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Abstract: We investigate the Bloch mode conversion of surface plasmon 
polaritons in a periodic array of graphene pairs with each consisting of two 
separated parallel graphene sheets. The employment of graphene pair as a 
unit cell in the array yields two Bloch modes belonging to different bands. 
By periodically modulating the permittivity of dielectrics between graphene 
along the propagation direction, the interband transitions occur and the 
modes will alternatively couple to each other, similar to traditional Rabi 
oscillations in quantum systems. The indirect Rabi oscillations can also be 
observed through introducing transverse modulation momentum. The 
period of Rabi oscillations can be optimized by taking advantage of the 
flexible tunability of graphene. The study suggests that the structure have 
applications in optical switches and mode converters operating on deep-
subwavelength scale. 
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1. Introduction 

Rabi oscillations usually refer to periodic state transitions between two atomic energy levels 
driven by an electromagnetic wave with the frequency tuned to the energy gap, leading to the 
periodic emission and reabsorption of photons [1,2]. Such phenomena of alternate conversion 
of states coupled to external periodic perturbations have also been achieved in semiconductors 
and condensed matter systems [3,4]. In the past decade, optical Rabi oscillations have been 
demonstrated in multimode waveguides, photonic crystals and waveguide arrays [5–7]. The 
optical Rabi oscillation, analogous to its initial conception, refers to the alternate conversion 
between distinct guided modes as the waveguides undergo a longitudinal periodic modulation 
of permittivity. As for waveguide arrays, the Bloch modes belonging to different bands will 
convert to each other and experience an alternate energy exchange during propagation. The 
effect may find applications in optical switches and spatial mode converters [8–10]. Recently, 
efficient Rabi oscillations of surface plasmon polaritons (SPPs) have been realized in metal-
dielectric waveguides within a subwavelength oscillation period [11]. Similar to metals in 
visible ranges, graphene can support SPPs in terahertz and far infrared regimes. Compared to 
the SPPs in metal-dielectric waveguides, the SPPs in graphene possess huge mode 
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localization, low propagation loss and flexible tunability [12–15]. By taking advantage of the 
unique properties, the graphene constructed waveguides and arrays could provide a new 
platform to investigate Rabi oscillations. 

In this work, we propose the graphene-pair arrays (GPAs) composed of periodically 
arranged graphene pairs to realize Rabi oscillations of SPPs. A graphene pair can support the 
symmetric and antisymmetric SPP modes [16,17]. Consequently, the GPAs allow two kinds 
of collective Bloch modes belonging to different bands of the dispersion relation, depending 
on the symmetry of SPP modes in each individual graphene pair. As the permittivity of the 
dielectric between graphene undergoes a periodic modulation in the propagation direction, the 
interband transition could occur. When the permittivity modulation carries a proper transverse 
momentum, indirect interband transition can be stimulated as well. Here we realize efficient 
Rabi oscillations with a deep subwavelength period of a few hundred nanometers. The period 
of Rabi oscillations can also be controlled by tuning the incident Bloch momentums, 
operation wavelength and chemical potential of graphene. 

2. Bloch modes in GPAs 

 

Fig. 1. (a) Schematic of the GPAs. (b) Real part of the effective index (neff) of Bloch modes in 
the GPAs as a funtion of the Bloch momentum, that is, the band structure of the Bloch modes. 
Solid and dotted curves denote d1 = 20nm, d2 = 40nm and d1 = 20nm, d2 = 60nm, respectively. 
(c) Imaginary part of neff as a function of the Bloch momentum. 

We start by investigating the eigen Bloch modes in the GPAs without modulation. As shown 
in Fig. 1(a), the GPAs are composed of periodically arranged graphene pairs separated by 
dielectrics. The period of the GPAs is denoted by d = d1 + d2 with d1 being the spacing of 
graphene in each pair. The surface conductivity of graphene σg(λ, μc, τ, T) is modeled by the 
Kubo formula [18,19], which is determined by the wavelength (λ), chemical potential of 
graphene (μc), relaxation time (τ), and temperature (T). We initially choose λ = 10 μm and μc 
= 0.15 eV. The relaxation time is τ = 1 ps at room temperature T = 300 K [20]. The relative 
permittivity of the dielectric medium is assumed as εd = 2.13 [21]. 

We only consider transverse magnetic (TM) polarized SPPs propagate along z direction. 
According to Maxwell’s equations and the Bloch theorem [22,23], we can obtain the 
dispersion relation of the Bloch modes 
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where κ = (β2 − εdk0
2)1/2, k0 = 2π/λ, β is the propagation constant and φ is the Bloch 

momentum, and ξ = iσgη0κ/(εdk0) with η0 being the wave impedance in the free space. The 
effective index of the Bloch modes is given by neff = β/k0. 

