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Resolving the polarization of high-order harmonic generation by temporal multislit interferometry
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We propose a temporal multislit interference model of high-order harmonic generation (HHG). By using
the interference picture, we investigate the polarization features of harmonics generated by atoms and the
two-dimensional synthesized driving laser fields. The result shows that the selection rules and ellipticity of
harmonics can be understood by intracycle interference. Based on quantum path analysis, we show the harmonic
polarization can be controlled by modifying the structure of the temporal interferometer. We perform a quan-
titative analysis of the harmonic polarization spectrum in terms of electron dynamics and provide an intuitive
picture and a general tool for HHG investigation.
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I. INTRODUCTION

High-order harmonic generation (HHG) is an extremely
nonlinear phenomenon, which occurs in the interaction of
intense femtosecond laser fields with atoms or molecules. It
provides a convenient and popular approach for generating
extreme ultraviolet or x-ray attosecond pulses [1–3]. More-
over, the abundant information in the high harmonic spectrum
provides unique access to probe the structure and dynamics
of targets [4–7]. The HHG process can be understood by
the semiclassical three-step recollision (TSR) model [8–10].
The electron is first ionized and subsequently accelerated
by the driving laser fields. When the direction of driving
field reverses, the electron is pulled back and collides with
the parent ion, thereby the high-energy photon is emitted. In
linearly polarized driving fields, electrons return to the parent
ions along the laser polarization direction; thereby harmonics
generated by isotropy targets are linearly polarized. In com-
parison, circularly or elliptically polarized harmonics have
more value in numerous applications, e.g., chiral recognition
[11], the study of ultrafast chiral-specific dynamics [12], and
x-ray magnetic circular dichroism spectroscopy [13].

In recent years, elliptically polarized attosecond pulses
[14–20] have received a lot of attention. Several schemes were
developed to produce harmonics with tunable ellipticity. One
scheme is based on the use of prealigned molecules [21,22].
In this approach, however, the measured ellipticity can hardly
exceed 0.35, and the control over polarization is difficult.
Another scheme is realized by using two-dimensional (2D)
driving fields. By employing elliptically polarized driving
fields, harmonics can have nonzero ellipticity but poor yield
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[23–25]. To solve this issue, the synthesized driving laser
field scheme was proposed. A useful method is employing
the bichromatic counterrotating circularly polarized (BCCP)
driving laser fields [15,18,26–28]. When irradiating targets
with BCCP fields, only specific harmonics can be effec-
tively generated, which is known as the selection rule [29].
The allowed harmonics are purely circularly polarized, and
the efficiency is comparable to that in the linearly polarized
driving field. Moreover, the polarization of the harmonics
can be fully controlled by adjusting the driver without com-
promising the efficiency. In recent works, another method
was developed based on the orthogonal two-color (OTC)
fields [30–34]. Symmetry arguments dictate that harmonics
generated by OTC fields and isotropy targets are linearly
polarized [35]. Nevertheless, when adjusting the cross an-
gle between two drivers, the symmetry break leads to the
generation of elliptically harmonics. It was shown that the
harmonics generated by nearly OTC laser fields (i.e., the
crossing angle is near 90◦) can have large ellipticity. Addition-
ally, the control over polarization is easy to realize with this
method.

In order to realize optimal control, it is significant to figure
out the mechanism of how the driving fields affect the harmon-
ics. It is complicated to describe the ellipticity of harmonics
within the framework of the TSR model. There are several
other perspectives to understand the properties of harmonics.
One method is based on the dynamical symmetry of the inter-
action system. The Floquet group theory successfully explains
the selection rules and the polarization of allowed harmonics
[36,37]. Another method is based on the conservation law in
the HHG process [28,38]. Previous works showed the elliptic-
ity of harmonics in BCCP fields can easily be explained by the
spin angular momentum of absorbed photons [28]. However,
it is inconvenient to extend these methods to other driving
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fields, especially the driving fields which do not have well-
defined dynamical symmetry and spin angular momentum.

In this paper, we investigate the polarization of harmon-
ics in the view of temporal multislit interferometry. First,
we show its applications to explain the selection rules and
polarization features in BCCP and OTC fields. Next, based
on quantum path analysis, we investigate the origin of el-
lipticity in nearly OTC fields. The results demonstrate that
the asymmetry of quantum paths, i.e., their dynamical phase,
recollision time, and recombination directions determine the
polarization of harmonics. Finally, we discuss the control over
polarization from the perspective of temporal interference.

This paper is organized as follows. In Sec. II, we introduce
our model and calculation method. The calculation and anal-
ysis results are presented in Sec. III. Finally, we conclude our
study in Sec. IV.

