, resulting in low-energy electrons generation in the intense high-frequency laser
pulse [35–38]. These low-energy photoelectrons have attracted considerable attention in the past
decades. For example, the modulation in the energy spectrum of the low-energy electrons, which
originates from interference of the electrons generated by nonadiabatic transition on the rising
and falling edges of the laser pulse, has been detaildedly surveyed [39]. The similar nonadiabatic
ionization of Rydberge states has been theoretically and experimentally observed [40,41]. The
investigations on the nonadiabatic transition deepen the understanding of the electrons dynamics
in the high-frequency regime. In most of previous investigations on the nonadiabatic ionization,
attentions mainly focus on the energy spectrum of the electrons [37–39]. With the development
of the experimental technique, it is feasible to detect the photoelectron momentum distributions
(PEMDs) induced by the high-frequency laser pulse. The PEMDs can provide more information
about the electrons dynamics in the nonadiabatic transitions.

In this work, we investigate the angular distributions of the low-energy electrons generated due
to nonadiabatic ionization in the intense high-frequency laser pulse. The PEMDs obtained by
numerically solving the three-dimensional (3D) time-dependent Schrödinger equation (TDSE)
show that the low-energy photoelectron angular distributions (LEPADs) sensitively depend on the
laser intensity. It changes from a two-lobe structure to a four-lobe structure as the laser intensity
increases. By analyzing the nonadiabatic transitions in the KH frame, we show that the change
of the LEPAD originates from intensity dependent evolution of the ground-state wavefunction.
As the laser intensity further increases, a ring-like structure appears in momentum distribution of
the low-energy electrons, which is attributed to the nonadiabatic transition from the ground state
to an excited state followed by the nonadiabatical ionization. The momentum distributions of the
low-energy electrons are the manifestation of the adiabatic evolution wavefunction, and thus it
provides us a way to monitor the evolution of the electron wavefunction.

This paper is organized as follows. In Sec. 2., we introduce our method for numerically
solving the 3D TDSE and the method of treating the nonadiabatic transition. Then we show our
numerical results and discussions in Sec. 3. Section. 4. provides a brief summary.

2. Theoretical methods

2.1. Numerically solving TDSE

We obtain the PEMDs by numerically solving the 3D TDSE. The TDSE in velocity gauge is
written as (atomic units are used unless otherwise stated):

i
∂Ψ(r, t)
∂t

=

(︃
1
2

p2 + A(t) · p + V(r)
)︃
Ψ(r, t), (1)

where V(r) = −1/r is Coulomb potential of H. The laser field is described as

A(t) = A0f (t) cos(ωt)ez, (2)

where A0 and ω are the amplitude of the vector potential and center frequency of the laser pulse,
respectively. f (t) is the envelope of the laser pulses. In our calculations, we consider two types of
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pulses, the Gaussian shape laser pulse,

f (t) = exp[−2 ln 2(t/∆)2], (3)

and the sin2 shape laser pulse,
f (t) = sin2(πt/τ +

π

2
). (4)

Here, ∆ and τ are the full width at half maximum (FWHM) for the Gaussian shape laser pulse
and the pulse duration for the sin2 shape laser pulse, respectively.

In our simulation, the TDSE in Eq. (1) is solved in the spherical coordinates, in which the
wave function Ψ(r, t) is expanded by spherical harmonics |l, m⟩,

|Ψ(r, t)⟩ =
∑︂
l,m

Rl,m(r, t)
r

|l, m⟩, (5)

where Rl,m(r, t) is the radial part of the wave function. This radial wave function is discretized
by the finite-element discrete variable representation (FE-DVR) method [42]. The angular
momentum number l is chosen up to 30, and the convergence has been ensured by varying
the number of included partial waves. The time propagation of the TDSE is calculated by the
split-Lanczos method [43] with the time step fixed at ∆t = 0.01 a.u.. The maximal box size for
the radial coordinates is chosen to be 400 a.u.. An absorbing mask function has been applied in
each step of time propagation of the wavefunction, which is written as F(r) = 1− 1/(1+ e(r−Rc)/L)