Figure 1(b) shows the band structure of the Bloch modes in the GPAs. Note that the band 
structure here denotes the diffraction relation between the propagation constant or effective 
index of the Bloch modes and the Bloch momentum [24,25]. There are two bands in the 
diagram, corresponding to two kinds of Bloch modes in the array. The mode wavelength and 
propagation distance of the Bloch modes are given by λp = λ/Re(neff) and Lp = [2k0·Im(neff)]−1 
[26, 27]. As shown in Figs. 1(b) and 1(c), the modes of band 1 have shorter mode 
wavelengths and longer propagation distances by comparing with the modes of band 2. 
Particularly for band 1, the modes in the Brillouin zone center have smaller λp and larger Lp 
than those at the edges. Concerning band 2, in contrast, the modes at the Brillouin zone edges 
have shorter mode wavelengths and larger propagation distances. As the period d of the GPAs 
increases, the coupling of SPPs between adjacent graphene pairs becomes weaker. 
Consequently, both the real and imaginary parts of the effective indices become flatten 
(dotted curves), which are more remarkable for band 2. 

 

Fig. 2. Normalized transverse magnetic field distributions of the Bloch modes in the GPAs as 
d1 = 20nm and d2 = 60nm. The positions of graphene sheets are denoted by the red dashed 
lines. (a)-(c) denote the mode profiles of band 1 as φ = 0, π/2, π. (d)-(f) Corresponding mode 
profiles of band 2 as φ = 0, π/2, π, respectively. 

The normalized magnetic field distributions of the Bloch modes are illustrated in Fig. 2. 
We denote the mode as Φm,φ with m and φ being the band index and Bloch momentum. As 
each graphene pair can support two kinds of SPP mode, i.e., the symmetric and antisymmetric 
modes. The Bloch modes of band 1 are formed by the coupling of the symmetric SPP mode in 
each graphene pair with a phase difference of φ between adjacent periods. As shown in Figs. 
2(a)-2(c), the mode profiles between adjacent periods are in phase as φ = 0 and out of phase 
as φ = π. As φ = π/2, the modes are out of phase in every two periods. The Bloch modes in 
band 2 are formed by the coupling of antisymmetric SPP mode in each graphene pair. Figures 
2(d)-2(f) show the mode profiles in band 2 as φ = 0, π/2 and π, respectively. The symmetry of 
the modes in band 2 is opposite to that of the corresponding modes of band 1. The symmetry 
of the modes is tightly related with the conversion efficiency of Rabi oscillations, which will 
be discussed in the following. 
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3. Rabi oscillations of SPP Bloch modes 

Now we consider the Rabi oscillations between the Bloch modes in bands 1 and 2 stimulated 
by the permittivity perturbation. The modulation of permittivity applied to the permittivity 
dielectrics between graphene is given by 

 
2

( , ) ( ) cos( ) cos( )
z

x z
x z x

d
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where δε and Δε(x) are the amplitude and transverse modulation function, φ and Λz are the 
transverse modulation momentum and the longitudinal modulation period, respectively. The 
field in the GPAs reads [E(x, z), H(x, z)] = mAm(z)exp(iβmz)[Em,φ(x), Hm,φ(x)], where Am, βm, 
and [Em,φ(x), Hm,φ(x)] (m = 1, 2) are the amplitudes, propagation constants, and normalized 
transverse profiles of the Bloch modes, respectively. By substituting the field distribution into 
Maxwell’s equations and using slow varying amplitude approximation, we can obtain the 
coupled mode equations [28] 
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where ∆β12 = − ∆β21 = β1 − β2 is the phase mismatch between the two Bloch modes. The 
coupling coefficient M12 is given by [29,30] 
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and we have M12 = M21*. Under the phase-matching condition ∆β12 = 2π/Λz, a complete 
transition between the two Bloch modes will occur. Here we consider the mode of band 1 
with Bloch momentum φ1 and amplitude A1(0) is injected into the GPAs and A2(0) = 0 at z = 
0. Thus we have A1(z) = A1(0)cos(|M12/2|z) and A2(z) = − i(M12/2)*/|M12/2|·A1(0)sin(|M12/2|z). 
The period of Rabi oscillations denoting the length for complete transition is given by Lc = 
π/|M12| [28]. As the transverse modulation momentum is φ = 0, only direct interband transition 
between the modes with φ2 = φ1 will take place. While for nonzero modulation momentum (φ 
≠ 0), indirect interband transition between the Bloch modes with φ2 − φ1 = φ can be 
stimulated. 

