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Abstract: We investigate the topological phase transition between Type-I and Type-II Weyl 
points (WPs) in a composite three-dimensional lattice composed of a two-dimensional brick-
wall waveguide array and a synthetic frequency dimension created by dynamic modulation. 
By imposing different modulation amplitudes and phases in the two sublattices, we can break 
either parity or time-reversal symmetry and realize the phase transition between Type-I and 
Type-II WPs. As the array is truncated to have two edges, two Fermi-arc surface states will 
emerge, which propagate in opposite directions for Type-I WPs while in same directions for 
Type-II WPs, accompanied by bidirectional and unidirectional frequency shifts for the optical 
modes. Particularly at the phase transition point, we find that one of two bands becomes flat 
with a vanished group velocity along frequency axis in the vicinity of WPs. The study paves a 
way towards realizing different topological phases in the same photonic structure, which 
offers new opportunities to control wave transportation both in spatial and frequency 
domains. 
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

Weyl semimetals, hosting Weyl points (WPs) in the band structure, have emerged as new 
frontiers in condensed-matter physics due to the experimental discoveries in TaAs class of 
materials [1–6]. Weyl point is a degeneracy node between two bands in the three-dimensional 
(3D) momentum space near which the band structure is linear in all directions. WPs manifest 
chiral properties since they can act as “source” or “sink” of Berry flux that carries opposite 
topological charges. Accordingly, for a truncated material, there will emerge surface states in 
the form of Fermi arcs connecting WPs of opposite charges. Basically, there exist two types 
of WPs: Type-I WPs have a standard cone-like energy spectrum with a point-like Fermi 
surface and Type-II WPs possess a tilted spectrum with two bands touching at the contact of 
electron and hole pockets [7]. It is important to distinguish between these two types of WPs 
since they manifest different transport dynamics for the Fermi-arc surface states and distinct 
chiral anomaly effects in response to external electromagnetic field [8–12]. However, the type 
of WPs is usually fixed for a chosen Weyl semimetal material due to the difficulty in varying 
the lattice structures in electronic systems. Recent studies on WPs have been extend from 
electronic to photonic and acoustic systems [13–21]. Typically in photonic systems, the 
electron and hole pockets can be mimicked with diatomic lattice structures exhibiting two 
Bloch bands, which provides a tunable platform to explore photonic WPs. Specifically, the 
phase transition between two types of WPs can be realized by introducing anisotropic 
couplings in waveguide lattices [22] or by inducing lattice strain [23]. However, both of the 
above methods rely on the dramatic change or deformation of lattice structure. A question 
naturally arises whether we can create two types of WPs in the same lattice structure and 
realize the phase transition between them without changing lattice geometric structure. 

Though WPs are 3D objects, it has been recently recognized that synthetic dimension can 
be introduced to construct WPs in the lower-dimensional physical structures [24–26]. In 
particular, by adding a synthetic frequency dimension through dynamic modulation, WPs can 
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be created in a two-dimensional (2D) resonator array arranged in the honeycomb lattice 
[24,25]. Moreover, WPs have been also realized in a one-dimensional photonic crystal by 
adopting two synthetic parametric dimensions [26]. Compared to the WPs created in truly 3D 
lattice structures, the synthetic dimension can simplify the system complexity of WPs and 
enable the flexible tunability of coupling properties. In this regard, one may ask whether it 
can also induce phase transition between two types of WPs. 

In this work, we demonstrate that the introduction of synthetic dimension can realize the 
phase transition between two types of WPs based on the same photonic lattice. We propose a 
2D waveguide array arranged in brick-wall lattice and create a synthetic frequency dimension 
by dynamically modulating the waveguide refractive indices. Brick-wall lattice represents a 
special case of the honeycomb lattice [27–30], both of which can be strained into each other 
through continuous deformation. The brick-wall lattice can support two Dirac points in the 
2D Brillouin zone that can be generalized to WPs by adding a synthetic frequency dimension. 
By imposing different modulation amplitudes and phases in two sublattices, we can break 
both parity and time-reversal (T) symmetries and achieve the phase transition between two 
types of WPs. By truncating the brick-wall array to manifest two edges, we can obtain the 
Fermi-arc surface states. The two surface states of Type-I WPs propagate in the same 
directions while they propagate with opposite directions for Type-II WPs. Accordingly, the 
optical modes will experience bidirectional and unidirectional spectral shifts, respectively. In 
particular at the phase transition point, one of two Fermi-arc surface states will become 
localized with the group velocity being vanished in the frequency dimension. Finally, we 
show that the brick-wall lattice can be realized by inserting metallic slab between the 
dielectric square lattice waveguide arrays. 

