
PNAS  2023  Vol. 120  No. 20  e2300860120� https://doi.org/10.1073/pnas.2300860120   1 of 8

RESEARCH ARTICLE | 

Significance

Describing electromagnetic field 
using scalar and vector gauge 
potentials represents one of the 
fundamental breakthroughs in 
classical electrodynamics, which 
is also at the heart of the 
celebrated Aharonov–Bohm (AB) 
effect. Realizing the refraction at 
gauge-potential interfaces can be 
harnessed to emulate quantum 
tunneling effects for photons and 
to mold the flowing of light. Here, 
we create a series of gauge-
potential interfaces in the 
temporal lattices and reveal 
distinct mechanisms for 
refraction at scalar- and vector-
potential interfaces with different 
orientations. The demonstration 
of reconfigurable refractions at 
various gauge-potential 
interfaces fundamentally 
expands our capability of 
manipulating light propagation in 
synthetic dimensions, which may 
also find potential applications in 
the scenarios of optical pulse 
reshaping, fiber communications, 
and quantum simulations.
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Photonic gauge potentials, including scalar and vector ones, play fundamental roles 
in emulating photonic topological effects and for enabling intriguing light transport 
dynamics. While previous studies mainly focus on manipulating light propagation 
in uniformly distributed gauge potentials, here we create a series of gauge-potential 
interfaces with different orientations in a nonuniform discrete-time quantum walk 
and demonstrate various reconfigurable temporal-refraction effects. We show that for 
a lattice-site interface with the potential step along the lattice direction, the scalar 
potentials can yield total internal reflection (TIR) or Klein tunneling, while vector 
potentials manifest direction-invariant refractions. We also reveal the existence of 
penetration depth for the temporal TIR by demonstrating frustrated TIR with a 
double lattice-site interface structure. By contrast, for an interface emerging in the 
time-evolution direction, the scalar potentials have no effect on the packet propaga-
tion, while the vector potentials can enable birefringence, through which we further 
create a “temporal superlens” to achieve time-reversal operations. Finally, we experi-
mentally demonstrate electric and magnetic Aharonov–Bohm effects using combined 
lattice-site and evolution-step interfaces of either scalar or vector potential. Our 
work initiates the creation of artificial heterointerfaces in synthetic time dimension 
by employing nonuniformly and reconfigurable distributed gauge potentials. This 
paradigm may find applications in optical pulse reshaping, fiber-optic communica-
tions, and quantum simulations.

gauge-potential interface | synthetical lattice | temporal refraction | Klein tunneling |  
Aharonov–Bohm effect

Gauge Mpotentials including scalar and vector ones can endow charged particles with a 
phase shift even without external fields, which is at the heart of the celebrated Aharonov–
Bohm (AB) effect (1). Neutral particles such as photons cannot be directly influenced by 
the gauge potentials. Nevertheless, artificial gauge potentials introduced by creating pho-
tonic analogs of AB phases could manipulate the propagation of photons in a similar 
manner of charged particles. For instance, bended or index-varying waveguide arrays pro-
vide a spatially distributed scalar potential, which can yield an effective electric field for 
enabling various controls over wave diffraction (2–10). On the contrary, electro-optic 
modulations imposed into resonators or waveguides can give rise to vector potentials by 
introducing nonreciprocal phase shifts (11–17). These artificial gauge potentials, either for 
spatially inhomogeneous scalar potentials or time-varying vector potentials, provide pow-
erful tools for emulating the coherent transport dynamics of photons, ranging from Bloch 
oscillations (2–4), dynamic localization (5–7, 15), to Landau–Zener tunneling (8–10). By 
judiciously designing the spatial distribution of gauge potentials, artificial magnetic field 
will also emerge, with which one can create topological edge states and emulate the quantum 
Hall effect of photons (12, 13). In practical applications, the creation of gauge potentials 
can also lead to a variety of intriguing light control strategies, such as for realizing negative 
refraction (14); for one-way light propagation (16); as well as for developing nonreciprocal 
devices of optical isolators (11), circulators (14), and routers (17).

