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Abstract: Quantitative identification of tunneling ionization (TI) and multiphoton ionization
(MPI) with Keldysh parameter γ in intermediate regime is of great importance to better understand
various ionization-triggered strong-field phenomena. We theoretically demonstrate that the
numerical observable ionization delay time is a more reliable indicator for characterizing the
transition from TI to MPI under different laser parameters. Using non-linear iterative curve fitting
algorithm (NICFA), the detected time-dependent probability current of ionized electrons can
be decoupled into weighted TI and MPI portions. This enables us to confirm that the observed
plateau-like structure in ionization delay time picture at the intermediate γ originates from the
competition between TI and MPI processes. A hybrid quantum and classical approach (HQCA) is
developed to evaluate the weights of TI and MPI electrons in good agreement with NICFA result.
Moreover, the well separated TI andMPI electrons using HQCA are further propagated classically
for mapping their final momentum, which well reproduces the experimental or ab-initio numerical
calculated signatures of ionized electron momentum distribution in a rather broad γ regime.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Ionization is the most fundamental process in strong laser physics, which triggers the successive
phenomena, including high order harmonic generation [1–3], above threshold ionization [4–7],
as well as ultrafast electron dynamics in semiconductors and dielectrics [8–13]. Since the
seminal paper was published in 1964 [14], considerable research efforts have been devoted to
this topic, and it is gradually accepted in strong field community that the ionization processes are
determined by the Keldysh parameter γ = ω(2Ip)1/2/E0, with the frequency ω, the ionization
potential Ip, and the maximum electric field of the laser E0. With the development of ultrafast
laser technology, it is now available for the femtosecond laser’s central wavelengths from violet,
to near-infrared, even to mid-infrared [15–17], and a large range of intensities from one to eight
units of 1014 W/cm2. Therefore, the spanning of γ from 0.65 to 3.8 [18] has become realistic.
For γ � 1, it is commonly referred to as TI, in which the electron can escape from the

static barrier formed by the combination of Coulomb potential and laser electric field with
non-vanishing probability, even if its energy is lower than the barrier top. Tunneling has become
the foundation for many areas of pure and applied science, such as tunnel diodes [19], scanning
tunneling microscopy [20], and laser driven electron holography [21,22]. In the opposite limit of
γ � 1, the electron is ionized from atoms by absorbing several photons. This process is termed
as MPI.
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The intermediate regime (γ ∼ 1) is intuitively considered as the borderline between the
TI and MPI. In this regime, the dominant ionization mechanism changes from TI to MPI
with the increasing of γ. However, this rough estimation might hamper and even perplex the
interpretation of many experimental results, because one cannot explicitly determine which
ionization mechanism plays the dominant role at a specific γ. Considering that most of the
experiments are performed on atoms with laser intensities and wavelengths far away from two
limiting cases (γ � 1 and γ � 1) [18, 23], the identification of TI and MPI in the intermediate
(γ ∼ 1) regime becomes necessary. Only a few works have addressed this issue in systematic and
quantitative way. Ref. [24, 25] reported the feature of the final momentum distribution of ionized
electrons in a numerical way for different γ values, and the dominant ionization mechanism
was assigned to different structures qualitatively. Besides, Yudin et al. [26] established a valid
closed-form analytical expression for calculating ionization rate at γ ∼ 1 regime. Using this
formula the possible “excited” or “virtually excited” path [27,28] can barely be treated. Moreover,
defining a borderline between TI and MPI, the γ ∼ 1 regime raises the heated topic of the
existence of nonadiabaticity in the strong-field ionization process. Some recent experiments have
shown that TI starts to deviate from the adiabaticity to nonadiabaticity in this intermediate regime,
which is also manifested itself on the tunneling ionization time [29], tunneling exit [30, 31], and
tunneling initial momentum [32–34]. Therefore, to determine the tunneling initial conditions
unambiguously and exclude the contribution from possible multiphoton process, obviously one
must maintain experimental conditions in which TI is the dominant process. This requires the
quantification of the weight of TI and MPI at a practical laser parameter.