2. Type-I and Type-II Weyl points in a synthetic 3D lattice 

We start by considering the structure of dynamically modulated brick-wall waveguide arrays. 
As shown in Fig. 1(a), the array consists of two types of interpenetrating waveguides A and B 
arranged in a square lattice. Differing from the conventional square lattice in which each site 
A (or B) can couple to the nearest-neighbor four B (or A) sites, one of the four coupling 
bonds is removed to form the brick-wall array (the dashed green arrow), leaving only three 
couplings bonds (solid green arrows) for each A (or B) waveguide. The blocking of coupling 
can be realized by inserting a metallic slab between the dielectric waveguides (not shown 
here), which will be discussed in detail in Sec 4. Additionally, both waveguides A and B are 
subject to the travelling-wave index modulations 

 1(2) 0 1(2) 1(2)( , ) cos[ ],n z t n n t qz φ= + Δ Ω − +  (1) 

where n0 is the background refractive index, Ω and q denote the modulation frequency and 
wavenumber. Δn1(2), φ1(2) are the modulation amplitude and initial phase in waveguides A and 
B, respectively. The modulation can induce photonic transitions in each waveguide and create 
a synthetic frequency lattice with lattice constant Ω [31–37]. The frequency lattice, combined 
with the 2D brick-wall lattice, constitutes a synthetic 3D lattice structure. The equivalent 
lattice model is shown in Fig. 1(b), with the Hamiltonian given by 
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where † †
, , , ,( ), ( )

i i j jn n n na a b br r r r    are creation (annihilation) operators for the optical mode in the 

waveguide A and B at frequency ω = ω0 + nΩ. n = 0, ± 1, ± 2… is site index in the frequency 
lattice. e1 = (a, 0), e2 = (− a, 0), e3 = (0, − a) with a being the in-plane lattice constant. The in-
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plane coupling coefficients Jx and Jy are real numbers and the frequency-dimension coupling 
coefficients are complex ones with amplitudes Jω1, Jω2 and phases ± φ1 ( ± φ2) in waveguides 
A and B. Note that the coupling phase ± φ1 ( ± φ2) is equal and opposite to the modulation 
phase in the upward and downward frequency transitions, which can be configured to break 
the time-reversal symmetry. In terms of Fourier analysis, the Hamiltonian is H = k(ak

† 
bk

†)H(k)(ak bk)
T, with the k-space Hamiltonian given by 

 1 2

1 2 0
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where σ0 is the 2 × 2 unit matrix and σx, σy, σz are the three Pauli matrices. The band structure 
can thus be obtained by solving the eigen equation H(k)Ψ(k) = ε(k)Ψ(k), where ε(k) is eigen 
value, Ψ(k) = (ψA, ψB)T is a two-component eigen vector denoting the Bloch mode amplitude 
in the sublattices A and B, respectively. The cubic Brillouin zone is shown in Fig. 1(c) where 
k = (kx, ky, kω) with kx, ky ∈ (− π/a, π/a) and kω ∈ (− π/Ω, π/Ω). Analogous to the in-plane 
Bloch wave vectors kx and ky which denote the phase difference between neighbor spatial 
lattice sites, the frequency-domain wave vector kω also denotes the phase difference of Bloch 
mode amplitudes in adjacent frequency lattice sites. Δφ = φ2 − φ1 is the phase difference of 
modulation in A and B waveguides. Since the phase difference is gauge invariant that doesn’t 
rely on the explicit choices of φ1 and φ2, we can choose φ1 = 0 and φ2 = Δφ. 

 

Fig. 1. (a) Schematic diagram of a dynamically modulated brick-wall waveguide array 
consisting of evanescently coupled waveguide A (red) and B (blue) arranged in a square 
lattice. One of the four coupling bonds is blocked (denoted by the green dashed arrow). Both A 
and B waveguides are subject to the travelling-wave index modulation n1(2)(z, t) with phase 
difference Δφ = φ2 − φ1. (b) Equivalent lattice model which consists of the in-plane brick-wall 
lattice and perpendicular frequency lattice, with lattice constants a and Ω. The in-plane 
coupling coefficients Jx and Jy have real values and frequency-domain coupling coefficients are 
complex values with amplitudes Jω1 (Jω2) and phases ± φ1 ( ± φ2) in waveguides A and B. (c) 
The Brillouin zone (mark in blue) for the equivalent lattice of (b), with kx, ky ∈ (− π/a, π/a) and 
kω ∈ (− π/Ω, π/Ω). (d) Projected band structure ε(kx, ky) for the brick-wall lattice in the absence 
of dynamic modulation. D1, D2 denotes two Dirac points by choosing a = 1 and Jx = Jy. 
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For WPs to emerge, either inversion (P) or time-reversal (T) symmetry should be broken 
[1–6,13–21]. To break P and preserve T, we can choose Jω1 ≠ Jω2 and Δφ = 0 (or π). To break 
T and preserve P, we should keep Jω1 = Jω2 and choose Δφ ≠ 0 (or π). To break both P and T, 
we keep Jω1 ≠ Jω2 and choose Δφ ≠ 0 and Δφ ≠ π. Before discussing the WPs, we firstly 
consider the Dirac points for the 2D brick-wall lattice in the absence of dynamic modulation. 
From Eq. (3), we have the 2D Hamiltonian 