Recently, vector gauge potentials have been shown to provide a new mechanism of light 
guiding and localization (18–21), suggesting fresh new ideas in the design of integrated 
photonic structures with emerging novel functionalities, such as broadband optical switch-
ing (22) and dispersionless waveguide coupling (23). Generalized laws of refraction and 
reflection for discretized light at interfaces between different photonic artificial gauge 
fields, based on tilted waveguide arrays, have been investigated (24), whereas demonstra-
tion of negative refraction by vector gauge potentials has been reported for sound waves 
(25). However, the simultaneous exploitation and the ability to distinguish scalar and 
vector potentials for strategic manipulation of light refraction have remained elusive in 
previous studies, where the main limitations arose from the lack of reconfigurability. 
Furthermore, some more advanced refraction-related effects such as tunneling and D
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interference occurring at more complex gauge potential interfaces 
remain largely unexplored.

As a recently emerging field, the photonic lattice in synthetic 
dimension provides a fertile playground to conveniently tailor the 
distribution of scalar and vector potentials therein and therefore 
can serve as a versatile platform to investigate the refraction phe-
nomena with a high degree of reconfigurability. These synthetic 
lattices can be created by exploiting the internal degrees of freedom 
of photons, such as frequency (26–33), time (34–39), and orbital 
angular momentum (40–42). Compared to spatial lattices with 
fixed potential distributions (43), artificial gauge potentials are 
more convenient to be introduced into synthetic dimensions and, 
most importantly, they can be reconfigured on demand. For exam-
ple, artificial vector potentials can be readily introduced into fre-
quency lattices by controlling the phase of dynamic modulation, 
leading to the advanced control of spectrum evolution, ranging 
from frequency diffraction, Bloch oscillations (27), refraction (28), 
time-reversal operations (30), and even for emulating non-Hermitian 
topological braiding effects (33). These effects can also be imple-
mented in synthetic temporal lattices constructed by two coupled 
fiber loops. Thanks to the feasibility in controlling the lattice’s fea-
tures such as the on-site energy, coupling phase, and strength, the 
temporal lattices possess remarkable advantages in generating scalar 
and vector potentials, which benefits the demonstration of a variety 
of classical and quantum effects ranging from parity–time symme-
try (34), non-Hermitian skin effect (37), to the topological phase 
transition (38).

In this work, by creating a synthetic interface of scalar or vector 
potential in the synthetic temporal lattice, we propose and experi-
mentally demonstrate a series of discrete refraction phenomena in a 
single and fully reconfigurable setup. It is found that the refraction 
can be diversely tuned by the orientation of potential interface. As 

typical examples, we obtain the temporal total internal reflection 
(TIR) or Klein tunneling at a scalar-potential lattice-site interface 
and refraction-free propagation at the vector-potential lattice-site 
interface. This temporal TIR manifests a nonnegligible penetration 
depth, which is verified by the frustrated TIR experiment. For an 
evolution-step interface, we find that scalar potential has no effect 
on the refraction, while vector potential can enable the temporal 
birefringence effect. Based on this, we further design a “temporal 
superlens” and achieve perfect time-reversal operations both for 
single-site and wave-packet inputs. Finally, we construct a temporal 
Mach–Zehnder interferometer by utilizing combined lattice–evolu-
tion scalar- or vector-potential interfaces and demonstrate the pro-
totypes of electric and magnetic AB effects. The demonstration of 
reconfigurable refraction at the gauge-potential interfaces fundamen-
tally expands the capability of manipulating wave-packet propagation 
in synthetic dimensions, with potential applications in optical pulse 
shaping, fiber communications, and quantum simulations.

