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Frequency manipulation of topological surface
states by Weyl phase transitions
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By creating a synthetic frequency dimension with dynamic
modulation in a 2D honeycomb waveguide array, we con-
struct both Type-I and Type-II Weyl semimetals (WSMs)
and utilize the WSM phase transition to control the fre-
quency evolutions of topological surface states. We show
that Type-I WSMs and Type-II WSMs manifest opposite
and same band slopes for the two surface states, which give
rise to the bidirectional and unidirectional frequency shifts,
respectively. Moreover, by cascading Type-I Weyl lattices
and Type-II Weyl lattices together, we also achieve the time-
reversed evolution of frequency, such as frequency negative
refraction, bandwidth expansion-compression, and perfect
imaging. The Letter may find applications in robust signal
transmission and processing with synthesized topological
states. © 2021 Optical Society of America

https://doi.org/10.1364/OL.442890

Weyl semimetals (WSMs), possessing three-dimensional (3D)
band degeneracy points, have emerged as new topological states
both in condensed-matter and classical-wave systems [1–6].
Basically, WSMs can be classified into two types: Type-I, which
has a standard point-like Fermi surface, and Type-II, which
has a titled spectrum appearing at the contact of electron and
hole pockets [7], giving rise to different transport dynamics and
chiral anomaly effects [8,9]. Current researches on photonic
WSMs mainly focus on static 3D spatial lattices, where pho-
ton frequency is a conserved quantity. Generally, the ability to
control the frequency of light is desirable both for fundamental
research and practical applications [10–13]. Present studies on
frequency control are mainly limited to trivial photonic states in
waveguides, resonators, etc. [14–16]. However, the manipula-
tion of frequency for topological edge and surface states is also
useful in the robust light transmission and signal processing,
which still remains elusive.

Recently, the conception of synthetic frequency dimen-
sion, as proposed in dynamic modulated systems, provides a
new method to control the frequency of light [14,17]. The
frequency dimension can not only be utilized to emulate higher-
dimensional topological physics using lower-dimensional

structures, but also provides a platform to control the frequency
evolution of topological states [18]. Particularly, by adding a fre-
quency dimension in a 2D spatial lattice, photonic WSMs have
been created and one-way frequency conversion of topological
surface states have been achieved [19,20]. However, previous
works have not revealed the mechanism of how the WSM types
control the surface state frequency evolutions. From practical
perspective, the time-reversal evolution of frequency, such as
frequency negative refraction, is desirable in the applications of
spectrum reconstruction and signal processing, which also can’t
be realized in previously studied single-type WSMs.

In this Letter, we construct both Type-I WSMs and Type-II
WSMs in a single Weyl lattice and achieve versatile frequency
evolutions of topological surface states. The Weyl lattice is
created based on a dynamically modulated 2D honeycomb
waveguide array, where the modulation can create an additional
frequency dimension. By choosing appropriate modulation
amplitudes and phases, both Type-I WSM phases and Type-II
WSM phases can be achieved. Accordingly, the frequency
evolution of the surface states pair in a truncated lattice is
determined by the type, which exhibit opposite frequency
shifts for Type-I and same shifts for Type-II. What’s more, by
cascading two Weyl lattices of different types, we also achieve
time-reversed evolutions of surface states, such as frequency
negative refraction, bandwidth expansion and compression and
perfect imaging.

Consider the Type-I WSMs and Type-II WSMs created
in a dynamically modulated waveguide array. As shown in
Fig. 1(a), each sub-lattice A and sub-lattice B in a honeycomb
array is subjected to a traveling-wave refractive index modula-
tion n A(B) = n0 +1n A(B)cos[�t − q z+ φA(B)], where n0,
1n A(B), �, q , and φA(B) are the background refractive index,
the modulation amplitude, the frequency, the wavenumber
and initial phases in A and B, respectively. The modulation
can induce photonic transitions among a set of modes with a
frequency interval�, thus forming a synthetic frequency lattice
[14]. The frequency lattice and the 2D waveguide array consti-
tute a synthetic 3D lattice, as shown in Fig. 1(b), which can be
described by the tight-binding Hamiltonian
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Fig. 1. (a) Schematic of a dynamically modulated honeycomb
waveguide array. n A(B)(z, t) denotes the refraction index modulation
in A (red) and B (blue) waveguides. (b) Synthetic 3D lattice consisting
of the in-plane honeycomb lattice and a perpendicular frequency
lattice with lattice constants of a and � and coupling strengths of J
and J A(B), respectively. (c) Honeycomb lattice band structure with
two Dirac points, K = (4π/3

√
3a , 0) and K ′ = (−4π/3

√
3a , 0).