In this paper, we explore the ionization delay time to show the change of dominant ionization
mechanisms over a broad range of γ. For different laser intensities, we show that the delay time
picture is a good approach to distinguish TI and MPI. In order to confirm the competition of TI
and MPI process in intermediate γ regime, we use two Gaussian functions, which have forms
following the tunneling and multiphoton ionization rate theory, to iteratively fit the probability
current calculated by time dependent Schrödinger equation (TDSE) numerically. The fitting
results are clearly evident that the plateau-like structure in ionization delay time picture is
actually the weighted average delay time of TI and MPI electrons. We also put forward a
quantum-classical approach to quantify the fraction of TI and MPI in the intermediate γ regime,
and a good agreement is achieved with the results evaluated by NICFA. Furthermore, the well
separated electrons by HQCA allow us to trace the TI and MPI electron dynamics in classical way,
which makes dynamical processes of interest visualization. As an example, the separated TI and
MPI electrons are classically propagated to reach their asymptotic states, then the reconstructed
final momentum reproduces the main features of the TDSE for TI and MPI dominant cases,
respectively.

2. Theoretical method

2.1. Solving the time dependent Schrödinger equation for probability current

The wave function is obtained by numerically solving the one or two-dimension TDSE with
single-active electron (SAE) approximation (atomic unit is employed throughout),

i∂ψ(r, t)/∂t = [−∇2/2 + VC(r) + VE (r, t)]ψ(r, t), (1)

where VE (r, t) = −E · r is the laser-electron interaction potential under dipole approximation in
length gauge. E(t) is the linearly polarized laser field along the x-axis,

E(t) = E0 f (t) cos(ωt)x̂. (2)

Here, E0 is the amplitude, and ω is the angular frequency. f (t) = sin2(πt/τ) is the pulse
envelope and the pulse duration is τ = 2T0 (the optical cycle T0 = 2π/ω). The atom is exposed
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in this linearly polarized laser field and the magnetic field component is neglected. Those
render the motion of the electron quasi-one-dimensional, allowing us to investigate general
features of the electron motion in a one or two-dimensional scenario. The soft-core potential
VC(r) = −1/(r2 +α)1/2 [35–38] is used to model the essential features of an electron in Coulomb
potential. With α = 2 for one-dimensional grid and α = 0.639 for two-dimensional grid, the
ground state has the energy of 0.5 a.u., which is close to the ionization potential of hydrogen
atom. We utilize the split-step Fourier method to numerically solve Eq. (1) [39]. To solve
one-dimension TDSE, the dimension size is 800 a.u., with a grid step of 0.1 a.u. and a time step
of 0.02 a.u.. To solve two-dimension TDSE, the dimension size is 500 a.u., with a grid step of 0.2
a.u. and a time step of 0.02 a.u.. All of the parameters can guarantee that the grid is fine enough
to include the detailed evolution of the electron wave packet. The ground state wave function
is obtained via imaginary time propagation method [40]. The random initial state is evolved
in imaginary time (time step iδt , δt = 0.02 a.u.) on the space grid mentioned above. Starting
from the ground state, the ionized wave function ψ(rd, t) is saved at the fixed radius rd, where
the VDs (virtual detectors) [41,42] are located. The virtual detector is realized by calculating
the probability current at some fixed position in space. After the electron is propagated beyond
the VDs, we use an absorbing function fabs(r) = 1 − 1/(1 + exp(−(|r| − Lc)/ra)) to prevent
reflection on the boundary of grid. The choice of the parameters (La, ra) satisfies the dominant
physical conditions in [43]. The evolutive probability current at rd was obtained by

j(rd, t) = i[ψ(rd, t)∇ψ(rd, t)∗ − c.c]/2, (3)

which represents the time dependent net number of the electrons passing the VDs.

2.2. Non-linear iterative curve fitting algorithm

In the past decades, the adiabatic Ammosov-Delone-Krainov (ADK) theory [44] is widely used
to calculate the ionization rate of TI, with a simple form of W(t) ∝ exp(−2(2Ip)3/2/(3E(t))).
In the case of a linearly polarized field, the ionization rate follows the formula of W(t) =
4
√