 2 ( ) [2 cos( ) cos( )] sin( ) ,D x x y y x y y yH J k a J k a J k aσ σ= + +k  (4) 

where we assume the Dirac points locate at (kx0, ky0), near which the Bloch wave vectors are 
kx = kx0 + qx and ky = ky0 + qy. In the vicinity of Dirac points, the Hamiltonian of Eq. (3) should 
take the form of HD(q) = qxvxσx + qyvyσy, so we can obtain ky0 = 0. Equation (4) thus reads 

 2 0 0( ) [2 cos( ) ] 2 sin( ) ,D x x y x x x x x y y yH J k a J J k a q a J q aσ σ σ= + − +q  (5) 

where kx0 should satisfy the condition of 2Jxcos(kx0a) + Jy = 0. So if the coupling coefficients 
satisfy |Jy| > |2Jx|, kx0 doesn’t exist. On the contrary, if |Jy| ≤ |2Jx|, the Dirac points locate at kx0 
= ± [π − arccos(Jy/2Jx)]/a. The Dirac Hamiltonian can be rewritten as 

 2 ( ) ,D x x x y y yH v q v qσ σ= ± +q  (6) 

where the in-plane group velocities are given by 
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In Fig. 1(d), we numerically calculate the projected band structure ε(kx, ky) by using the 
Hamiltonian in Eq. (4). By choosing a = 1 and Jx = Jy, we can obtain two Dirac points at D1,2( 
± 2π/3, 0). Based on the Dirac points, we construct WPs by adding a synthetic frequency 
dimension in the presence of dynamic modulation. 

For the P-symmetry broken case with Jω1 ≠ Jω2 and Δφ = 0 (or π), the 3D Hamiltonian is 
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where τ = (Jω1 + Jω2)/(Jω1 − Jω2). We assume the WPs locate at kω0 in the reciprocal space of 
frequency dimension with kω = kω0 + qω. In the vicinity of WPs, the dispersion relation should 
be linear, which indicates kω0 = ± (π/2Ω). So there are four WPs at ( ± [π − arccos(Jy/2Jx)]/a, 
0, ± π/2Ω) in the 3D Brillouin zone, near which the Weyl Hamiltonian is 
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where vω,0 = − (Jω1 − Jω2)Ω, and vω,π = − (Jω1 + Jω2)Ω are the group velocities along the 
frequency dimension as Δφ = 0 or π, respectively. Note that the coupling strengths Jω1 and Jω2 
have the same signs, which indicate |τ | > 1. So the in-phase modulation Δφ = 0 can generate 
Type-II WPs and out-of-phase modulation Δφ = π can generate Type-I WPs [6,7]. 

For the cases of T-symmetry or PT-symmetry broken case with Δφ ≠ 0 and Δφ ≠ π, the k-
space Hamiltonian is 
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where α and β satisfy 

 1 2 1 2

2 2

cos( ) cos( )
tan( ) ,    tan( ) ,

sin( ) sin( )

J J J J

J J
ω ω ω ω

ω ω

φ φα β
φ φ

− Δ + Δ
= =

Δ Δ
 (11) 

The WPs locate at kω0 = α/Ω and kω0 = (α − π)/Ω, with the Weyl Hamiltonian W1 given by 
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with the group velocities vω, v0 and the energy at WPs ε0 given by 
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The corresponding energy spectra of two bands are thus denoted by 
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where “+” and “−” denotes the upper and lower bands. To distinguish between the two types 
of WPs, we decompose the Hamiltonian of Eq. (12) into HW1(q) = ε0σ0 + HU(q) + HT(q), with 
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where HU(q) and HT(q) constitute the potential and kinetic energy components of HW1(q). The 
total energy spectrum ε ± (q) can thus be decomposed into the constant energy component of 
ε0, potential and kinetic energy spectra U(q) and T(q), with 
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For the WPs to be of Type-I, U(q) > T(q) should be satisfied in all directions of q. On the 
contrary, if there exists a particular direction along which T(q) dominates over U(q) with T(q) 
> U(q), the WPs are of Type-II [7]. So the system exhibits a phase transition between Type-I 
to Type-II WPs at T(q) = U(q). The phase transition point can be obtained by comparing T(q) 
and U(q) numerically. At the phase transition point, the group velocities of two bands in 
frequency dimension are given by 
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In the vicinity of WPs with qx = qy = 0, the group velocities can be reduced to 