(d) (e) Type-I and Type-II band structures for P-broken case. (f ) Type-I
band structure for T-broken case. Wi (i = 1, 2, 3, 4) represent the
WPs with “+ (−)” denoting its chirality.

H =
∑
i,n

J(a+ri ,n
bri+ρ1,n + a+ri ,n

bri+ρ2,n + a+ri ,n
bri+ρ3,n + h.c.)

+

∑
i,n

J A(a+ri ,n
ari ,n+1e−iφA + h.c.)

+

∑
j ,n

J B (b+r j ,n
br j ,n+1e−iφB + h.c.),

(1)

where a+ri ,n
(ari ,n), b+ri ,n

(bri ,n) are creation (annihilation)
operators for the modes in waveguide A and waveguide B
with frequency ωn =ω0 + n�, n = 0, ±1, ±2 . . . is the
site index in the frequency lattice. ρ1 = (

√
3a/2, a/2),

ρ2 = (−
√

3a/2, a/2), and ρ3 = (0, −a), with a being
the in-plane lattice constant. J is the in-plane coupling coeffi-
cient. J A, J B and φA, φB are the frequency-domain coupling
strengths and phases.

Through Fourier transformation, we can obtain the Bloch
Hamiltonian

H(k)= [J A cos(kω�− φA)+ J B cos(kω�− φB )]σ0

+ [J A cos(kω�− φA)− J B cos(kω�− φB )]σz

+ H2D(kx , ky ), (2)

where kx , ky , and kω are Bloch momenta along x , y , and fre-
quency axes. σ0 is the 2× 2 identity matrix and σi (i = x , y , z)
are the Pauli matrices. The H2D(kx , ky ) is got from the
first term of Eq. (1), which can support two Dirac points
K = (4π/3

√
3a , 0) and K ′ = (−4π/3

√
3a , 0) in the 2D

Brillouin zone, as shown in Fig. 1(c), which can be extended
to Weyl points (WPs) under the appropriate modulations by
breaking either parity (P ) or time-reversal (T) symmetry [3,7].
Throughout the paper, we only consider two special cases of
breaking only P or T. Breaking both P and T can also give rise
to two types of WSMs and same surface state evolutions, which
will not be discussed here. Specifically, to break P and preserve
T, we set J A 6= J B and φA = 0, φB = π or φA = 0, φB = 0.
To break T and preserve P , we set J A = J B , φA =−φB 6= 0
andπ .

First, we consider the P -broken case. The four WPs are
located at (kx0, ky 0, kω0)= (±4π/3

√
3a , 0,±π/2�), near

one of which (4π/3
√

3a , 0, π/2�), the effective Hamiltonian
and energy spectrum are

H(q)= vx qxσx + vy q yσy

+

{
(v0qωσ0 + vωqωσz), (φA = 0, φB = π)
(vωqωσ0 + v0qωσz), (φA = 0, φB = 0) , (3)

E (q)=v0qω ±
√
(vx qx )

2
+ (vy q y )

2
+ (vωqω)

2, (φA = 0, φB = π)

vωqω ±
√
(vx qx )

2
+ (vy q y )

2
+ (v0qω)

2, (φA = 0, φB = 0)
,

(4)

where “±” denotes the two bands, qi = ki − k0i (i = x , y , ω),
vx =−3J a/2, vy = 3J a/2, v0 =−(J A − J B )�, and
vω =−(J A + J B )�. Specifically, for qx = q y = 0, the energy
spectrum is

E (q)=
{
(v0 ± vω)qω , (φA = 0, φB = π)
(vω ± v0)qω .(φA = 0, φB = 0) , (5)

which gives rise to the frequency-dimension group velocities
vg = ∂E (q)/∂qω. Since |v0| < |vω|, the group velocities of the
two bands are opposite for φA = 0, φB = π while the same for
φA = 0, φB = 0, satisfying the conditions of Type-I WPs and
Type-II WPs [7]. Figures 1(d) and 1(e) show the band structures
E (kx , kω) at ky = 0, obtained from the Eq. (2), which clearly
show the point-like and titled energy spectra, respectively. For
the T-broken case, with similar procedure, we can also get the
effective Hamiltonian and energy spectrum{