with Rc = 300 a.u. and L = 2 a.u.. The wavefunction Ψ(r, t) is split into the inner part
Ψin(r, t) = Ψ(r, t)F(r) and the outer part Ψout = Ψ(r, t) −Ψin(r, t) by the absorbing mask function.
The inner wave function is still evolved strictly as TDSE, while the outer part Ψout is propagated
by Coulomb-Volkov propagator [44]. The initial wavefunction is prepared by imaginary-time
propagation which is chosen as the ground state of H atom. The ionization amplitude is extracted
from the final wavefunction by projecting it to the scattering state [43],

M(p) = ⟨Ψp(r)|Ψ(r, tf )⟩. (6)

Here, Ψp(r) is the normalized scattering state for H atom, which is normalized by
∫

drΨ∗
p(r)Ψp′

(r) = 2πδ(p − p′). Note that the nondipole effect is not considered here, because the nondipole
effect does not affect the angular distributions of the photoelectrons in the polarization plane (the
slices of 3D PEMDs at py = 0) for the laser parameters considered in this work, as discussed in
Appendix A..

2.2. Floquet envelope Hamiltonian approach

We adopt the Floquet envelope Hamiltonian approach [16,45–47] to investigate the intensity-
dependent LEPAD. By the unitary transformation ΨKH(t) = exp[iα(t) ·p]Ψ(r, t), the Hamiltonian
in Eq. (1) can be transformed to the Hamiltonian in KH frame, which is written as

HKH =
1
2

p2 + V[r + α(t)], (7)

where α(t) = −
∫ t A(t′)dt′ is the excursion amplitude of the laser pulse. For the linearly

monochromatic laser pulse considered in HFFT, the excursion amplitude is written as

α(t) = α0 sin(ωt), (8)

where α0 = A0/ωez. The electrons dynamics in the high-frequency regime are described by
expanding the laser-distorted Coulomb potential as [48]

V(r + α(t)) =
∑︂

n
Vn(r; α0)e−inωt. (9)
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Here, Vn(r; α0) =
∫ 2π
0 einχV[r + α(χ/ω)]dχ/(2π). Then the Hamiltonian can be divided into

time-independent H0 and time-dependent HI terms

HKH =
1
2

p2 + V0(r; α0)⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
H0

+
∑︂
n≠0

Vn(r; α0)e−inωt

⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
HI

. (10)

In the lowest-order of the HFFT, the electron is in a stationary state of H0. The interaction
determined by HI represents multiphoton decay channels, which is taken into account in the
higher order of the HFFT.

For the short intense laser pulse considered in this work, effect of the pulse envelope is
non-negligible and correction is implemented by the substitution [17]

α0 =
A0
ω

ez → α0 = α0(t)ez =
A0
ω

f (t)ez, (11)

where f (t) is envelope of the laser pulse. It indicates that the laser distorted potential V0(r; α0)
is time-depend and follows the envelope of the laser pulse. Then the instantaneous eigenvalue
En(α0) and eigenstate |ϕn(α0)⟩ of H0 are determined by(︃

1
2

p2 + V0(r; α0)

)︃
|ϕn(α0)⟩ = En(α0)|ϕn(α0)⟩. (12)

The time-dependent electron wave packet |ΨKH(t)⟩ can be expanded by the instantaneous
eigenstates of H0,

|ΨKH(t)⟩ =
⨋

n
Cn(t)e−i

∫ t dτEn(τ) |ϕn(α0)⟩. (13)

Inserting the wavefunction |Ψ(t)⟩ into the Schrödinger equation with the Hamiltonian HKH in
Eq. (10), the evolution of time-dependent amplitudes Cn(t) is determined by

