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Here we propose an effective method to construct a higher-
dimensional synthetic frequency lattice with an optical
waveguide under dynamic modulation. By applying the
traveling-wave modulation of refractive index modulation
with two different frequencies that are not mutually com-
mensurable, a two-dimensional frequency lattice could be
formed. The Bloch oscillations (BOs) in the frequency lat-
tice is demonstrated by introducing a wave vector mismatch
of the modulation. We show that the BOs are reversible only
as the amounts of wave vector mismatch in orthogonal direc-
tions are mutually commensurable. Finally, by employing an
array of waveguides with each under traveling-wave modu-
lation, a 3D frequency lattice is formed and its topological
effect of one-way frequency conversion is revealed. The study
offers a versatile platform for exploring higher-dimensional
physics in concise optical systems and may find great appli-
cation in optical frequency manipulations. © 2023 Optica
Publishing Group

https://doi.org/10.1364/OL.491680

The recently proposed concept of synthetic dimension provides
a versatile platform to explore topological physics, which has
been implemented in cold atoms [1,2], micro-ring resonators
[3,4], and waveguide systems [5,6]. There are generally two
approaches for creating the synthetic dimension. One approach
involves coupling the internal degree of freedom of particles to
form a synthetic lattice system. The other approach is to exploit
the parameter dependency of the system. In the last decade,
numerous methods have been proposed to create the synthetic
dimension, such as guided modes with different angular momen-
tum in a degenerate optical cavity [7], coupled super-modes with
different propagation constants in a curved waveguide array [8],
and optical pulses in a coupled fiber loops system [9]. Specif-
ically, to create a synthetic frequency dimension, one could
introduce the refractive index modulations into a photonic ring
resonator or a dielectric waveguide [10], both of which couple
the modes with different frequencies, thus forming a synthetic
frequency lattice.

Generally, the physics of a photonic structure is tied to its geo-
metric dimensionality. For a frequency lattice, by manipulating

the waveform format that controls the modulators, the dimen-
sionality of the lattice can be precisely controlled, resulting in
unique physical properties. A one-dimensional (1D) frequency
lattice is created by applying single-frequency refractive index
modulation [11,12]. The construction of a higher-dimensional
frequency lattice traditionally involves introducing long-range
couplings [13], which are achieved by applying additional modu-
lations with frequencies that are integral multiples of the original
modulation. However, because of the presence of long-range
coupling, the generated lattice is imposed by the twist bound-
ary condition, which inevitably limits the independency of the
lattice along orthogonal directions.

Here, we propose an effective method to construct higher-
dimensional frequency lattices in modulated waveguides. We
demonstrate that a two-dimensional (2D) frequency lattice can
be created by applying traveling-wave refractive index modula-
tion with two frequencies that are not mutually commensurable.
A relevant work which creates a higher-dimensional Floquet
lattice in a spin 1/2 particle system also employs this idea
[14]. By introducing the wave vector mismatch, we generate
a 2D effective force in the 2D frequency lattice and investi-
gate the unique features of lattice dynamics under this force.
Moreover, by precisely controlling the modulation phases and
combining the 2D lattice with one spatial dimension, we create
a 3D frequency lattice and demonstrate its topological effects
for one-way frequency conversion.

We start with a dielectric waveguide under refractive index
modulation n= n0 +∆n1cos(Ω1t – q1z+ ϕ1)+∆n2cos(Ω2t – q2z+
ϕ2), as shown in Fig. 1(a), where Ω1 and Ω2 are two non-
commensurable modulations. The electric field in the waveguide
can be expressed as E (z, t)=

∑︁
am,n(z, t) exp[i(ωm,nt – βm,nz)],

where am,n (z, t) is the mode amplitude with frequency
ωm ,n =ω0 +mΩ1 + nΩ2 and wave vector βm ,n = β0 +mq1 + nq2.
By applying the slow-varying amplitude approximation, we
obtain the coupled-mode equation which is given by

i
∂am,n

∂z
= C1e−iφ1 am+1,n + C1eiφ1 am−1,n + C2e−iφ2 am,n+1 + C2eiφ2 am,n−1,

(1)
where C1,2=∆n1,2ω0/2c is the coupling strength. Equation (1)
describes a particle on a 2D square lattice with nearest-neighbor
coupling, where the two orthogonal directions are ω1 and ω2
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Fig. 1. (a) Schematic of the waveguide under dual-frequency
refractive index modulation with Ω1 and Ω2 being modulation
frequencies. The curve represents the traveling-wave modulation.
The materials of the core and cladding are SiO2 and LiNbO3. (b)
Equivalent 2D frequency lattice model with lattice constants Ω1
and Ω2. Two orthogonal directions here are ω1 and ω2. The cou-
pling coefficients of two orthogonal directions are C1exp(±iϕ1) and
C2exp(±iϕ2).