 2 2
, 0 0(0,0, ) [ o( )] ,gv q v q q vω

ω ω ω ωε± = + − Ω + Ω ±  (18) 

from which we have , 0(0,0, 0) .gv q v vω
ω ω± → = ± For Type-I WPs, the group velocities of two 

bands should have the opposite directions, which means |v0| < |vω|. On the contrary for Type-II 
WPs, the two group velocities should have the same directions, such that |v0| > |vω|. So at the 
phase transition point, the group velocity satisfies |v0| = |vω|. Without loss of generality, we 
assume v0 = vω, the two group velocities will become 
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It shows that one of the band will become flat in the vicinity of WPs with zero group velocity 
while the other band has finite group velocity. So the local flat band structure is a physical 
signature of phase transition occurring at the boundaries between Type-I and Type-II WPs. 

 

Fig. 2. Phase diagram for Type-I and Type-II Weyl points versus the modulation phase 
difference Δφ = φ2 − φ1 and coupling strength ratio Jω2/Jω1. In the simulation, we fix Jω2/Jω1 = 
0.5 as denoted by the black dashed line. The red and blue circles represent the situations of in-
phase (Δφ = 0) and out-of-phase modulations (Δφ = π), respectively. Black circle denotes Δφ = 
0.383π, which denotes the transition point between Type-I and Type-II WPs. 

Figure 2 shows the phase diagram for Type-I and Type-II WPs versus the modulation 
phase difference Δφ and coupling strength ratio Jω2/Jω1. The phase diagram is an important 
tool widely used in condensed-matter physics to characterize the system properties in a 
continuously varying parameter space. From the phase diagram, we can obtain the precise 
boundary at which the system experiences an abrupt transition from Type-I to Type-II WPs or 
vice versa. Note that both the coupling strength ratio and modulation phase difference are 
controlled by external modulation, we can thus realize Weyl phase transition by continuously 
varying the modulation parameters without changing the lattice structure. The phase transition 
is more readily to realize than the previously proposed methods of lattice strain or anisotropic 
couplings [22,23]. For an arbitrary choice of Jω2/Jω1, the WPs are of Type-I as Δφ is chosen in 
the vicinity of π and Type-II as Δφ approaches 0. For sufficiently small or large Jω2/Jω1, the 
Weyl phase transition occurs at Δφ = π/2. For a general Jω2/Jω1, the phase transition point 
varies from π/2 to 0. Specifically for Jω2 = Jω1, the phase difference reaches the minimum 
value of Δφ = 0.098π as the phase transition occurs. In the following, we will fix Jω2/Jω1 = 0.5 
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and choose Δφ = 0, π and the phase transition point of 0.383π to demonstrate both two types 
of WPs, as denoted by the red, blue and black circles in Fig. 2. 

Firstly, we consider Type-I WPs for the out-of-phase modulation Δφ = π where the 
projected band structures and isoenergy contours are shown in Fig. 3. Throughout the paper 
we choose a = Ω = 1 and isotropic in-plane coupling strengths Jx = Jy. The coupling strengths 
in the frequency dimension are Jω1 = 1 and Jω2 = 0.5. The projected band structure ε(kx, kω) at 
ky = ky0 = 0 is shown in Fig. 3(a), where there exist four WPs of W1, W2, W3, and W4 locating 
at ( ± 2π/3, ± π/2) in the kx-kω plane. Figures 3(b) and 3(c) illustrate the isoenergy contours for 
the upper and lower bands of the projected band structure. In the vicinity of each WP, the 
isoenergy contour is closed and takes the shape of an ellipse, verifying that it is of Type-I. 
The sign “+” or “−” at each WP denotes its chirality, which is characterized by the sign of 
Chern number c = sgn[det(vxvyvω)] [13]. So we have c = 1 for W1, W3 and c = − 1 for W2 and 
W4, which represent the “source” and “sink” of Berry flux. Figure 3(d) shows the projected 
band structure ε(ky, kω) at kx0 = 2π/3, in which W1(2), W4(3) locate at (0, ± π/2) in the kx-kω 
plane. The corresponding isoenergy contours of upper and lower bands are shown in Figs. 
3(e) and 3(f). In the vicinity of each WP, the contour is elliptic, which further verify that it is 
of Type-I. 