Figure 3 illustrates the coupling coefficient |M12| versus the incident Bloch momentum φ1 
and momentum difference Δφ = φ2 – φ1. The incident Bloch momentum can be introduced by 
controlling the phase difference of SPPs in adjacent graphene pairs [23]. The momentum 
difference between the modes of different bands is generated by the transverse modulation 
momentum by choosing φ = Δφ [7]. In Fig. 3(a), the transverse modulation is odd and reads 
Δε(x) = sin(2πx/d). In respect of the direct interband transition as Δφ = 0, M12 has the largest 
modulus at the Brillouin zone center φ1 = 0 and decreases from the center to the edges φ1 = ± 
π. While for indirect interband transition Δφ = π, the maximum of the coupling coefficient 
locates at the Brillouin zone edges. In Fig. 3(b), the transverse modulation is even and reads 
Δε(x) = cos(2πx/d), the coupling coefficients for both direct (Δφ = 0) and indirect (Δφ = π) 
interband transitions reach their maxima near φ1 = ± π/2. As φ1 = 0 and ± π, the coupling 
coefficient |M12| = 0, leading to the forbiddance of Rabi oscillations. Since the modes possess 
opposite symmetries for φ1 = 0 and ± π as shown in Fig. 2, the overlap integration of M12 in 
Eq. (4) will vanish under an even transverse modulation, and Rabi oscillations are forbidden. 
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Fig. 3. The coupling coefficient |M12| as a function of incident Bloch momentum φ1 and 
momentum difference Δφ = φ2 – φ1. The modulation amplitude is δε = 0.3 as d1 = 20nm and d2 
= 60nm. In (a) and (b) Δφ = 0, ± π while in (c) and (d) Δφ = ± π/2. In (a) and (c), the transverse 
modulation is Δε(x) = sin(2πx/d). In (b) and (d), the transverse modulation is Δε(x) = 
cos(2πx/d). 

For other incident Bloch momentum 0 < |φ1| < π, due to the broken of mode symmetry, the 
coupling coefficient |M12| is nonzero. Thus Rabi oscillations can be yielded under both odd 
and even transverse modulations. Figures 3(c) and 3(d) show the coupling coefficients as the 
transverse modulation is odd for Δε(x) = sin(2πx/d) and even for cos(2πx/d). Both situations 
for Δφ = ± π/2 are considered. Note that |M12| is larger under the odd modulation than the 
even by more than one order of magnitude. The odd transverse modulation is preferred over 
the even to reduce the period of Rabi oscillations. As Δφ = π/2 shown in Fig. 3(c), |M12| is 
largest near φ1 = − π/2 and smallest near φ1 = π/2. While in Fig. 3(d), the coupling coefficient 
is largest near φ1 = 0 and approaches zero near φ1 = ± π/2. Thus by introducing certain 
transverse modulations, the Rabi oscillations can be controlled arbitrarily. 

To validate the theoretical analysis, we also perform numerical simulations by using 
COMSOL Multiphysics. The results are shown in Fig. 4. In the calculation, graphene is 
modeled as the surface current boundary condition [31–33]. Figures 4(a) and 4(b) illustrate 
the analytical and numerical field evolution of the direct interband transition between the 
Bloch modes Φ1,0 and Φ2,0 under the odd modulation of Δε(x) = sin(2πx/d). They agree fairly 
with each other. The analytical and numerical periods of Rabi oscillations (denoted by the 
horizontal dotted lines) are 0.385 μm and 0.380 μm, respectively. In Fig. 4(c), the mode Φ1,0 
is injected from the end of the GPAs under the even modulation of Δε(x) = cos(2πx/d). It 
shows that Rabi oscillations do not occur under even modulation for φ1 = 0, which confirms 
the analysis in Fig. 3(b). Figures 4(d) and 4(e) show the field evolution of the indirect 
interband transitions of Φ1,0 ↔ Φ2,π and Φ1,π ↔ Φ2,0 under the odd modulation of Δε(x) = 
sin(2πx/d). The periods of Rabi oscillations are 0.48 μm and 0.45 μm, which are larger than 
those of direct interband transitions shown in Fig. 4(b). It should be mentioned that the 
propagation loss of SPPs might hinder the observation of Rabi oscillations. In order to 
implement complete mode conversions, one can reduce the period of Rabi oscillations to 
combat with negative influence of the propagation loss. 
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Fig. 4. Analytical and simulated magnetic field (Hy) evolution of Rabi oscillations between the 
Bloch modes as d1 = 20nm, d2 = 60nm, and δε = 0.3. Black dotted lines denote the positions 
where complete transitions occur. (a) and (b) Analytical and simulated direct interband 
transtions of Φ1,0 ↔ Φ2,0 as Δε(x) = sin(2πx/d). (c) Bloch mode Φ1,0 as Δε(x) = cos(2πx/d). (d) 
and (e) Numerical indirect transitions of Φ1,0 ↔ Φ2,π and Φ1,π ↔ Φ2,0 as Δε(x) = sin(2πx/d). 