Ċn(t) =
⨋

m
⟨ϕn |

(︃
−
∂α0
∂t
∂

∂α0
− iHI

)︃
|ϕm⟩e−i

∫ t dτ(Em−En)Cm(t). (14)

The term ⟨ϕn |HI |ϕm⟩ represents the photon absorption or emission, and the term ⟨ϕn |
∂

∂α0
|ϕm⟩

provides nonadiabatic coupling. In this work, we focus on the nonadiabatic transition originating
from the derivatives of the laser pulse envelope and dynamics of the low-energy electrons
generated by the nonadiabatic transition, which is independent on the term ⟨ϕn |HI |ϕm⟩ [37,45].
Thus the term ⟨ϕn |HI |ϕm⟩ is not considered in the rest of discussions. Then the time-dependent
amplitudes of the bound and the continuum states in the nonadiabatic transitions can be written as

Cn(t) = −

⨋
m

∫ t
dτ⟨ϕn |

∂

∂α0
|ϕm⟩
∂α0
∂τ

e−i
∫ τ dτ′(Em−En)Cm(τ), (15)

and
Cp(t) = −

⨋
m

∫ t
dτ⟨ϕp |

∂

∂α0
|ϕm⟩
∂α0
∂τ

e−i
∫ τ dτ′(Em−Ek)Cm(τ). (16)

Here, ϕp is approximately chosen as the normalized scattering state for H atom and ∂
∂α0

|ϕm⟩ is
derivative of the wavefunction. Eq. (16) indicates that if the eigenenergies and eigenstates of
H0 are acquired by solving Eq. (12), the PEMDs of the low-energy electrons generated by the
nonadiabatic transition can be obtained. In addition, this approach also helps us identify the
contributions of the different nonadiabatic transition channels.
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3. Results and discussions

Figure 1 shows the PEMDs for the ionization of H obtained by solving the 3D TDSE. The
parameters for the Gaussian shape laser pulses are ω = 3 a.u. and ∆ = 5T . The laser intensities
for Figs. 1(a)–1(d) are 1 × 1014 W/cm2, 4 × 1018 W/cm2, 8 × 1018 W/cm2 and 2 × 1019 W/cm2,
respectively. For the lowest intensity [Fig. 1(a)], the PEMD reveals a ring-like structure and
the radius of the ring is p =

√︁
2(ω − Ip). This is characteristic of the single-photon ionization

from ground state of H atom. As the intensity increases to 4 × 1018 W/cm2 [Fig. 1(b)], two
ring-like structures appear in the high energy region, which originate from the single- and
two-photon ionization. The modulations on the ring-like structures originate from the dynamic
interference [17–20]. Surprisingly, low-energy photoelectrons appear in the PEMD. Because
the photon energy is much higher than the ionization potential of the atom, these electrons can
not be attributed to the photon absorption process. In previous works, the low-energy electrons
have been observed in the investigations on the ionization of H− [37,39] and clusters [38]. It is
demonstrated that the low-energy electrons are generated via the nonadiabatic transitions due to
the finite length of the laser pulse. This can be verified by calculating the ionization of the atom
for the longer laser pulse, as shown in Fig. 2. With the increasing of the duration of the laser
pulse, the yield of the low-energy photoelectrons decreases [Fig. 2(a)]. When the pulse duration
further increases to ∆=20T , as shown in Fig. 2(b), the low-energy photoelectrons disappear. To
further verify that the low-energy electrons are generated by the nonadiabatic transitions, we
change the envelope of the laser pulse. For the sin2 shape laser pulse, as shown in Figs. 2(c) and
2(d), the low-energy photoelectrons appear in the PEMD for τ=30T and disappear for a longer
laser pulse. More interestingly, our results show that the angular distributions of the low-energy
electrons sensitively depend on the laser intensity as displayed in Fig. 1. For example, the LEPAD
exhibits a two-lobe structure for I0 = 4 × 1018 W/cm2 [Fig. 1(b)], and a four-lobe structure for
more intense laser pulse [Fig. 1(c)]. When the laser intensity further increases, as shown in
Fig. 1(d), a ring-like structure appears in the PEMD. As far as we know, the intensity-dependent
LEPAD has not been observed and investigated previously. In the following, we will focus on
the intensity-dependent LEPADs and choose the Gaussian shape laser pulse used in Fig. 1 as an
example.