 

Fig. 3. Projected band structures and isoenergy contours for Type-I WPs under Δφ = π. (a) 
Projected band structure ε(kx, kω) at ky0 = 0 with W1, W2, W3, and W4 locating at ( ± 2π/3, ± 
π/2). The parameters are a = Ω = 1, Jx = Jy = Jω1 = 1 and Jω2 = 0.5. (b) (c) Isoenergy contours 
for the upper and lower bands of the projected band structure of (a). The signs “+” and “−” 
denote the sign of the Chern number for each WP. (b) Projected band structure ε(ky, kω) at kx0 = 
2π/3 with W1(2), W4(3) locating at (0, ± π/2). (e) (f) Isoenergy contours for the upper and lower 
bands. 

In Fig. 4, we choose in-phase modulation Δφ = 0 and keep other parameters the same with 
those in Fig. 3. In the projected band structure ε(kx, kω) at ky = 0, as shown in Fig. 4(a), the 
four WPs locate at ( ± 2π/3, ± π/2) in the kx-kω plane, which are also the same with those in 
Fig. 3(a). The isoenergy contours for the upper and lower bands of the projected band 
structure are shown in Figs. 4(b) and 4(c). The isoenergy contour is open and hyperbolic in 
the vicinity of each WP, thus verifying that it is of Type-II. Note that though the type has 
experienced a transition from Type-I to Type-II, the chiralities of all WPs keep unchanged. 
This is because chirality and type are two independent properties of WPs: the chirality 
denotes the topological charge while the type reflects local shape of the two bands. The 
projected band structure ε(ky, kω) at kx0 = 2π/3 is shown in Fig. 4(d), with W1(2), W4(3) locating 
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at (0, ± π/2). The isoenergy contours for the upper and lower bands are shown in Figs. 4(e) 
and 4(f), which also exhibit open hyperbolic shape in the vicinity of each WP. 

 

Fig. 4. Projected band structures and isoenergy contours for Type-II WPs under Δφ = 0. All 
other parameters are kept the same with those in Fig. 3. (a) Projected band structure ε(kx, kω) at 
ky0 = 0 with four WPs W1, W2, W3, and W4 locating at ( ± 2π/3, ± π/2). (b) (c) Isoenergy 
contours for the upper and lower bands, with the signs “+” and “−” at each WP denotes its 
chirality. (b) Projected band structure ε(ky, kω) at kx0 = 2π/3 with W1(2), W3(4) locating at (0, ± 
π/2). (e) (f) Isoenergy contours for the upper and lower bands of the projected band structure in 
(d). 

 

Fig. 5. Projected band structures and isoenergy contours at the phase transition point of Δφ = 
0.383π. (a) Projected band structure ε(kx, kω) at ky0 = 0 with the four WPs locating at kω0 = 
0.335π and − 0.665π. (b) (c) Isoenergy contours where the signs “+” and “−” at each WP 
denotes its chirality. (b) Projected band structure ε(ky, kω) at kx0 = 2π/3 with W1(2), W3(4) 
locating at kω0 = 0.335π and − 0.665π at ε0 = ± 0.989, respectively. (e) (f) Isoenergy contours 
for the upper and lower bands of the projected band structure in (d). 

Next we consider the phase transition point with Δφ = 0.383π where PT-symmetry is 
broken. The projected band structure ε(kx, kω) at ky = 0 is shown in Fig. 5(a). Differing from 
the above P-symmetry broken case under Δφ = 0 or π with ε(kx, kω) = ε(kx, − kω), the band 
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structure here is asymmetric with ε(kx, kω) ≠ ε(kx, − kω) due to the T-symmetry broken along 
the frequency dimension. Also, unlike the cases of Δφ = 0 or π, in which each WP pair has 
equal energy ε(kx0, kω0) = 0 at kω0 = ± π/2, the WPs migrate both in energy and momentum 
axes. For Jω2/Jω1 = 0.5 and Δφ = 0.383π, we have kω0 = α = 0.335π. So W1,2 locates at ( ± 2π/3, 
0.335π) with energy ε = 0.989 and W3,4 locates at ( ± 2π/3, −0.665π) with ε = − 0.989. 
Differing from Figs. 3 and 4 where the isoenergy contours near WPs are hyperbolic (or 
elliptical) from both upper and lower bands, the isoenergy contour in Figs. 5(b) or 5(c) near 
W1 is hyperbolic from the upper band and elliptical from the lower band, indicating the 
asymmetry of projected band structure. This asymmetry also holds for other WPs. The 
projected band structure ε(ky, kω) at kx0 = 2π/3 is shown in Fig. 5(d), which clearly shows the 
shift of WPs in both the energy and momentum axes. The isoenergy contours are shown in 
Figs. 5(e) and 5(f), in which the contour shape differs in the upper and lower bands, 
respectively. 