3/(πE(t)) exp(−2/(3E(t))) for hydrogen atom [45]. For MPI, the theoretical ionization rate
depends on the field strength in form of W(t) ∝ E(t)2N , and N (N = Ip/ω) is the number of
absorbing photons. We find that those theoretical ionization rates of TI and MPI calculated by
our short oscillation field are in Gaussian shape, therefore, it is reasonable to utilize two Gaussian
functions to simulate the ionization rate (probability current) of TI and MPI. The form of those
functions is as follows:

f un1,2 = a1,2 · exp(−(t − b1,2)2/c2
1,2), (4)

where subscript 1 and 2 represent TI and MPI, respectively.
We then carry out the iterative methods in a kind of “trial and error” procedure: (1) Make

first guess of all the non-linear parameters; (2) Compute G = f un1 + f un2 and compare it to
the data set so as to calculate a fitting error; (3) If the fitting error is greater than the required
fitting accuracy, the program automatically changes the parameters and loops back around to
the previous step and repeats until the required fitting error of less than 5% is achieved. The
model applied here has four nonlinear variables (the position of maximum value b1,2 and width
of two Gaussian functions c1,2, which are determined by iteration) and two linear variables (the
heights of the Gaussian functions a1,2, which are determined directly by regression for each trial
iteration).

2.3. Hybrid quantum and classical approach

In this work, we introduce a model, which combines the advantages of both TDSE and classical
methods. The initial stage of this method obeys quantum principles and the subsequent fast-
compute classical stage provides a clear physical picture. The starting point of this hybrid
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approach is to convert the quantum outgoing electron wave packet calculated by numerical
integration of the TDSE into classical local momentum p(rd, t) [41, 42, 46] through

p(rd, t) = j(rd, t)/|ψ(rd, t)|2. (5)

Here, the probability current density j(rd, t) of outgoing electrons is calculated by Eq. (3). Since
Eq. (5) is only valid in the case of well-defined momentum of the ionized electron, the VDs are
placed far away from the electron oscillation amplitude R = E0/ω2 (rd � R). With the known
classical position and momentum used as initial conditions, the ionized electrons can be then
propagated classically forward to laser end or backward to laser start, using the same Hamiltonian
of the TDSE, automatically taking the Coulomb correction into account. The evolution of the
electron with the above initial conditions is governed by Newton’s equation of motion:

d2r/dt2 = E(t) − ∇VC(r). (6)

It is noted that the full quantum treatment before the transformation by VDs enables us to take
the electron transition from not only ground state but also excited states into count, without any
specific approximations. For the back propagation, the classical electrons could be bounced by
the potential barrier, which is a forbidden regime for tunneling electrons, and their trajectories
are terminated with the criterion that the electron has tunneled if the electron’s displacement in
the instantaneous field direction is a minimum, when the particles are back propagated from the
position of the VDs toward the nuclei [34].

3. Result and discussion

Figure 1 shows the calculated one-dimension probability current j(rd, t), when γ is varied in
a range covering from 0.6 to 1.8. The laser intensity is fixed at 5.9 × 1013 W/cm2. We place
the VD at rd by meeting V(r, t0) = −Ip [47], where the laser field has maximum value at time t0
(t0 = T0), Ip is the ionization potential and V(r, t0) is the combined potential of laser field and
Coulomb force. One can see that all of the curves dominantly exhibit positive peaks, indicating
that the reflection of outgoing electron raised by under-the-barrier dynamics can be neglected.
This result also proves that the choice of rd is reasonable that only truly ionized electrons are
detected in this oscillating field. At small γ of 0.6, the probability current just has one peak.
However, with the increasing of γ another peak gradually appears, and a dominant double-peak
structure is formed. Although there are some minor peaks originated from the laser oscillation,
they have small contribution to the total probability current and could be ignored. When γ is
further increased to 1.8, the probability current curve changes back to one dominant peak. As we
all know, the dominant ionization mechanism at small γ � 1 (large γ � 1) is TI (MPI), therefore
the probability current of the ionized wave packet at γ of 0.6 and 1.8 can be unambiguously
assigned to TI and MPI, respectively. Intuitively, we can suppose the double-peak structure is
caused by the co-existence of TI and MPI in the intermediate γ regime. After a close inspection
of the double-peaked structure, we found the relative height of the pre-peak (purple arrows)
gradually grows until it becomes completely dominant with the increasing of γ, in contrast to the
post-peak (red arrows). This observation is qualitatively consisted with the widely accepted fact
that the proportion of MPI is growing when γ is increased, vice versa. In the other words, the
relative ratio between MPI and TI increases, because the ionization probability of each channel
cannot abruptly change. Although this is just a qualitative separation of TI and MPI peaks, it is
enough for us to arrange the Gaussian-form functions f un1 and f un2 to the TI and MPI peaks,
respectively, getting ready for the next step of nonlinear fitting the whole probability current
curve (more discussed in following section). Furthermore, it is also noticed that the peaks of
the time-dependent probability current are delayed as γ is increased. We record the electron’s
weighted average of time tD of arrival at rd. While rd is recognized as the tunneling exit, tD
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becomes tunneling delay time according in [47]. Here, we emphasize that the location of rd
only serves for recording the numerical observable tD in our work. Since the actual tunneling
delay times are sensitively dependent on how the tunnel exit is chosen [31], we do not assign
tD conforming to any existing concept of tunneling ionization time, such as Mandelstam-Tamm
time [48], Keldysh time [14], Wigner time [49]. Instead, the delay time τA is obtained through
tD − t0.