Fig. 1. PEMDs for the ionization of H atom by numerically solving the TDSE. The laser
intensities for (a)-(d) are I0 = 1 × 1014 W/cm2, I0 = 4 × 1018 W/cm2, I0 = 8 × 1018 W/cm2

and I0 = 2 × 1019 W/cm2, respectively. The parameters for the Gaussian shape laser pulses
are ω = 3 a.u. and ∆ = 5T . Note that (b)-(d) are the PEMDs in logarithmic scale.

We adopt the Floquet envelope Hamiltonian approach as shown in Sec. 2.2 to understand the
intensity-dependent LEPADs. In this approach, the evolution of the wavefunction is described on



Research Article Vol. 29, No. 11 / 24 May 2021 / Optics Express 16644

Fig. 2. PEMDs for the ionization of H atom by numerically solving the TDSE for different
envelopes of the laser pulse (a) Gaussian shape, ∆ = 10T , (b) Gaussian shape, ∆ = 20T , (c)
sin2, τ=30T , (d) sin2, τ=60T . The other laser parameters are the same as those in Fig. 1(d).

the basis of the eigenstates of the Hamiltonian H0 in Eq. (10). The eigenvalue problem, Eq. (12),
is solved by diagonalization of the Hamiltonian matrix in Lagrange interpolating polynomials
basis [42] and the eigenenergies for three lowest-lying bound states are shown in Fig. 3(a). As
indicated by Eq. (16), the nonadiabatic transition rates of the continuum states depend on the
term ∂α0/∂τ. It implies that the nonadiabatic transition depends on the derivatives of the laser
pulse envelope rather than the envelope itself. For the Gaussian shape laser pulse, the derivative
of excursion amplitude reveals a double-peak structure and the peaks locate at -ts and ts, as
shown in Fig. 3(b). The contributions of transitions at these two instants are the same and
dominate in the entire pulse duration. Thus, we only consider the nonadiabatic transition at one
of these two peaks, i.e., the transition at ts. Since the laser pulse is short and the laser intensity is
low enough, the interference effect caused by the phase accumulated as the time propagation,
exp[−i

∫ τ dτ′(Em − Ek)], is ignored. The term Cm(τ) describes the depletion of the states. We
choose the ground state of H as the initial state, and the depletion of 1sσg state is neglected in the
zero-order approximation. Therefore, the momentum distributions of electrons ionized by the
nonadiabatic transitions from the ground state can be approximately written as

MNA(p) ∼ ⟨ϕp |
∂

∂α0(ts)
|1sσg⟩

∂α0
∂τ

|︁|︁|︁|︁
τ=ts

. (17)

It implies that the angular distributions of the low-energy electrons are mainly determined by
the derivatives of wavefunction at transition moment ts. For the Gaussian shape laser pulse, the
transition moment is given by ts = ∆/2

√
ln 2. Then α0(ts) = e−1/2√I0/ω

2, which monotonously
increases with the laser intensity. It indicates that the derivative of wavefunction at transition
moment ts depends on the laser intensity. Therefore, the LEPAD sensitively depends on the laser
intensity.