Results

Constructions of Scalar and Vector Potentials in the Temporal 
Lattices. We start from the theoretical model of introducing 
artificial gauge potentials into synthetic temporal lattices. Consider 
a coupled fiber-loop circuit, as shown in Fig. 1A, where an incident 
pulse traveling in the longer and shorter loops can be mapped 
conceptually into a “node-link” model of synthetic temporal 
lattice, as displayed in Fig. 1B. Details of the experimental setup 
and related theoretical model are given in SI Appendix, Sections 1 
and 2. The circulating number of the pulses in the fiber loops 
corresponds to the time-evolution step m in the lattice, and the 
relative positions of the pulses within one step are denoted by the 
lattice site n. A pulse hops from step m and position n to step m + 

BA

C Scalar Potential Vector PotentialD

st
e

p

position

Fig. 1. Experimental implementation of effective scalar and vector potentials in synthetic temporal lattice. (A) Schematic sketch of the experimental setup used 
for implementing synthetic temporal lattice. Two fiber loops with slightly different lengths are connected by a variable optical coupler (VOC). Phase modulators 
(PMs) in long and short loops control the phase of pulses via ϕv and ϕu, respectively. The arrows represent the propagation direction of pulses. (B) Synthetic 
temporal lattice mapping from the pulse evolutions in A. Red (blue) line indicates rightward (leftward) hopping in the lattice corresponding to a circulation in the 
long (short) loop. (C) Identical phase modulations ϕv = ϕu in two loops bring about effective scalar potential φ in synthetical temporal lattice, by which the band 
structure is shifted vertically. (D) Effective vector potential A is mediated by opposite phase modulations ϕv = −ϕu in the loops. The band structure undergoes a 
horizontal displacement in the presence of effective vector potential.D
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1 and n − 1 (n + 1) in the lattice after finishing a circulation in 
the short (long) loop. To introduce a synthetic vector potential, 
we apply opposite phase modulations ϕv = ϕ and ϕu = −ϕ in long 
and short loops (21). The pulses then acquire phase shifts of ϕ 
and −ϕ during rightward and leftward hopping. Such a direction-
dependent phase shift accompanying light hopping is analogous 
to a Peierls’ phase and corresponds to a vector potential of A = 
(ϕv−ϕu)/2 = ϕ. On the contrary, when the modulations applied 
in the two loops are in phase, i.e., ϕv = ϕu = ϕ, the pulse will 
then acquire identical phase shift during leftward and rightward 
hopping. Consequently, a synthetic scalar potential φ = (ϕv+ϕu)/2 
= ϕ can also be constructed in the lattice. It is worth noting 
that the construction of vector potentials here is reminiscent 
of previous studies on creating vector potentials in synthetic 
frequency dimension (26–32), both requiring direction-dependent 
phase shifts. However, the construction of scalar potentials using 
direction-independent phase shift cannot find counterpart in 
frequency dimension, which is unique to our synthetic temporal 
lattice. Accordingly, the refractions relying on scalar-potential 
interfaces cannot be achieved using synthetic frequency lattices.

The pulse evolution in the lattice under scalar and vector poten-
tials is governed by the following evolution equation (Section 2 
in SI Appendix)

	 [1]
u
m+1
n

= [cos(�)um
n+1

+ isin(�)vm
n+1

]ei�u ,

v
m+1
n

= [cos(�)vm
n−1

+ isin(�)um
n−1

]ei�v ,

where um
n

 and vm
n

 denote the pulse amplitudes in the short and 
long loops at step m and position n, respectively, and β is the 
coupling angle of the coupler. For uniform potentials ϕv and ϕu, 
the lattice displays discretized translational symmetries both along 
the evolution time axis (m axis) and the lattice-extending direction 
(n axis), so that the eigenstates are of the Floquet–Bloch form: 
( um

n
 , vm

n
)T = (U, V )Teikneiθm, where k and θ are the transverse Bloch 

momentum and longitudinal propagation constant, respectively. 
Note that (k, θ) constitutes the two axes in the reciprocal momen-
tum space of the temporal lattice denoted by (n, m). Substituting 
the eigenmode into Eq. 1, we can obtain the lattice band structure 
(SI Appendix, Section 2)