due to the independence of the two modulation frequencies.
The creation process of this lattice can be visualized as follows:
imagine injecting a mode with frequency ω0 into the modu-
lated waveguide. Then the modulation with frequencyΩ1 would
induce the appearance of modes with frequency ω=ω0 +mΩ1.
The modulation with frequency Ω2 further excites modes with
frequency ω=ω0 +mΩ1 + nΩ2, forming a 2D lattice as shown
in Fig. 1(b). The integers m and n represent the site index of
two orthogonal directions and the couplings along the hori-
zontal and vertical directions are caused by modulations with
frequencies Ω1 and Ω2, respectively. Therefore, the lattice sites
of the 2D frequency lattice are waveguide modes with frequency
ωm ,n =ω0 +mΩ1 + nΩ2. As long as the two modulation frequen-
cies are not mutually commensurable, the frequencies of excited
modes do not repeat, resulting in a truly infinite 2D lattice.

To validate the accuracy of our 2D lattice model, we perform
the simulations using both the tight-binding and finite-difference
time-domain (FDTD) methods to analyze the spectral evolution
of single-site and Gaussian profile excitations. The results of the
single-site excitation are displayed in Figs. 2(a) and 2(b), which
show the normalized intensity distribution on the 2D frequency
lattice at z= 40 µm and the corresponding complete spectrum
evolutions, respectively. The single-site excitation can be con-
sidered as a uniform excitation across the entire band in k-space,
resulting in a phenomenon termed as discrete diffraction. In par-
ticular, Fig. 2(b) displays the spectrum distributions obtained
from the tight-binding and FDTD methods at z= 0 µm, 20 µm,
and 40 µm, denoted by the red curves and black circles. The
results from both methods exhibit good agreement, indicating
the correctness of Eq. (1). Figures 2(c) and 2(d) depict the results
for the Gaussian profile excitation. This type of excitation only
excites a portion of the band, causing it to travel in a specific
direction determined by the corresponding group velocity.

By introducing the wave vector mismatch in the modula-
tions, an effective electric force can be created in the frequency

Fig. 2. (a) Normalized intensity distributions on the 2D frequency
lattice at z= 40 µm for the single-frequency excitation. (b) Complete
spectrum evolutions for the single-frequency excitation. The black
circles and red curves symbolize the results of tight-binding and
FDTD methods. (c) Normalized intensity distributions on the 2D
frequency lattice at z= 0, 20, 40 µm for the Gaussian profile exci-
tation. Here, vg represents the group velocity of the wave packet.
(d) Corresponding complete spectrum evolutions of the Gaussian
profile excitation.

lattice, which gives rise to the phenomenon known as Bloch
oscillations (BOs). This idea has been explored in 1D frequency
lattice [11,15–17]. Here we generalize this to a 2D lattice and
investigate its unique features. To incorporate the mismatch,
the format of refractive index modulation needs to be modified
as n= n0 +∆n1cos(Ω1t – q1z –∆q1z+ ϕ1)+∆n2cos(Ω2t – q2z –
∆q2z+ ϕ2), where ∆q1 and ∆q2 indicate the wave vector
mismatch. Now the band structure of the system is expressed as

k′

z = 2C1 cos(kω1Ω1 − ϕ1 +∆q1z)+ 2C2 cos(kω2Ω2 − ϕ2 +∆q2z).
(2)

Equation (2) actually describes a particle on a two-dimensional
lattice subject to an effective force F = –∆q1/Ω1 i –∆q2/Ω2 j,
where i and j denote unit vector along the ω1 and ω2 axes,
respectively. Therefore, by adjusting ∆q1 and ∆q2, the strength
and direction of the effective force can be manipulated, ulti-
mately affecting the lattice dynamics. To characterize this more
vividly, we consider the spectrum evolutions of a Gaussian pro-
file wave packet in the presence of an effective force. According
to Eq. (2), the frequency shifts ∆ω at the specific evolution
distance zS are expressed as