j(
r d

 ,t
) 

(a
rb

. 
u
n
it

s)

-1

0

1

2

3

4

5

6

7

t/T
0
 

0.8 1 1.2 1.4 1.6

0.6

1.2

1.6

1.8

Fig. 1. The probability current j(rd, t) as a function of time at the detector rd , at Keldysh
parameters of 0.6, 1.2, 1.6, 1.8. The laser intensity is fixed at 5.9×1013 W/cm2. The vertical
dashed black line is used to guide the moment when the laser field reaches maximum. The
purple arrows and the red arrows represent the pre-peak and post-peak, respectively.
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For quickly checking the trend of the delay time, we plot the delay time τA in one-dimensional
grid as a function of γ in three different intensities in Fig. 2. The intensities were chosen not to
exceed 1014 W/cm2 in order to avoid barrier suppression ionization. A positive delay time is
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observed for the three intensities, and it generally increases with the growth of γ. After closer
inspection, for each constant laser intensity the curve can be divided into three stages: two
ascent stages in different growth trend and one pronounced plateau-like stage between them. The
detailed understanding of this interesting plateau-like structure in the intermediate γ regime will
be discussed later. Conventionally, γ is used to distinguish the ionization regime with small
γ � 1 for TI and large γ � 1 for MPI [14]. Therefore, we can assign the regime before and after
the plateau-like structure as TI regime and MPI regime undoubtedly. For the first ascent stage
in TI regime (γ � 1), the electron tunnels crossing the barrier in phase space without gaining
additional energy in the electric field. The observed increase of delay time τA with growing γ
at constant laser intensity in Fig. 2 is consistent with the fact that the laser pulse duration is
decreased correspondingly. The shorter laser pulse duration grants the wave function less time to
evolve and to adopt to the time-varying Hamiltonian during the rise of the electric field, therefore,
the wave function has shorter time to develop the necessary portion for tunneling, and needs more
time to reach the maximum ionization rate. We also find, the delay time tends to zero (not shown)
as γ approaches zero. This is in accordance with that the electron is ionized at the laser peak in
the frame of adiabatic tunneling picture that electron tunneling doesn’t need time. Furthermore, it
is also shown that, a lower (higher) electric field strength results in a longer (shorter) delay time at
a constant γ. This result agrees well with the Keldysh tunneling time τk =

√
2Ip/E0 [50], which

is the time scale that the bound state under the barrier develops the wave function component
necessary for TI. For the second ascent stage in MPI regime (γ � 1), the electron is elevated
into an unbound state by absorbing multiple photons. Then it is accelerated by the laser field
far away from the parent atom to detector. The electron has the cycle-average kinetic energy
Up = E2

0/4ω
2 (ponderomotive energy) in the oscillating field. As γ is increased at the constant

electric field strength, we find that the delay time τA increases. The growing of γ (at constant E0)
corresponds to the increasing of ω and the decreasing of Up , which makes the ionized electrons
slow and need more time to reach the VD. On the other hand, if γ is kept constant, the increasing
of E0 leads to the growing of Up , and the electron spends less time to the VD.
We now go back to discuss the plateau-like structure in the ionization delay time picture. As

shown in Fig. 2, the range of the plateau-like structure reduces and shifts towards smaller γ
with the increasing of laser intensity. Since the plateau-like structure is located between the two
limiting cases of TI and MPI, one can logically speculate that the formation and change of this
plateau are a consequence of a competitive process of TI and MPI.