	 [2]�±(k) = ± arccos[cos(�)cos(k − A)] + �,

where θ+(k) and θ−(k) denote the upper and lower branches of 
the band, respectively. According to Eq. 2, one can find that the 
physical effect of the scalar potential is to induce a propagation 
constant shift for an eigen Bloch mode, while the vector potential 
is to induce a Bloch momentum shift. As a consequence, the 
scalar and vector potentials could induce the total band structure 
shifts along vertical (quasi-energy) and horizontal (Bloch 
momentum) directions, as displayed in Fig. 1 C and D. In the 
following, we will construct heterointerfaces in the temporal 
lattice by applying nonuniformly distributed scalar and vector 
potentials. In terms of interface orientation, we consider two 
basic types of interfaces: the lattice and evolution ones, which 
are constructed by introducing an abrupt change of scalar or 
vector potential along the lattice-extending direction “n” and 
the time evolution direction “m”, respectively. Note that although 
the lattice-site index n resembles a spatial coordinate, it is phys-
ically a time slot index denoting the relative delay or advance 
between the pulses within one step (see Section 2 in SI Appendix). 
In this sense, both the lattice-site and evolution-step interfaces 
still belong to temporal interfaces in terms of the physical time 

variable. As we will demonstrate below, these two different inter-
faces can yield a series of distinct refraction effects as light prop-
agates through them.

Refraction at Lattice-Site Interfaces. The lattice-site interface 
can be constructed by introducing a scalar or vector potential 
step along the lattice direction “n”. We first consider the 
interface formed by the scalar potentials, which is φ1 for n ≥ 0 
and φ2 for n < 0, as Fig. 2A displays. The potential difference is 
given by Δφ = φ2 – φ1, for which the band structure undergoes 
a vertical shift of Δφ between the two sides of the interface. 
For a Gaussian-shaped wave-packet incident from the right 
side (n > 0), it will generally experience a refraction at the 
interface, generating both a refraction and a reflection of wave 
packet. In direct analogy to the refraction at a spatial interface 
obeying Snell’s law, i.e., the conservation of tangential wave 
vector along the interface direction, the refraction here along 
the lattice temporal interface is also governed by the Snell’s law, 
i.e., the conservation of longitudinal propagation constant θ. 
Specially, for a relatively small (or large) potential difference 
Δφ, the upper band of the incident packet at right side will 
match the upper (or lower) band at left side, giving rise to 
the intraband (interband) tunneling at the interface and hence 
the occurrence of refraction. Particularly, such an interband 
tunneling phenomenon provides the temporal analog of Klein 
tunneling, where a particle tunnels through a potential step 
without quantum decay by turning into its antiparticle (44). 
Here in our case, the upper and lower bands just play the 
roles of the particle and its antiparticle. On the contrary, for 
a moderate potential difference, the band structure at left side 
falls into the band gap at the right side, such that the refracted 
packet vanishes and total internal reflection (TIR) will occur. In 
experiments, we choose Δφ= 0.5π and 0.8π for demonstrating 
the above two cases, where the refraction processes are shown 
in Fig. 2 A and B. For Δφ = 0.5π, no refracted beam exists, 
clearly indicating the occurrence of TIR. While for Δφ = 0.8π, 
the Klein tunneling occurs. Also note that the refracted beam 
manifests a direction derivation with respect to the incident 
one, suggesting the abrupt change of group velocity during 
the refraction process. Finally, by continuously varying Δφ 
from 0 to 2π, we also obtain the general formula of the power 
transmission coefficient (44) (SI Appendix, Section 3)

	
[3]T± =

(1 − e2�0 )(1 − e±2�2 )