H(q)= E0σ0 + v
′
ωqωσz + vx qxσx + vy q yσy ,

E (q)= E0 ±

√
(vx qx )

2
+ (vy q y )

2
+ (v′ωqω)2,

(6)

where E0 = 2 Jωcosφ and v′ω = 2 Jω�sinφ. Figure 1(f ) shows
band structure calculated using Eq. (2) for T-broken case.
The bands have opposite slopes near WPs, which is the signature
of the Type-I WPs.
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Fig. 2. Schematic diagrams of three truncated lattices: (a) “zz”,
(b) “bb”, and (c) “zb” lattices. Each black dashed rectangle represents
the unit cell for the truncated honeycomb lattice.

Next, we truncate the lattice along y axis and keep perio-
dicities along x and ω axes, such that Fermi-arc surface states
will emerge on the “x -ω” plane [21]. For honeycomb lattice to
exhibit edge states, there require two types of edges, i.e., zigzag
and bearded edges, through the combination of which there
are totally three types of truncated lattices: “zigzag-zigzag (zz),”
“bearded-bearded (bb),” and “zigzag-bearded (zb),” as shown
in Fig. 2. Since the Fermi arcs of the “zz” and “bb” lattices are
distributed at complementary positions in the Brillouin zone
[22], they share the same surface states evolution behaviors.
Below, we choose “zz” and “zb” lattices for detailed discussions.

Figures 3(a) and 3(b) show the sliced projected band struc-
tures E(kω) of “zz” lattice [see Fig. 2(a)] for the P -broken
case with kx = 0.85π/

√
3a for J A = 1, J B = 0.5, φA = 0,

φB = π and φA = 0, φB = 0, respectively. The black curves
are bulk bands, and the red, blue curves denote the two surface
states at the top and bottom edges. Remarkably, in the entire
Brillouin zone, the band slopes of the two surface states are
always opposite in Fig. 3(a) and the same in Fig. 3(b), which
are the clear signatures for the Type-I WSMs and Type-II
WSMs. Accordingly, the two surface states will propagate along
the opposite (same) directions in the frequency dimension. Also
note that the amplitudes of the two band slopes are different for
both Type-I WSMs and Type-II WSMs. For the T-broken case
with J A = J B = 1 and φA =−φB = π/3, the sliced projected
band structure E (kω) is shown in Fig. 3(c). The band slopes
for T-broken case depend on the choice of Bloch momentum,
which are opposite for 0 < kω < π/3� and the same for
π/3� < kω < 2π/3�. Specifically, at the critical points
kω = π/3� or 2π/3�, the group velocity of one surface state
vanishes. Figure 3(d) displays the sliced projected band structure
of the “zb” lattice [see Fig. 2(c)], which exhibits only one surface
state. The frequency evolution is only determined by the central
Bloch momentum of inject packet.

To visualize how the WSM types control the frequency
evolutions of two surface states, we inject a frequency-domain
wave packet into the two edges. Figures 4(a) and 4(b) show the
wave packet evolutions of the two surface states for P -broken
case. Here the frequency shift 1ω is normalized by the modu-
lation frequency �. The wave packet carries a central Bloch
momentum kω = 0.508π/� and Gaussian envelope of width
W = 5� truncated at 5-th order. As shown in Fig. 4(a), the wave
packets at top and bottom edges exhibit blue and red frequency
shifts, verifying that it is of Type-I. Note that the frequency shift-
ing amounts are different, implying the different amplitudes
of group velocity for the two surface states. On the contrary,
the packets at two edges both exhibit blue frequency shifts in
Fig. 4(b), showing that it is of Type-II. In Fig. 4(c), we consider

Fig. 3. Sliced band structures at kx = 0.85π/
√

a of the “zz” lattice
for (a)–(c) and the “zb” lattice for (d). (a) and (b) denote the P -broken
case and (c) and (d) are the T-broken cases. The black curves denote the
bulk bands, and the red (blue) curves denote the surface states with the
black arrows denoting the group velocities.