To verify the validity of Eq. (17) in describing the LEPADs, we compare the TDSE data with
the results obtained by Eq. (17) in Fig. 4. The dot dashed lines represent the LEPADs, which are
obtained by the integration of the PEMDs from p=0 a.u. to p=0.5 a.u. The results show that the
amplitude of the angular distribution along the polarization direction increases as the increasing
of laser intensity, and then the momentum distributions change from a two-lobe structure to a
four-lobe structure. Apparently, the results calculated by Eq. (17) agree well with the TDSE
data. It indicates that Eq. (17) is valid to describe the LEPADs, and the low-energy electrons are
generated mainly by the nonadiabatic transition from the ground state in these laser intensities.
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Fig. 3. (a) The eigenenergies of Hamiltonian H0 in Eq. (10) as a function of α0 for 1sσg
(blue line), 2pσu (red line), and 2sσg (yellow line) state. The symbols are the results from
previous work [49]. (b) The absolute value of derivative of the time-dependent excursion
amplitude of the laser pulse in Eq. (11). ts and -ts are the instants of the peaks of the
derivative of α0 which are marked by the red circles.

Fig. 4. Comparison between the TDSE data (left panels) and the results obtained by Eq. (17)
(right panels). The laser intensities for the top, middle and bottom panels are I0 = 4 × 1018

W/cm2, I0 = 8 × 1018 W/cm2, I0 = 1 × 1019 W/cm2, respectively. The dot dashed lines
represent the LEPAD for the corresponding PEMDs. Note that the PEMDs are shown in
logarithmic scale.
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Actually, the nonadiabatic transition occurs not only from the ground state to the continuum
state but also to the excited states. Figure 5 shows time-dependent populations of the excited
states for the nonadiabatic transition from the ground state 1sσg obtained by Eq. (15). Since
the operator ∂/∂α0 does not change parity of the states, the nonadiabatic transition only exists
between the states with the same parity. Therefore, the population of 2pσu state is zero for both
laser intensities, as shown by the blue lines. For 2sσg state, as shown by the red dashed line,
the population of this state is less than three percent for I0 = 4 × 1018 W/cm2. When the laser
intensity increases to 2 × 1019 W/cm2, the population of 2sσg state is nearly twenty percent.
Therefore, the nonadiabatic ionization from 2sσg state should be considered.

Fig. 5. The time-dependent population of the excited states for the laser intensity of
I0 = 2 × 1019 W/cm2 (solid lines) and I0 = 4 × 1018 W/cm2 (dashed lines) obtained by
Eq. (15). The blue and red lines are the results for 2pσu and 2sσg state, respectively. The
gray dot dashed line represents the envelope of the laser pulse.

In Fig. 6(a), we show the PEMD obtained by solving the TDSE with the laser intensity of
I0 = 2 × 1019 W/cm2. As indicated by the dot dashed lines, the angular distributions in the
lower (black line) and higher (red line) energy region reveal different structures, i.e., a four-lobe
structure for the lower energy region and a ring-like structure for the higher energy region. The
difference of the angular distributions implies that there are two different nonadiabatic transition
channels for the low-energy electrons. We calculate the PEMDs for the nonadiabatic ionization
from 1sσg state and 2sσg state by Eq. (16), as shown in Figs. 6(b) and 6(c). The dot dashed lines
represent the angular distributions for corresponding PEMDs. It indicates that the nonadiabatic
transition from 1sσg state exhibits four-lobe structure and the transition from 2sσg state reveals
ring-like structure. The difference of the angular distributions reflects the different wavefunction
derivatives at the nonadiabatic transition moment ts of these two states. As shown by the insets
of Figs. 6(b) and 6(c), the derivative of wavefunction with respect to α0 exhibits a three-lobe
structure for 1sσg state and a ring-like structure for 2sσg state.