∆ω = 2[cos(kω1Ω1 − ϕ1 + ∆q1zs) − cos(kω1Ω1 − ϕ1)]C1Ω1/∆q1

+2[cos(kω2Ω2 − ϕ2 + ∆q2zs) − cos(kω2Ω2 − ϕ2)]C2Ω2/∆q2.
(3)

For a 1D frequency lattice, the last term in Eq. (3) will vanish so
that there always exists an oscillation period zT = 2π/∆q1 where
the frequency shift ∆ω is zero. For the 2D case, however, the
condition for ∆ω= 0 is expressed as{︃

cos(kω1Ω1 − ϕ1 + ∆q1zs) − cos(kω1Ω1 − ϕ1) = 0
cos(kω2Ω2 − ϕ2 + ∆q2zs) − cos(kω2Ω2 − ϕ2) = 0. (4)

Equation (4) holds true only if ∆q1/∆q2 =M/N, where M and N
are arbitrary non-zero integers. This means that the spectrum
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Fig. 3. (a) Central frequency evolutions of the Gaussian profile
wave packets on the 2D frequency lattice with ∆q2= 2∆q1. The
blue circles and red dashed curve represent the numerical and the-
oretical results. (b) Corresponding complete spectrum evolution
process. (c),(d) Central frequency and total spectrum evolutions
with ∆q2 = 0.

pattern is reversible only if the modulation wave vector mis-
matches are mutually commensurable. Figure 3(a) displays the
central frequency evolutions of a Gaussian profile wave packet,
where we set∆q2 = 2∆q1. The blue circles and red dashed curves
in Fig. 3(a) represent the numerical and theoretical results,
respectively. The central frequency oscillates and returns to
its original value after an oscillation period, indicating the
recoverability of the spectrum. Figure 3(b) shows the complete
frequency spectrum evolution process, and the recoverability of
spectrum pattern is also displayed clearly. In Figs. 3(c) and 3(d),
we set ∆q2 to zero, so the condition for ∆ω= 0 is not satisfied.
The vanishing of ∆q2 means that the effective force along the
ω2 axis is zero so that the central frequency of the wave packet
travels along the positive direction of ω2 and oscillates along
the ω1 axis simultaneously. As a result, the central frequency
cannot recover to its original value.

To enhance the robustness of the spectral manipula-
tion, we are going to investigate the topological effects
of a 1D dynamically modulated waveguide array. As
shown in Fig. 4(a), the array comprises uniform waveg-
uides separated by a fixed distance of d. Each wave-
guide undergoes a dual-frequency refractive index modulation,
n= n0 +∆n1cos(Ω1t− q1z+ φl)+∆n2cos(Ω2t− q2z), where φl is
the associated modulation phase at the lth waveguide. As
explained above, this type of modulation induces a 2D fre-
quency lattice in each waveguide. Combined with the spatial
dimension, as shown in Fig. 4(b), the equivalent lattice model
of this structure is a 3D lattice with three mutually orthog-
onal directions: x, ω1, ω2. The lattice constants correspond
to the waveguide spacing and two modulation frequencies,
respectively. The Hamiltonian of the system is given by

H =
∑︂
m,n,l

C1e−iϕl a+m,n,lam+1,n,l +C2a+m,n,lam,n+1,l +Csa+m,n,lam,n,l+1 + h.c.,

(5)

Fig. 4. (a) Schematic of the 1D waveguide array. The distance
between adjacent waveguide is d. The lth waveguide undergoes a
modulation with phase φl. (b) Equivalent synthetic lattice model
with three mutually orthogonal directions x, ω1, ω2. The lattice
constants are d, Ω1, and Ω2, respectively. A loop encircling a single
plaquette in the x–ω1 plane is associated with a phase shift ϕ,
which indicates the presence of an effective magnetic field. (c),(d)
Projected band structures as a function of (kx, kω 1) and (kx, kω 2),
respectively.

where CS, C1, and C2 are coupling strengths along the x, ω1, and
ω2 axes, respectively. The modulation phase φl would induce
a nonreciprocal phase term in the coupling along ω1 direction,
as described by the first term in Eq. (5). Therefore, as depicted
in Fig. 4(b), a loop encircling a single plaquette in the x–ω1

plane is associated with a phase shift ϕ, which is analogous
with the geometric phase acquired by a charged particle in a
constant magnetic field piercing the lattice [18,19]. Therefore,
Eq. (5) actually describes a 3D system labeled by (m, n, l), which
consists of layers of the Harper–Hofstadter model stacked along
the ω2 axis. By applying the Landau gauge φl = l · 2π/3 for a
uniform field, we can rewrite Eq. (5) into k-space as