(±1− e�0e±�2 )2
,

where λ0 = arsinh[cot(β)sin(ki)] and λ2 = arsinh[cot(β)sin(kt)], 
with ki and kt being the Bloch momenta of the incident and 
refraction packets, respectively. “+(−)” denotes that the refracted 
packet appears in the upper and lower bands, corresponding to 
the intraband and interband tunneling cases. The reflection is 
then given by R = 1 − T. The transmission/reflection coefficients 
are determined by the incident Bloch momentum and the relative 
scalar potentials at two sides. The results here are also similar 
to spatial refractions described by Fresnel’s equations, where the 
transmission/reflection coefficients are determined by the incident 
angle and the relative refraction indices at both sides of the 
interface. The measured transmission and refraction coefficients 
are also shown by the red and blue dots in Fig. 2C, respectively, 
which can coincide well with the theoretical curves. Specially, 
the TIR occurs in the regions of 0.25π < Δφ < 0.75π and 1.25π 
< Δφ < 1.75π, outside of which the refraction can take place 
(SI Appendix, Section 4).D
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On the contrary, the lattice-site interface can also be constructed 
by substituting φ1 and φ2 with A1 and A2, such that the potential 
difference becomes ΔA = A2 − A1. The band structure at the left 
side will undergo a horizontal shift of ΔA with respect to that at 
the right side. Likewise, by applying Snell’s law, i.e., the longitu-
dinal propagation constant conservation, one can find that refrac-
tion will always exist due to the complete band structure’s overlap 
at two sides, thus preventing the occurrence of TIR. In experi-
ments, we choose ΔA = 0.3π and π, where beam refraction and 
reflection are always observable, as shown in Fig. 3 D and E. 
Moreover, in contrast to the above lattice-site interface formed by 
scalar potentials where the refracted packet experiences an abrupt 
group velocity change, the packet here can maintain its propaga-
tion direction at the lattice-site interface formed by vector poten-
tials. The general transmission coefficient is given by (SI Appendix, 
Section 5)

	
[4]T =

cosh(2�0) − 1

cosh(2�0) − cos(ΔA)
.

The transmission and reflection versus ΔA are shown in Fig. 2F. 
The transmission reaches minimum at ΔA = π and one cannot 
observe TIR like that in the interface constructed by scalar 
potentials.

The TIR in temporal lattice here is reminiscent of its counter-
part in real space. A prominent feature of spatial TIR is the exist-
ence of evanescent wave penetrating the reflection interface at a 
wavelength-scale depth. Here, we design a frustrated total internal 
reflection (FTIR) scenario as a criterion to verify the existence of 
evanescent wave accompanying our temporal TIR. We construct 

a double lattice-site interface structure composed of a narrow gap 
with scalar potential φ2 and width Δn sandwiched by two 
semi-infinite regions with scalar potential φ1, as shown in Fig. 3 
A and B. The potential difference is thus Δφ = φ2 – φ1, which is 
fixed at π/2 in our implementation. The incident wave packet is 
injected from the right side and experiences TIR at the first inter-
face. Similar to the real-space TIR, the packet can partially pene-
trate to the gap region. If the gap is narrow enough, the wave can 
further penetrate to the left side of the gap. The tunneling process 
is analogous to the FTIR in real space. As Δn = 2, the gap is rel-
atively large and there are seldom waves transmitted. Most of the 
waves are reflected by the interface. However, if we decrease the 
gap width to Δn = 1, the beam can partially penetrate to the left 
region. The transmission coefficient versus the gap width is shown 
in Fig. 3C, which decreases gradually with the increase of gap 
width. The experiment clearly verifies that the penetration depth 
is at a scale of Δn ~ 1 for our temporal TIR.

Refraction at Evolution-Step Interfaces. As another interface 
orientation, an evolution-step interface can also be constructed by 
introducing a potential step along the direction of time evolution. 
We first consider the interface formed by scalar potentials, which 
are assumed to be φ1 for m ≤ 60 and φ2 for m > 60, as Fig. 4A 
displays. The potential difference is given by Δφ = φ2 – φ1. As 
the wave packet is incident from the bottom, its propagation is 
not influenced by the interface, as shown in Fig. 4A. Figure 4B 
depicts the band structure of the top region, which undergoes a 
vertical shift of Δφ = π with respect to the bottom region. For the 
evolution-step interface, the Snell’s law is that the transverse Bloch 
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momentum should be conserved. Still considering the incidence 
of an upper band mode, it will excite the mode at the same band 
in the top region. The influence of Δφ on the band occupancies in 
the top region is depicted in Fig. 4C. One sees that the occupancies 
are independent on Δφ and remain the same with that in the 
bottom region. The output field intensities are measured at m = 
120 and the profile keeps unchanged as Δφ varies, experimentally 

verifying the triviality of evolution-step interface constituted by 
scalar potentials, as illustrated in Fig. 4D.