As discussed above, the LEPADs are mainly determined by the wavefunction derivative at the
transition instant ts. To further understand the dependence of the angular distributions on the
derivative of wavefunction with respect to α0, we calculate the weights of the partial waves of the
wavefunction and the wavefunction derivative of the 1sσg state by

WW
l (α0) =

∫ ∞

0
r2|︁|︁⟨l, 0|Ψ1sσg (α0)⟩

|︁|︁2dr, (18)

and
WDW

l (α0) =

∫ ∞

0
r2|︁|︁⟨l, 0| ∂

∂α0
|Ψ1sσg (α0)⟩

|︁|︁2dr. (19)
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Fig. 6. (a) PEMD for the ionization of H atom by numerically solving the TDSE with the
laser intensity I0 = 2×1019 W/cm2. The black and red dot dashed lines represent the angular
distributions for the lower (0<|p|<0.5) and higher (0.8<|p|<1) energy region, respectively.
(b) The PEMD for the nonadiabatic transition from 1sσg state obtained by Eq. (16). The dot
dashed line represents the angular distribution of the PEMD. The inset shows the derivatives
of the wavefunction at the nonadiabatic transition ts. (c) Same as (b) but for 2sσg state.

Here, |l, m⟩ is the spherical harmonics. Since the laser pulse is linearly polarized along the z
axis, the magnetic quantum number m is conserved. As a consequence, we only need to consider
the component of m=0. As shown in Fig. 7(a), for the wavefunction, the weights of the partial
waves are roughly unchanged as α0 increases. While for the wavefunction derivatives with
respect to α0, the weight of l=0 decreases and the weight of l=2 increases as the increasing of α0.
The l=0 partial wave produces a isotropy structure and the l=2 partial wave exhibits a four-lobe
structure in the momentum space. The PEMDs for the low-energy electrons can be thought as
the superposition of these two components. Therefore, as shown in Fig. 7(b), the momentum
distributions of the low-energy electrons change from a isotropy structure to a four-lobe structure
as α0 increases. To quantitatively identify the contributions of the s (l=0) and d (l=2) wave to the
LEPADs, we use the following formula to describe the LEPADs

P(θ) = C[1 + β2P2(cos θ) + β4P4(cos θ)]. (20)

Here, C is the normalization constant, β2,4 are the second- and fourth-order anisotropy
parameters, and P2,4 are the second- and fourth-order Legendre polynomials [50]. β2,4 are
obtained by projecting the angular distributions of low-energy electrons (Integration of the PEMD
from 0 a.u. to 0.5 a.u.) to the corresponding Legendre polynomials. The ratio β2/β4 as a function
of laser intensity is shown in Fig. 7(c), in which the circle solid line and the triangle dashed
line are for the TDSE data and the results obtained by Eq. (17), respectively. Apparently, the
agreement between these results is remarkable, which further verifies the validity of Eq. (17) to
describe the angular distribution of the low-energy electrons. Moreover, the increasing of the
ratio as laser intensity represents that the contributions of d wave increases as the laser intensity
and then the LEPAD evolves from the two-lobe structure to the four-lobe structure.

The PEMD is a manifestation of the wavefunction derivative, as indicated by Eq. (17). Thus,
it provides us a way to trace the evolution of the wavefunction derivative. For the Gaussian
pulses, the low-energy photoelectrons are mainly released at two instants, -ts and ts. For the short
pulses in our calculations, the interference between electrons released at these two instants is
negligible. Then we reconstruct the wavefunction derivative according to Eq. (17). Note that
there is no phase information in the PEMDs and thus in our reconstruction we do not consider the
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Fig. 7. (a) The weights of the partial waves for the wavefunction |1sσg⟩ (solid lines) and
the derivative of the wavefunction ∂

∂α0
|1sσg⟩ (dashed lines) as a function of α0. The blue,

red and yellow lines are the results for l = 0, 1, 2, respectively. (b) The LEPADs related to
the derivatives of the wavefunction at selected α0 marked with red circles in (a). (c) The
ratio of the asymmetry parameter β2/β4 as a function of the laser intensity. The circle solid
line and the triangle dashed line are for the TDSE data and the results obtained by Eq. (17),
respectively. (d) The derivatives of the ground state wavefunction with respect to α0 for H0
in Eq. (10) corresponding to the PEMDs in (b). (e) Same as (d) but for the reconstruction
results.

phase of the factor ⟨ϕp |
∂

∂α0(ts) |1sσg⟩. The results are shown in Fig. 7(e). The exact wavefunction
derivatives with respect to α0 are also shown for comparison in Fig. 7(d). The reconstructed
results agree reasonably well with the exact results. The additional structures appearing in the
large coordinate range might be due to the limited bandwidth of the electron spectrum. The
similar problem also exists in the tomographic imaging of molecular orbitals [51].