3. Photonic Fermi-arc surface states in the truncated lattice 

 

Fig. 6. Schematic diagrams of the A-A (left) and A-B (right) truncated lattice structures. The 
lattice is truncated along (x − y) direction and kept periodic along (x + y) direction and the 
frequency dimension. The orange dashed rectangles denote a unit cell for the truncated lattice, 
which contains odd and even number of waveguides for A-A and A-B lattices, respectively. 
The black dashed squares denote the primitive cell for the in-plane brick-wall lattice. 

One important signature of Weyl semimetals is the existence of surface states at the edges of 
a truncated sample. The surface states manifest as open curves that connect the WPs in the 
projected band structure, which are termed as Fermi arcs [6–10]. As shown in Fig. 6, the array 
can be truncated in the (x − y) direction and kept periodic in the (x + y) direction and 
frequency axis. As shown in Figs. 6(a) and 6(b), there exist two kinds of truncated arrays in 
which the two boundaries contain the same (A-A) and different (A-B) waveguides, 
respectively. Here we denote them as A-A and A-B types of arrays. There are total odd and 
even number of waveguides in each unit cell for A-A and A-B types of array. To calculate the 
Fermi arc surface states, we choose the A-B type array as an example, the method of which is 
also applicable to A-A type array. The Hamiltonian of A-B type array is 
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where p, n are the cell indices along (x + y) and frequency axes. m = 1, 2,…, M denotes the 
site index in a unit cell along (x − y) direction with 2M being the total waveguide number in 
each unit cell. The k-space Hamiltonian is thus given by 
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where k = (kp, kω) is the Bloch momentum along (x + y) and frequency axes. By denoting 
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we can obtain the Bloch Hamiltonian, which is given by a 2M × 2M matrix 
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with the eigen state denoted by the unit-cell mode amplitude Ψ = (ψA1, ψB1, ψA2, ψB2,…,ψAN, 
ψAN). So the projected band structure ε(k) can be obtained by solving HAB(k)Ψ = ε(k)Ψ. 

 

Fig. 7. (a) Projected band structure of Type-I WPs for the A-B truncated array under Δφ = π. 
The two surface states are denoted by the green surfaces and the red (blue) surfaces are the 
bulk bands. The red circles represent the four WPs connected by the Fermi arcs denoted by the 
red lines. (b) A sliced projected band structure at kp = 5π/6 with the black arrows denoting the 
group velocities of the two surface states. (c) Projected band structure of Type-II WPs under 
Δφ = 0. (d) Sliced projected band structure at kp = 5π/6. (e) Projected band structure of Type-II 
WPs with Δφ = 0.383 π. (f) Sliced projected band structure at kp = 5π/6. (g) (h) Eigen-mode 
amplitudes for the two surface states as kp = 3π/4 and 5π/6 under Δφ = π and kω = π/2. 

Figure 7(a) shows the projected band structure ε(kp, kω) of A-B type truncated array for 
Type-I WPs under Δφ = π. Here we choose 2M = 60 waveguides in each unit cell, thus there 
are totally 60 bands of s = 1, 2, …, 60, where s is the band index. The bands s = M and s = M 
+ 1 represent the edge states while others denote the bulk bands. The two edge states intersect 
to form four line segments (denoted by red solid lines), forming the Fermi arcs that connect 
the four WPs at kp = ± 2π/3, kω = ± π/2 denoted by the red circles. In Fig. 7(b), we plot the a 
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slice of the projected band structure ε(kω) at kp = 5π/6 where the red and blue curves denote 
the two edge states that are isolated from the bulk bands (denoted by black curves). For an 
arbitrary choice of kω, as shown by the black arrows, the two edge states propagate in 
opposite directions with opposite group velocities at the upper and lower boundaries, 
respectively. Figure 7(c) shows the projected band structure for Type-II WPs with Δφ = 0, 
where the positions of Fermi arcs are the same with those in Fig. 7(a). The sliced projected 
band structure ε(kω) at kp = 5π/6 is shown in Fig. 7(d). Differing from Type-I WPs for which 
the two edge states have opposite group velocities at a specific kω, the two edge states for 
Type-II WPs propagate in the same directions at different boundaries. In this regard, the 
optical modes of the surface states will experience bidirectional and unidirectional frequency 
shift in Type-I and Type-II WPs. In Figs. 7(e) and 7(f), we plot the projected band structures 
at the phase transition point of Δφ = 0.383π. As is shown in Fig. 7(e), one of the surface state 
manifests flat dispersion relation with vanished group velocity along the frequency 
dimension. The local flat band structure is an important physical signature at the phase 
transition point. Additionally, since T-symmetry is broken, the projected band structure 
exhibits ε(kp, kω) ≠ ε(kp, − kω) for both edge and bulk bands. In Figs. 7(g) and 7(h), we plot the 
mode amplitude for the two edge states s = M and s = M + 1, by choosing kp = 3π/4 and 5π/6 
with Δφ = π and kω = π/2. The edge states are both confined at the two boundaries, which 
penetrate into the bulk exponentially along the truncated directions. As kp is chosen more 
closer to the WPs, the edge states can be weakly confined to the surfaces with larger 
penetration depths along the truncated directions. 