To demonstrate the prediction, we use NICFA through G = f un1 + f un2 to fit the probability
current calculated by one-dimension TDSE in the intermediate regime, for example, γ = 1.6 and
the laser intensity is 5.9 × 1013 W/cm2 as shown in Fig. 3(a). By employing the fitting method
described in method section, the variables are obtained: a1 = 4.27 × 10−4, a2 = 4.9 × 10−4,
b1 = 111.5, b2 = 103.6, c1 = 3.93, c2 = 4.3. We justify the validity of this fitting method by
comparing the full width of half maximum (FWHM) of f un1,2 with those calculated through
theoretical TI and MPI rate. For γ = 0.6 at the laser intensity of 5.9 × 1013 W/cm2, where TI
is dominant, the FWHM of 22.48 a.u. calculated by ADK theory is in reasonable agreement
with FWHM of 25.01 a.u. for f un1. The deviation may originate from residual nonadiabaticity
which makes the true wavepacket wider than that predicted by static ADK [32]. For γ = 2.8 at
the laser intensity of 5.9 × 1013 W/cm2, the lowest order of ionization is a 5-photon process. The
FWHM of f un2 is 7.76 a.u. larger than 5.99 a.u. calculated by the MPI rate. This difference may
originate from the diffusion of wavepacket in the oscillating field when the electron wavepacket
is propagated from the ion core to the VD. Then we calculate the fitting delay time b1,2 − t0 of TI
and MPI in the interested intermediate regime by changing γ from 1 to 2.6 at 5.9 × 1013 W/cm2

as shown in Fig. 3(b). We can see that the fitting delay time of TI (MPI) in intermediate regime
agrees well with the growth trend of delay time of TI (MPI) regime. Moreover, we verify that
the delay time in the intermediate regime (plateau-like structure) is a weighted average of the
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Fig. 3. (a) The probability current j(rd, t) as a function of time at the detector rd , where
γ = 1.6 and the laser intensity is 5.9 × 1013 W/cm2 (black curve). The red dashed curve is
a Gaussian fit to the probability current. The green dotted curve and yellow dash-dotted
curve are Gaussian fitting of TI and MPI, respectively. (b) The delay time covering a range
of Keldysh parameters from 0.4 to 4 at laser intensity of 5.9 × 1013 W/cm2 (black circles).
The red squares and the blue crosses represent the delay time abstracted from the Gaussian
fit of probability current of TI and MPI, respectively.

fitting delay time of TI and MPI. In addition, to show our method is generalized, we also try to
decouple the TI and MPI electrons launched by a twelve-cycle laser pulses. We again first check
the validity of Gaussian type functions for representing the TI and MPI wave packets in the case
of using longer laser pulse. For instance, for the limiting case of γ = 0.3 and γ = 3 at laser
intensity of 5.9 × 1013 W/cm2, the FWHM calculated by ADK theory (MPI rate) is 49.45 (5.99)
a.u., in reasonable agreement with FWHM of 49.95 (8.13) a.u. for the fitted Gaussian function
by employing a twelve-cycle laser field. Then the total probability is decoupled into TI and MPI
fractions by performing NICFA, and we also extract the delay time from the Gaussian fit of the
probability current in the intermediate regime and find no substantial difference compared to
the case of two-cycle laser pulse. With the agreement, we can conclude that the plateau-like
structure is a consequence of a competitive process of TI and MPI in the intermediate regime for
both cases of short and long laser pulses.
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represent the R calculated by NICFA at laser intensity of 5.9 × 1013 W/cm2.