4. Conclusion

In conclusion, we have investigated the angular distributions of the low-energy electrons generated
by nonadiabatic transition. By numerically solving the 3D TDSE, we find that the LEPAD
sensitively depends on the laser intensity. It changes from a two-lobe structure to a four-lobe
structure as the laser intensity increases. By analyzing the nonadiabatic transition in the KH
frame, we find that this phenomenon is attributed to the intensity-dependent wavefunction
derivatives of the ground state at the transition instant. For the more intense laser pulse, the
non-negligible nonadiabatic transition from the excited state results in a ring-like structure in
the angular distribution. It indicates that the angular distributions of the low-energy electrons
provide a way to directly identify the contributions of different nonadiabatic transition channels.
Moreover, utilizing the relationship between the PEMDs of the low-energy electrons with the
wavefunction derivative at the transition instant, we successfully monitor the evolution of the
ground state wavefunction by the momentum distributions of the low-energy electrons. Our work
deepens the understanding of the nonadiabatic transitions in the intense high-frequency laser
pulse.

A. Nondipole effect of the low-energy electrons

For the intense laser field, the nondipole effect is important. In previous works [36,52,53],
the nondipole effect for the low-energy electrons are investigated. To test the validity of the
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dipole approximation in analyzing the generation of the low-energy electrons, the lowest-order
nondipole correction is considered. The lowest-order nondipole corrected Hamiltonian in the
velocity gauge is written as

HND = −
1
2
∇2 + V(r) − iA(t) · ∇+

1
c
(k · r)[A(t) · F(t)] − i

1
c
(k · r)F(t) · ∇.

(A1)

Here, A(t) and F(t) are the usually adopted vector potential and electric field of the laser pulse
in the dipole approximation, respectively. In our simulation, the laser pulse propagates along the
positive y-axis and is polarized along the z-axis.

We numerically solved the 3D TDSE within nondipole correction in spherical coordinates
and the details have been shown in our previous work [20]. Figure 8 shows the PEMDs for the
ionization of H atom with the highest laser intensity considered in our work; i.e., I0 = 2 × 1019

W/cm2. The upper and bottom panels are the results with dipole approximation and the lowest
nondipole correction, respectively. Obviously, the nondipole effect results in the asymmetry
distribution in the plane with the laser propagation direction as shown in Figs. 8(b) and 8(d).
The similar asymmetry is also displayed in previous works [36,52,53]. However, the nondipole
effect does not affect the angular distribution of low-energy electrons in the polarization plane
(px-pz) for the laser parameters considered here, as shown in Figs. 8(a) and 8(c). As indicated
by previous work [52], when the amplitude of electric field is larger than 30 a.u., the dipole
approximation begins to break down due to strong influence of the generation of the low-energy
electrons by nondipole correction and then the PEMD in polarization plane is different from
the results with dipole approximation. However, the amplitude of electric field for the highest
laser intensity considered in this work (I0 = 2 × 1019 W/cm2, E0=23.8 a.u.) is less than 30 a.u..
Therefore, it is valid to analysis the PEMD in polarization plane with dipole approximation for
the laser parameter considered in our work.

Fig. 8. PEMDs for the ionization of H atom by numerically solving the TDSE within
dipole approximation (a) and (b) and nondipole correction (c) and (d) for a ẑ-polarized pulse
propagating in the positive ŷ direction. The laser intensity is 2 × 1019 W/cm2 and the other
laser parameters are the same as Fig. 1. The left and right panels are the PEMDs in the px-pz
and py-pz plane.
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