 

Fig. 8. (a) Projected band structure of Type-I WPs for A-A type array under Δφ = π. The green 
surface denotes the only surface state and the red (blue) surfaces denote the bulk bands. (b) 
The sliced projected band structure at kp = 5π/6. (c) (d) 2D Projected band structure for Type-II 
WPs with Δφ = 0 and sliced projected band structure at kp = 5π/6. (e) (f) 2D projected band 
structure at Δφ = 0.383π and sliced projected band structure at kp = 5π/6. (g) (h) Eigen-mode 
amplitudes for the only surface state as kp = 3π/4 and 5π/6 under Δφ = π and kω = π/2. 

Then we turn to A-A type truncated array. Figure 8(a) shows the projected band structure 
for Type-I WPs under Δφ = π. There are totally 2M −1 bands denoted as s = 1, 2, …, 2M −1, 
among which the band s = M is the only surface state with others representing the bulk bands. 
Differing from the A-B type array that has two surface states at either the upper and lower 
boundaries, there is only one surface state at the upper boundary of A-A type array. Similar to 
A-B type array, the WPs still locate on the band of surface state, as denoted by the red circles. 
The sliced projected band structure ε(kω) at kp = 5π/6 is shown in Fig. 8(b). Here the blue 
curve denotes the surface state, which is isolated from bulk bands denoted by the black 
curves. The projected band structures for Δφ = 0 or 0.383π are shown in Figs. (c)-(f), which 
also exhibit only one surface state at the upper boundary. In Figs. 8(g) and 8(h), we plot the 
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eigen-mode amplitudes of the surface state by choosing kp = 3π/4 and 5π/6 under Δφ = π and 
kω = π/2. The surface states can be well confined at the upper boundary, with the penetration 
depth increasing as kp is closer to the WPs. 

4. Proposals to realize brick-wall waveguide arrays 

Now we propose dielectric/metallic structures to realize the brick-wall lattices. As shown in 
Fig. 9(a), each unit cell of the brick-wall lattice is composed of a central waveguide A(B) 
surrounded by four B(A) waveguides arranged in a square lattice. To remove one of the four 
coupling bonds, we utilize a metallic slab to block the evanescent coupling between the 
central and upper waveguides. The field evolution for the waveguide coupling is shown in 
Fig. 9(b), which is obtained by numerical simulations using COMSOL Multiphysics. The 
refractive indices of waveguides and surrounding medium are n0 = 1.45 and nc = 1.2. The 
metallic slab is composed of Au whose dielectric constant is described by the Drude model 
[38–41]. We choose the operation wavelength λ0 = 1.55 μm, such that the refractive index of 
Au is nm = 0.1894 + 11.2241i. The radius of the waveguide and the central spacing between 
neighboring ones are r = 0.5 μm and d = 1.5 μm. The thickness of Au slab is t = 50 nm. In the 
simulation, we inject the fundamental mode in the z direction from the input end of the central 
waveguide. The central waveguide is a little longer than other waveguides to eliminate 
unwanted scattering from other waveguides at the input end. Figure 9(b) shows the electric 
field distributions at three sections of z = 0, 1 and 4μm, respectively. The optical mode can 
exhibit efficient coupling from the central A waveguide to the left, right and lower three B 
waveguides. On the contrary, the coupling between the central A and upper B waveguide is 
blocked by the Au slab in between. The simulation verify the feasibility of constructing brick-
wall lattice from conventional square lattice by using dielectric/metallic waveguides. 

 

Fig. 9. (a) Schematic diagram of a unit cell for the brick-wall waveguide array. The refractive 
indices of the waveguide and the cladding medium are n0 = 1.45 and n1 = 1.2, respectively. The 
metallic slab is composed of Au, which is used to block the coupling between waveguide A 
and the upper waveguide B. (b) Simulated field distribution at different sections at z = 0, 1 and 
4 μm under the single mode input from the central A waveguide. 