The evolution-step interface can also be constructed by introduc-
ing vector potentials. As shown in Fig. 4E, the vector potentials are 
assumed to be A1 for m ≤ 30 and A2 for m > 30. The potential dif-
ference reads ΔA = A2 − A1. For ΔA = π/2, the incident wave packet 
splits into two branches with opposite propagation directions. The 
band structure in the top region undergoes a horizontal shift by ΔA 
= π/2, as depicted in Fig. 4F. Likewise, the Bloch momentums along 
the lateral position direction should also be conserved. For the inci-
dence of an upper band mode, the modes of upper and lower bands 
in the top region are generated simultaneously, with their occupan-
cies P+ and P− given by (SI Appendix, Section 6)

	 [5]P± =
cosh(�0 ± �1) ± cos(ΔA)

2cosh(�0)cosh(�1)
,

where λ0 = arsinh[cot(β)sin(ki)] and λ1 = arsinh[cot(β)sin(ki−ΔA)]. 
As ΔA varies from 0 to 2π, the measured data of P+ and P− are 
depicted in Fig. 4G, which can coincide well with the theoretical 
analysis. For ΔA = ±π/2, the upper and lower band occupancies 
are identical, where the incident wave packet splits equally into 
two branches. The output field intensity measured at m = 120 
undergoes an oscillating transverse motion as ΔA varies, as illus-
trated in Fig. 4H. This can be well explained by the opposite 
periodic variations of the group velocities of the upper and lower 
band modes, vg, ± = ∂θ±(k−ΔA)/∂k as ΔA varies. The beam splitting 
here is analogous to the time refraction and reflection at a temporal 
interface, which is induced by an abrupt change of refraction index 
at specific time instant in a spatially homogeneous medium 
(45, 46). Here, the split wave packet occupying the lower band 
corresponds to the reflected beam, while the other one occupying 
the upper band corresponds to the refracted beam. Unlike the 
models of Refs. (45, 46), where the time dimension is continuous, 
our temporal lattice is discrete both in the lattice (n) and evolution 
(m) directions. Accordingly, the time refraction and reflection in 
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our system act to a discretized pulse train, rather than to contin-
uous light waves as in refs. 45 and 46. The evolution-step interface 
of gauge potentials in temporal lattice opens a new avenue to 
emulate refraction and reflection in a synthetic time dimension 
with full reconfigurability, which is hard to implement in contin-
uous spatial systems.

By taking advantage of the evolution-step interface formed by 
vector potential steps, we can realize time reversal of pulse evolu-
tion. As shown in Fig. 5A, a vector potential of A1 is applied in 
the time interval Δm beginning from m = 60 during the pulse 
evolution and that in the rest is denoted by A2. The potential 
difference between adjacent regions is thus ΔA = A2 – A1. In order 
to manipulate the band structures more flexibly, the coupling ratio 
of the fibers is also changed with time, which is set as β1 in the 
disturbed time interval Δm and the rest is set as β2. Here, we 
choose Δm = 1, ΔA = π/2, β1 = π/2, and β2 = π/4. For the inci-
dence of a Gaussian-shaped wave packet with a Bloch momentum 
k = π/2 in the upper band, it moves backward initially and under-
goes a mirror reversion after passing through the disturbed time 
interval, featuring negative refraction. Note that only a single time 
step is utilized to vary the vector potential and coupling ratio while 
the undisturbed regions on both sides are identical. Therefore, the 
temporal interface mimicked by a single time step behaves as a 
superlens with infinitesimal thickness in real space. The temporal 
superlens is also applicable to the imaging of a point source that 
contains all Fourier components, i.e., Bloch modes in the whole 
Brillouin zone. As shown in Fig. 5B, for a single pulse incidence, 
i.e., for excitation of a single lattice site at n = 0, discrete diffraction 
is observed at the first region, with subsequent refocusing onto a 
single site after passing through the superlens. Note that there 
exists perceptible asymmetry in the imaging pattern along the 
lattice direction. This is attributed to the unequal excitation of 
upper and lower bands from single-loop incidence. Since each 
Bloch-wave component in upper and lower bands possesses 