To further check the competition between TI and MPI in the intermediate regime, we calculate
the fraction of TI in total ionization. We use one-dimension HQCA to obtain the weight of TI
electrons Ptun. For MPI, the ionized electrons, which are ionized at the ion core via absorbing a
certain number of photons, have total energy more than the potential barrier. Therefore, there
is no forbidden area for MPI electrons during classical back-propagation. In this case, the
back-propagation electrons that fail to be bounced by the combined field are identified as MPI
electrons with weights Pmulti . Here the VD method makes the calculation of ionization dynamics
driven by very long wavelength laser feasible at the cost of sacrificing time to replace the finite
space, compared with Ref. [51]. More details are described in [34].
We define the fraction of TI electrons as R = Ptun/Pion, where the total ionization weight

Pion = Ptun + Pmulti . Subsequently, we plot R as a function of γ in three different intensities. As
shown in Fig. 4, R has the same trend for three different intensities. At limiting case of γ � 1, R
is almost close to unity and the pure tunneling scenario applies. As γ is increased, the MPI is
beginning to take effect, therefore R monotonously decreases in the intermediate regime. This
regime can be recognized as the transition from TI to MPI. When R decreases close to zero, the
MPI regime is completely dominant at rather large γ. If we define a criterion that R > 90% and
R < 10% are demarcated as ranges of pure TI and MPI, respectively, the corresponding γ values
can be read out from Fig. 4 and the turning points are signed by γ1, γ2. For I = 8.4 × 1013

W/cm2, We extract 0.55 (γ1) and 1.7 (γ2) from the red curve in Fig. 4. Similarly, the intermediate
regime corresponding 10% < R < 90% is 0.91 to 1.85 at I = 7.1 × 1013 W/cm2 and 1.04 to 1.98
at I = 5.9 × 1013 W/cm2. We can find that the lower turning point γ1 shifts up by 0.49 while the
higher turning point γ2 changes by 0.28, when the applied laser intensities are decreased from
I = 8.4 × 1013 W/cm2 to I = 5.9 × 1013 W/cm2. The other remarkable feature we read out from
Fig. 4 is that the tunneling fraction shows substantial discrepancy at the same γ but different
laser intensity in intermediate regime. For example, the tunneling fractions is 35% and 18%,
when γ is 1.55 for two different intensities of 5.9 × 1013 W/cm2 and 8.4 × 1013 W/cm2. Those
suggest that characterizing the dominant ionization mechanism according to the value of γ is
fundamentally unreliable unless at one of the extreme cases. Though the intermediate regime
between γ1 and γ2 changes with different laser intensities, γ1 and γ2 values reasonably agree
with γ values referred by both ends of the plateau-like structure shown in Fig. 2. In other word,
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the regime which is responsible for the transition from TI to MPI mechanism is well defined
by the plateau-like structure in the ionization delay time trend. To check the self-consistency,
we further compare the tunneling fraction R calculated by HICFA (green rhombuses, the total
ionization rate of TI (MPI) electrons is calculated through the time integration of f un1,2) with
HQCA (yellow circles and curve) as illustrated in Fig. 4, and they match each other well.
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Fig. 5. The two-dimension reconstructed final momentum distribution of tunneling electrons
at various Keldysh parameters: (a) γ = 0.84; (b) γ = 0.92; (c) γ = 1.45 and (d) γ = 1.69.
The laser intendity is fixed at 7.1×1013 W/cm2. The weights of the electrons are counted in a
logarithmic scale. Furthermore, the side profile is the integrated signal along the polarization
axis which is used to show the feature of py , and the weight is determined by normalization
of the integral value.

From a practical point of view, one could also be interested in the behavior of the well defined
TI and MPI electrons in electric field as well as their final momentum distribution. To show the
typical features of TI and MPI, we calculate the electron momentum, using the same method
mentioned above in two-dimension space. The electrons of TI and MPI are first separated via
HQCA, and then the two kinds of electrons are propagated forward to the end of laser in classical
way. Figure 5 shows the reconstructed final momentum distribution of TI. Since we apply a
linearly polarized laser field, the final lateral momentum py (side profile) remains unchanged
with respect to its ionization initial momentum p0

y , if Coulomb interaction can be neglected. For
relatively smaller γ of 0.84 and 0.92, respectively, as illustrated in Figs. 5(a) and 5(b), the observed
py has a Gaussian-like distribution centered at zero. This result is self-consistent with the popular
prediction made by many classical trajectory Monte Carlo (CTMC) simulations [52, 53] that the
initial tunneling velocity perpendicular to instantaneous field has a zero centered Gaussian-like
distribution in adiabatic TI case. Conversely, at relatively larger γ of 1.45 and 1.69 in Figs. 5(c)
and 5(d), py is peaked around a nonzero value as a consequence of nonadiabatic effect of the TI
dynamics, which is rooted in the absorption of energy from the time-varying barrier [54, 55]. As
γ is increased, py has a more obvious deviation from zero due to more pronounced nonadiabtic
effect. For instance, we can read out that py = 0.21 a.u. at γ = 1.45, smaller than 0.25 a.u. at
γ = 1.69.