Fig. 4. (a), (b) Frequency evolutions of surface states wave packets
for the Type-I and Type-II WSMs at kω = 0.508π/� in the “zz” lat-
tice. The blue arrows denote the initial positions, vt

ω and vb
ω are group

velocities in frequency dimension with the black arrows denoting the
directions. (c) Spectrum shifts and band expansion at kω = π/3�
of two surface states for the T-broken case. The red dashed curve
and arrows represent the input packet and expansion directions.
(d) Frequency evolution of the single surface states for the “zb” lattice.

the T-broken case, where the packet carries the critical-point
Bloch momentum kω = π/3�. It shows that the spectrum of
surface state at top edge keeps shifting while it is fixed at bottom
edge, showing the signature of the vanishing group velocity. The
packet expansion is due to the nonzero group velocity dispersion
GVD= ∂2 E (q)/∂q 2

ω 6= 0. Additionally, in Fig. 4(d), we
simulate the surface state evolution for the “zb” lattice, the most
prominent signature is that there only exists one surface state
shifting along the frequency axis.

Up to now, we consider the frequency evolution of surface
states in a single Weyl lattice, below we consider the frequency
refraction in a composited waveguide array by cascading Type-I
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Fig. 5. (a) Schematic of cascaded dynamically modulated wave-
guide arrays of the Type-I and Type-II WSMs. (b) Frequency negative
refraction for a wave packet input. vω and v′ω denote the group
velocities along frequency dimension in the two parts. (c) Spectrum
expansion and compression for the packet input. (d) Spectrum perfect
imaging for a single frequency input.

Weyl lattices and Type-II Weyl lattices. As shown in Fig. 5(a),
the cascading system can enable time-reversed frequency evo-
lutions of surface states, such as the “negative refraction” and
“bandwidth expansion-compression” for wave packet and “per-
fect imaging” for a single frequency input. Figure 5(b) displays
the refraction process of a spectrum wave packet with a center
Bloch momentum kω = 0.508π/� and launched at the top
edge of the lattice with z= 0. The packet exhibits red frequency
shift in the first Type-I lattice and manifests a negative refraction
at the interface with z= L and then exhibits blue frequency
shift in the second Type-II lattice. Such a negative refraction
process is due to the band slope flip of the surface state from
Type-I to Type-II, as shown in Figs. 3(a) and 3(b), respectively.

Figure 5(c) displays the results of bandwidth expansion and
compression. The center Bloch momentum of the injected wave
packet now is set as kω = 0. Since kω = 0, the group velocity in
the frequency dimension vanishes but the GVD is nonzero. The
GVD also exhibits a flip when Weyl phase transition occurs,
i.e., GVD > 0 in the first array and GVD < 0 in the second.
Therefore, the frequency spectrum is broadened in the first array
and compressed in the second. The process of perfect imaging is
depicted in Fig. 5(d), where the input signal is a single frequency.
The single frequency could be regarded as the composition of
frequency comb with Bloch momentum kω covering the entire
Brillouin zone. Therefore, each frequency comb undergoes
negative refraction in the process of propagation, leading to the
perfect focusing on a single frequency.

In summary, we demonstrate the frequency manipulations of
topological surface states through Weyl phase transitions in the
dynamically modulated honeycomb waveguide arrays. We show
that the topological surface state pairs exhibit unidirectional
and bidirectional frequency shifts for Type-I WSMs and Type-II
WSMs. Particularly, by cascading Type-I Weyl lattices and
Type-II Weyl lattices together, we also achieve frequency nega-
tive refraction, bandwidth expansion-compression and perfect
imaging. In experiment, the dynamic modulation could be
realized by using four-wave mixing Bragg scattering (FWM-BS)

processes [23]. By injecting two pumped waves copropagating
with a signal wave, the FWS-BS can give rise to successive fre-
quency conversions of signal light, forming a frequency lattice
with lattice constant determined by the two pumped waves
frequency interval�=ωp2 −ωp1. Then the two WSM phases
can be realized by controlling the amplitudes and phases of two
pumped waves. Our works offer new approaches to manipulate
the frequency of topological states, which may find applications
in signal processing and optical communication.
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