opposite group velocities, their interference with unequal band 
occupations gives rise to this asymmetric evolution pattern. To 
obtain symmetric evolution patterns, we need to simultaneously 
excite from both fiber loops with appropriate relative amplitude 
and phase. The imaging effect can be explained by the reversion 
of Bloch modes. As the wave packet passes through the interface, 
the Bloch mode in the upper band converts to the lower one as 
we change both the gauge potential and the coupling ratio within 
a single time step, as illustrated in Fig. 5C. The group velocity 
undergoes a mirror reversion after passing through the temporal 
superlens. The details can be found in SI Appendix (SI Appendix, 
Section 7).

Electric and Magnetic AB Effects. In the above implementations, 
we apply a scalar or vector potential alone and have experimentally 
verified their unique and distinct functionalities in manipulating 
temporal refractions at a specific interface. In this section, we show 
that the combination of lattice and evolution scalar- or vector-
potential interfaces can benefit to the construction of a Mach–
Zehnder interferometer (MZI) in time dimension, and hence 
for emulating the celebrated electric and magnetic AB effects. As 
depicted in Fig. 6 A and B, the electric and magnetic AB effects 
can be accomplished by using MZI applied with scalar and vector 
gauge potentials, respectively. The gauge potential difference, and 
hence the phase difference between the two arms, determines the 
final output intensity. In our setup, we utilize a lattice-site interface 
at n = 0 formed by vector potentials to play the role of 50:50 
beam splitter and a superlens at m = 60 for the beam reversal 
operation, as shown in Fig.  6C. The beam interference at the 
output end is thus determined by the total phase difference in 
the two arms, consisting of the propagation phases accumulating 
in the two paths and the abrupt phase jumps acquired at the 
lattice-site interface at n = 0 and evolution-step interface at m = 
60. First, we consider the MZI without propagation phase. Taking 
the rightward output beam, along path 1, the packet acquires 
a phase jump of π for reflection, 0 at the superlens and π for 
reflection at output end, giving rise to total phase jump of ϕ1 = 
π + 0 + π = 2π. For path 2, the phase jump is 0 for transmission, 
π at the superlens, and π for transmission at output end, such 
that ϕ2 = 0 + π + π = 2π. So, the phase jump difference between 
the two paths is ϕ1 − ϕ2 = 0, which gives rise to the constructive 
interference (SI Appendix, Section 8). Similar procedure is also 
applicable to the analysis of the destructive interference for the 
leftward output beam.

Based on this, we then introduce the propagation phase to 
simulate AB effects. First, a scalar potential difference is imposed 
on the interferometer arms. The scalar potentials in the two arms 
are denoted by φ1 for n < 0 and φ2 for n > 0. The potential differ-
ence is denoted by Δφ = φ1 – φ2. In the experimental implemen-
tation, the scalar potentials are applied at 30 ≤ m < 90 with a time 
interval Δm = 60, as depicted in Fig. 6D. Then, the accumulated 
phase should be Δϕ = ΔmΔφ. As Δϕ = π, the output intensities 
of wave packets undergo a constructive interference and the out-
put intensity reaches maximum at n < 0. By varying Δφ, the wave 
packet will appear at a symmetric position n > 0 and the intensity 
experiences a periodic oscillation, as illustrated in Fig. 6E. The 
magnetic AB effect can also be implemented by employing MZI 
applied with vector potentials, as depicted in Fig. 6F. A vector 
potential difference is imposed on the interferometer arms. The 
vector potentials are assumed to be A1 in 30 ≤ m < 60 and A2 in 
60 < m ≤ 90, both with a time length Δm = 30. The potential 
difference reads ΔA = A1 – A2. From Fig. 6F, one sees that the 
accumulated phase difference should be Δφ = 2ΔnΔA, where  
Δn = vgΔm with the group velocity vg = 

√

2∕2 . As Δϕ = π; the 
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wave packets also undergo a constructive interference at n < 0 
while a deconstructive interference at n > 0, as illustrated in 
Fig. 6F. When Δϕ varies from 0 to 2π, the output intensities 
corresponding to the superposed wave packets with backward 
and forward evolutions are measured. The data are depicted in 
Fig. 6G, where the output intensities vary as a function of Δϕ 
sinusoidally, evidently verify the interference affected by the vec-
tor potentials.