Bear in mind that the electric field here is an oscillating field with zero vector potential at the end
of the laser A(∞) = 0. So the final longitudinal momentum along laser polarized x-axis direction
complying with the canonical momentum conservation law is given by px(∞) = px(ti) + A(ti).
px(ti) and A(ti) are the momentum and the vector potential of laser at the instant of electron’s
ionization. For adiabatic tunneling ionization at γ of 0.84 and 0.92 as illustrated in Figs. 5(a)
and 5(b), px almost has a distribution centered at the zero value, which is in fact very close to
the vector potential at t0, A(t0) = 0. This means that the electron tunnels out with near zero
initial longitudinal momentum at the instant of laser peak, which is in accord with the adiabatic
ADK theory [44]. Moreover, the tiny deviation of the center of px from A(t0) is present as well,

                                                                                               Vol. 27, No. 5 | 4 Mar 2019 | OPTICS EXPRESS 6479 



which is due to the freed electron pulled by its parent ion through Coulomb interaction. As
displayed in Figs. 5(c)–(d), when γ is increased from 1.45 to 1.69, the center of px shifts towards
nonzero value and gradually departs even further from A(t0). One can also attribute this result to
a stronger Coulomb interaction, but the mechanism behind is two-fold. First, the ionized electron
is slower in a laser field with smaller Up, and therefore the Coulomb force acts on electron for
longer time. Second, due to the nonadiabatical TI, the tunneling exit shifts closer to the ion
core [31], hence, Coulomb attraction becomes stronger.
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Fig. 6. The two-dimension reconstructed final momentum distribution of MPI at various
Keldysh parameters: (a) γ = 1.69; (b) γ = 2.03; (c) γ = 2.53; (d) γ = 3.38. The laser
intensity is fixed at 7.1 × 1013 W/cm2. The weights of the electrons are in logarithmic scale.

Now we turn to the reconstructed final momentum of MPI electrons, as shown in Fig.
6. The electrons ionized from MPI-process are governed by the energy conservation law
p2

0/2 = (n0 + s)ω − Ip −Up, where n0 is the minimum number of absorbing photons, s is the
additional number of photons. At first glance of Fig. 6, the general ATI peaks are absent because
there is no interference of electrons born within the different cycles of the laser pulse. For all γ,
py has a distribution centered at zero, suggesting that the ionization is directly from the initial
state with s = 0. One can also see from Fig. 6 that the spread of py becomes broader with the
increasing of γ, which means that the maximum of p0

y increases. At the constant laser intensity,
an increase in γ corresponds to an increase in photon energy and decrease of Up , causing a larger
maximum value of p0

y .
Regarding to the distribution of final longitudinal momentum px , one may notice that in Fig.

6(a), there seems to be missing parts. Those missing parts are nothing else but the tunneling
ionized electrons that have been identified in Fig. 5(d). If γ is further increased, the missing parts
gradually appear in Figs. 6(c) and 6(d). Because at large enough γ, the tunneling fraction is so
small that the almost pure MPI is achieved. In this case, the MPI electron’s momentum distributes
along not only x-axis but also y-axis, which indicates that the photoelectron distribution of MPI is
independent on the polarized direction of laser field. It is different from the tunneling electron’s
momentum, which spreads along the polarized direction of laser field as shown in Fig. 5. This
shows good agreement with the ionization spectra in [56].

4. Conclusion

We have shown a pronounced plateau-like structure in the delay time picture, which can be defined
as the borderline of the intermediate regime between TI and MPI. The plateau-like structure is
caused by a competition between TI and MPI, which is verified with both of HICFA and HQCA.
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The quantitative definition of the intermediate regime is helpful to disentangle the dominant
contribution from TI and MPI in practical experiment condition. Furthermore, the well separated
TI (MPI) electrons are propagated forwards for reconstructing their final momentum, which will
be beneficial to analysis detailed evolution dynamics of electrons in different ionization channels.
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