 

Fig. 5. The period of Rabi oscillations Lc versus different parameters. (a) Lc as a function of d1 
and d as φ1 = 0 and Δφ = 0. (b) Lc as a function of φ1 and Δφ as d1 = 20nm and d = 80 nm. In 
(a) and (b) λ = 10 μm and μc = 0.15 eV. (c) The influence of λ and μc on the period of Rabi 
oscillations for φ1 = π and Δφ = 0 as d1 = 20nm and d = 80 nm. 

Figure 5 illustrates the influence of other parameters on the period of Rabi oscillations as 
δε = 0.3 and Δε(x) = sin(2πx/d). In Fig. 5(a), the oscillation period as a function of the spacing 
of each graphene pair and the period of the GPAs is investigated. As d1 is fixed, the period of 
Rabi oscillations increases as d increases. The coupling of SPPs between adjacent graphene 
pairs becomes weaker as d increases, making the oscillation period increase. For fixed d, the 
period of Rabi oscillations decreases as d1 increases. It shows that the GPAs with close d1 and 
d2 can benefit the occurrence of Rabi oscillations. In Fig. 5(b), we investigate the influence of 
incident Bloch momentum and momentum difference on the period of Rabi oscillations as d1 
= 20 nm and d = 80 nm. Due to the symmetry of the band structure, the diagram is central 
symmetric, that is, Lc(φ1, Δφ) = Lc(− φ1, − Δφ). As φ1 is fixed, Lc increases as Δφ increases. 
The oscillation period is smallest for direct transition as φ1 = 0, Δφ = 0 and largest for indirect 
transition as φ1 = 0, Δφ = ± π. Figure 5(c) illustrates the influence of incident wavelength and 
chemical potential of graphene on the period of Rabi oscillations. The oscillation period 
increases as λ or μc increases. In terahertz range, the intraband transition of electrons in 
graphene dominates, leading to a Drude-like surface conductivity of σg = ie2μc/[πħ2(ω + iτ−1)] 
[34]. The transverse decay constant of SPPs in a single-layer graphene is κsp = 2iεdk0/(σgη0) 
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[16], thus we have Re(κsp) = 8cεdħ2π3/(η0μcλ2e2) with c, e, ħ being the speed of light in 
vacuum, the electron charge and reduced Planck constant, respectively. Re(κsp) decreases as λ 
or μc increases, making the SPP mode more weakly confined to the surface of graphene. 
Consuquently, the contribution of the mode products in a period to the overlap integration of 
M12 in Eq. (4) becomes less, resulting in the increase of oscillation period. 

In terms of the experimental implementions, the graphene-pair arrays can be fabricated as 
follows [35]. Firstly, a dielectric film with a thickness of nanometers is coated on the substrate 
by using PLD or CVD method. Then a graphene sheet, usually grown on the cooper foil, can 
be transferred onto the dielectric film in the Fe(NO3)3 solution. After the graphene is adhered 
on the first dielectric film, we can repeat the processes of coating dielectric films and 
transferring graphene until the desirable layers are achieved. The thickness of dielectric is 
controllable during the coating process in order to form the pair array structure. The 
longitudinal permittivity modulation could be realized by holographic recording technique 
with a two-beam interference setup. As the dielectric material is photorefractive, the required 
variation of the permittivity can be controlled by the interference intensity which is recorded 
by the photorefractive dielectrics [7, 36]. On the other hand, the transverse modulation of the 
permittivity is realizable by coating multiple dielectric layers with distinct permittivity 
according to the desirable permittivity profile between the graphene sheets. 

4. Conclusions 

In conclusion, we investigate the Rabi oscillations of SPP Bloch modes in GPAs. The modes 
belonging to different bands are formed by the coupling of symmetric and antisymmetric SPP 
modes in individual graphene pairs. The interband transitions can be stimulated as the 
dielectric permittivity undergoes a longitudinal periodic modulation, leading to the occurrence 
of Rabi oscillations. The Bloch modes will convert to each other alternatively during 
propagation. As the modulation carries a transverse momentum, Rabi oscillations will occur 
as well but accompanied with indirect interband transitions. Due to the opposite symmetries 
of the Bloch modes at the center and edges of the Brillouin zone, Rabi oscillations are 
forbidden under even transverse modulation. The period of Rabi oscillations can be squeezed 
into a deep subwavelength scale of a few hundred nanometers. The oscillation period with 
direct transition is smaller than that with indirect transition. It can be further reduced by 
introducing proper modulation functions or optimizing the geometry of GPAs. To reduce the 
influence of propagation loss, we can reduce the oscillation period by choosing shorter 
operation wavelength and smaller chemical potential of graphene. The study may find 
applications in optical switches, couplers, and spatial mode converters. 
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