For experimental implementations, the time-dependent refractive index variation may be 
realized with electro-optic modulations [33, 42, 43]. In detail, the required travelling-wave 
modulation can be provided by a sinusoidal radiofrequency (RF) signal via metallic 
electrodes fabricated on the surface of each waveguide. The modulation amplitudes can be 
controlled by using RF amplifiers and attenuators while the modulation phases can be 
continuously tuned by using RF phase shifters. To guarantee the precise control of 
modulation amplitudes and phases to achieve the phase transition, RF signals can be 
monitored using microwave oscilloscope for the use of feedback. Alternatively, the electro-
optic modulation may also be replaced by using nonlinear optical effects of four-wave mixing 
(FWM) [44], in which the frequency of a signal light wave can experience up and downward 
transition under two pumped light waves and form a synthetic frequency lattice. The coupling 
amplitudes and phase difference can be controlled by varying the relative phases of the two 
pumped light waves in the two sublattices. 
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5. Conclusions 

In summary, we theoretically demonstrate the phase transition between Type-I and Type-II 
WPs in a dynamically modulated brick-wall waveguide array. The synthetic frequency 
dimension created by dynamic modulation and the in-plane brick-wall lattice can constitute a 
synthetic 3D lattice structure. By choosing different modulation amplitudes and phases in the 
two sub lattices of the array, both P and T symmetries are broken and two types of WPs are 
formed. The out-of-phase and in-phase modulations are able to generate Type-I and Type-II 
WPs. For other choices of modulation phase difference and relative amplitude, we obtain the 
full phase diagram for the phase transition between Type-I and Type-II WPs. By truncating 
the brick-wall array in two different formats, we can obtain a pairwise and single Fermi arc 
surface states, respectively. The pairwise surfaces states of Type-I and Type-II WPs exhibit 
opposite and same group velocities along two boundaries, leading to the bidirectional and 
unidirectional frequency shifts, respectively. The study provides a unique platform to realize 
various Weyl semimetal phases in the same building block, enabling the efficient control over 
the topological wave transport in spatial and frequency domains. 

Appendix: Derivation of the Hamiltonian for the 3D synthetic lattice 

In the appendix, we provide the detailed derivation of the system Hamiltonian in Eq. (2). For 
a single-mode optical waveguide (A or B) subject to a travelling-wave modulation n(z, t) = n0 
+ Δncos(Ωt − qz + φ), the optical mode will experience photonic transitions in the 
fundamental band. The electric field distribution in each waveguide is E(x, y, z, t) = 
nan(z)ψn(x, y)exp[i(ωnt − βnz)], where ωn = ω0 + nΩ and βn = β0 + nq (n = 0, ±1, ±2,…) are 
the frequency and propagation constant of nth-order optical mode. an(z) and ψn(x, y) are the 
corresponding mode amplitude and transverse profile, respectively. Substituting the time-
dependent refractive index and electric field distributions into Maxwell’s equation, we have 
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where εd = n0
2, Δε = 2n0Δn. By applying slowly varing amplitude approximation, the left side 

of Eq. (24) can be written as 
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By denoting ωn ± Ω = ωn ± 1, βn ± q = βn ± 1, the right side of Eq. (24) is 

 
( )

( )1 1 1 1

2
( )[ ] [ ]

2

( ) ( )2 2
1 1

1
    ( ) ( , )

2

1
( ) ( , ) ,

2

n n

n n n n

i t zi t qz i t qz
n n

n

i t z i t zi i
n n n n

n

e e a z x y e
t

a z x y e e e e

ω βφ φ

ω β ω βφ φ

ψ

ψ ω ω+ + − −

−Ω − + − Ω − +

− − −
+ −

∂  + ∂  

= − +




 (26) 

By substituting (n ± 1) by n, we have 
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since Ω << ω0, the mode profiles satisfy ψn ± 1(x, y) ≈ψn(x, y) ≈ψ0(x, y), we can thus obtain the 
coupled-mode equation in the frequency dimension 
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where the frequency-dimension coupling strength is given by 
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The coupled-mode equation of Eq. (28) can be rewritten as the Hamiltonian 
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Since the waveguides of A and B have different coupling strengths Jω1, Jω2 and phases φ1, φ2, 
the Hamiltonian for the frequency-dimension couplings is 
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Combined with the in-plane couplings in the brick-wall array, the 3D synthetic lattice can 
thus be described by the Hamiltonian given by Eq. (2). 
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