Conclusion

In summary, we have experimentally constructed reconfigurable 
lattice-site and evolution-step interfaces using inhomogeneous 
scalar and vector potentials in the temporal lattice, by which 
the unique features of refraction processes with respect to these 
two potentials are demonstrated in a reconfigurable setup. The 
TIR and FTIR mediated by scalar potential at the lattice-site 
interface are achieved, while the transmission always exists for 
vector potential. The vector potential redistributes the band 
occupancies at the evolution-step interface, resulting in wave-
packet splitting upon impinging the interface. By abruptly 
changing the vector potentials in a single time step, we also 
construct an evolution superlens and demonstrate perfect 
time-reversal operation of pulse evolution. We further emulate 
the celebrated electric and magnetic AB effects by virtue of the 
combined lattice-site and evolution-step interfaces. Our results 
reveal the uniqueness of scalar and vector potentials in con-
trolling the refraction of wave packets at synthetic interfaces 
and demonstrate the ability to reconfigure the refraction sce-
nario, realizing different functionalities with the same device. 
Moreover, due to the flexibility in designing the interface ori-
entation and configuration, our system is expected to serve as 
an ideal platform to emulate various quantum mechanical 

phenomena such as quantum tunneling effects. Finally, the fully 
reconfigurable temporal refraction could lead to many applica-
tions of pulse reshaping, multiplexing, and manipulation used 
for optical communication and quantum information process-
ing, where reconfigurability and functional complexity have 
become increasingly demanding.

Materials and Methods

Experimental Implementation. The experimental setup comprises of two 
fiber loops which are connected by a variable optical coupler (VOC), as Fig. 1A 
displays. The coupling ratio between the two loops can be controlled by apply-
ing electric signal on the VOC via an arbitrary waveform generator (AWG). Each 
loop comprises a spool of single-mode fiber, corresponding to the average 
round-trip time of approximately 25 μs for the two loops. The length difference 
between the two loops is introduced by inserting an additional optical fiber 
patch cord in the long loop, which gives rise to a time difference of approx-
imately 0.15 μs between the round-trip times in the two loops. To feed the 
circuit, a 50 ns long pulse is coupled into the long loop, which is prepared by 
modulating the output light beam from a 1,550 nm distributed-feedback laser. 
During the circulation in the loops, the optical loss can be compensated by erbi-
um-doped fiber amplifiers (EDFAs) in the two loops. To suppress the transient 
of the EDFA, the signal pulses are mixed with a high-power 1,530 nm pilot 
light before entering the EDFA. After the EDFA, the pilot light and spontaneous 
emission noise in the amplification process are removed by a band-pass filter. 
Besides, we employ the polarization beam splitter and polarization controllers 
in the loops to monitor and control the polarization of the light signal. The 
optical isolators are used to ensure the unidirectional circulation in loops. The 
Mach–Zehnder intensity modulators in fiber loops serve as optical switches. The 
phases of pulses are controlled by phase modulators in the loops, which are 
driven by AWGs. Because of the flexible tunability of electric signal generated 
by AWGs, the effective gauge potentials deriving from the phase modulations 
in two loops can be arbitrarily constructed in the synthetic temporal lattice. In 
order to detect and record the pulse evolutions in the two loops, we couple a 
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small portion of light signals from both loops and detect them with photodetec-
tors. The output voltages of the photodetectors are sampled by an oscilloscope. 
A more detailed description of the experimental platform is included in SI Ap
pendix (SI Appendix, Section 1).

Data, Materials, and Software Availability. All study data are included in the 
article and/or supporting information.
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