H(k) =
3∑︁

i=1
{Cs(a+k,iak,i+1eikxd + a+k,i+1ak,ie−ikxd)

+[2C1 cos(kω1Ω1 − φi) + 2C2 cos kω2Ω2]a+k,iak,i},
(6)

where φi = 2π/3, 4π/3, 2π, respectively. We calculate the band
structure defined as eigenvalues of Eq. (6) and the band struc-
tures projected to kx – kω 1 and kx – kω 2 planes are displayed in
Figs. 4(c) and 4(d). The topology of the system is featured by
a triad of topological index C= (Cx, Cω 1, Cω 2), where Ci (i= x,
ω1, ω2) is the first Chern number of the 2D momentum plane
normal to the i axis [20]. For all the bands, the values of Cx

and Cω 1 are zero. However, the values of Cω 2 of three bands
from top to bottom are −1, 2, −1, which indicates the non-trivial
topology of our synthetic lattice system.

The non-trivial topology of a finite lattice is reflected in the
emergence of topological surface states. As an illustration, we
consider a system with 25 waveguides. In each waveguide, the
modulation phase φl takes the form of φl = |l− l0 | · 2π/3, where
l0 = 13 represents the site number of the central waveguide. This
arrangement creates the effective magnetic field with opposite
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Fig. 5. (a) Schematic of the cross section of the 3D synthetic
lattice. The dashed line represents the interface separating the 3D
lattice structure. The directions of the effective magnetic fields on
two sides are opposite. (b) Sliced projected band structures as a
function of kω 1 at kω 2 = 0.5π/Ω2. The blue and red spheres represent
the gapless surface states shown in Figs. 5(c) and 5(d), respectively.
(c),(d) Surface states evolutions in the x–ω1 plane. The directions
of the group velocities of two surface states along ω1 are opposite,
which indicates the opposite frequency shifts.

directions on two sides of the central waveguide, resulting in an
interface separating the 3D lattice structure as indicated by the
dashed line in Fig. 5(a). In particular, the Bloch momenta kω 1

and kω 2 are well defined due to the translational symmetry along
ω1 and ω2 axes. The sliced projected band structure defined as
a function of kω 1 at kω 2 = 0.5π/Ω2 is shown in Fig. 5(b), where
the gapless surface states in the bandgap are clearly manifested.
Figures 5(c) and 5(d) demonstrate the unidirectional transmis-
sion characteristics of surface states. The excitation injected into
the synthetic lattice is a 3D wave packet which takes the Gaus-
sian profile distribution in the ω1–ω2 plane and decays rapidly
along the x axis. The phase differences between adjacent sites
are also adjusted carefully so that the Bloch momenta carried by
the packet can be manipulated. In Fig. 5(c), the excited surface
state is represented by the blue sphere shown in Fig. 5(b). The
state travels along the positive direction of ω1 unidirectionally
while keeping localized at the interface of the lattice, which
clearly manifests the transmission features of surface states. In
the case of Fig. 5(d), the excited surface state is symbolized by
a red sphere shown in Fig. 5(b). The group velocity direction is
reversed now so that it would travel along the negative direction
of ω1.

In summary, we have shown that a traveling-wave refractive
index modulation with two non-commensurable frequencies in a
waveguide can induce a 2D frequency lattice. The method could

be extended to create an arbitrary higher-dimensional frequency
lattice. We introduce the modulation wave vector mismatches
to display the BOs in a 2D frequency lattice and verify that
the BOs become reversible when the mismatches are mutually
commensurable in two orthometric directions. By combining
the 2D frequency lattice with one spatial dimension, we create
a 3D frequency lattice and display the unidirectional transmis-
sion features of topological surface states. In experiment, the
cross talk of modulation signals between adjacent waveguides
may affect the effectiveness of the lattice model. This impact
could be reduced by employing the technique called digital pre-
compensation which reduces the cross talk of modulation signal
while not affecting the coupling of optical signals significantly.
The study provides a versatile platform for exploring higher-
dimensional physical phenomena in synthetic dimensions, and
may have an impact on the exploration of topological photonics
and optical wave manipulation in frequency domains.
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