II. THEORETICAL MODEL

A. Numerically solving the time-dependent
Schrödinger equation

In order to verify our model, we calculated the harmonic
spectrum by numerically solving the 2D time-dependent
Schrödinger equation (TDSE) as a reference. The He atom
is selected for its central symmetry. In the length gauge, the
TDSE is given by [39]

i
∂�(r, t )

∂t
=

[
−1

2
�2 + V (r) + r · E

]
�(r, t ). (1)

Atomic units are used throughout unless stated otherwise.
Here �(r, t ) represents the wave function, and r denotes the
electron position. V (r) = −1/

√
r2 + b is the soft-core poten-

tial, and b is the soft-core parameter. The 2D laser field is
written as

E = f (t )

[
Ex(t )
Ey(t )

]
. (2)

The wavelength of the fundamental field is 800 nm. f (t )
is a trapezoidal envelope with three-cycle rising and three-
cycle falling edges and an eight-cycle plateau. We use the
split-operator method to solve Eq. (1), and the time-dependent
dipole acceleration can be obtained with Ehrenfest’s theorem:

D̈(t ) = −〈�(t )|H (t ), [H (t ), r]|�(t )〉. (3)

Then, the harmonic spectrum can be calculated by Fourier
transformation,

Ehhg(ω) = −
∫

D̈ exp(−iωt )dt . (4)

It can be decomposed into right- and left-circularly polarized
components:

Ehhg
± = 1√

2

(
Ehhg

x ± iEhhg
y

)
. (5)

The polarization state of the harmonics can be characterized
by the degree of circular polarization (DCP) ζ [40]:

ζ = I+ − I−
I+ + I−

, (6)

where I± = |Ehhg
± |2 denotes the intensity of the helical com-

ponents. ζ is connected to the ellipticity ε [41],

ζ = 2ε

1 + ε2
, (7)

and the sign of ζ indicates the helicity h of harmonics:

h = sgn(ε) = sgn(ζ ). (8)

B. Principle of temporal multislit interference

According to Feynman’s path integral, any quantum
mechanical process can be represented as a coherent super-
position of contributions of all possible paths [42]. Therefore,
as the left panel in Fig. 1 shows, the instantaneous dipole
moment D(t ) is contributed by all possible quantum paths [7],

D(t ) =
∑

aion(k′, t ′)eiS(k,t ;k′,t ′ )arec(k, t ), (9)

where k′ and k denote the initial and final mechanical mo-
menta of each path. aion and arec represent the amplitude of
ionization and spontaneous recombination. Here exp(iS) is the
propagation factor, which is the integral of the Lagrangian L:

S =
∫ t

t ′
L dt, L = �2

2
− V (r) − r · E. (10)

The harmonic spectrum can be calculated by Fourier transfor-
mation of D(t ):

Ehhg(ω) =
∫

D(t )e−iωt dt

=
∑

aion(k′, t ′)ei[S(k,t ;k′,t ′ )−ωt]arec(k, t ). (11)

Previous works showed that strong-field ionization is an in-
trinsic attosecond process, which mainly occurs around the
instantaneous maximum of the driving field [43], and the
emission in the time domain is a train of attosecond bursts
[44,45]. Therefore, D(t ) can be divided into several bursts,

D(t ) =
∑

j

D j (t ). (12)

These bursts create a multislit in the time domain, and the
HHG spectrum is the interference fringe in the frequency
domain:

Ehhg(ω) =
∫ ∑

j

D j (t )e−iωt dt =
∑

j

B j (ω). (13)

In the 2D driving field, the direction of D(t ) rotates in the
polarization plane of the driving field. Therefore, these B j (ω)
have different polarizations. For harmonics with high energy,
electrons recollide with the nucleus nearly straight on. As the
ground state is isotropic, each B j (ω) can be simplified as a
linearly polarized component. Then Eq. (13) can be rewritten
as

Ehhg(ω) =
∑

j

C j (ω) exp iϕ j (ω)]

=
∑

j

|C j (ω)|
[

cos α j (ω)
sin α j (ω)

]
exp[iϕ j (ω)], (14)
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FIG. 1. The graph on the left shows the temporal interference model of HHG. From the bottom to the top, it shows the quantum paths,
temporal emissions, and the harmonic spectrum. The blue and orange solid lines denote two representative quantum paths. The graph on the
right shows the typical Young’s double-slit interferometer.

where each C j is a vector. Its amplitude and polarization
angle are |C j | and α j . Equation (14) is equivalent to Young’s
interferometer with polarizers, as shown in the right panel of
Fig. 1. The right- and left-circularly polarized components of
the harmonics can be written as

Ehhg
± (ω) =

∑
j

|C j (ω)|
2

[
1
∓i

]
exp{i[ϕ j (ω) ± α j (ω)]}. (15)

If the interaction system has specific dynamical symmetry,
the above interference can easily be understood. Generally,
the temporal interference can be calculated by quantum path
analysis. Although HHGs are contributed by infinite paths, the
temporal interference can be calculated by analyzing several
representative paths. We consider only paths which satisfy
the classical Lagrangian equation of motion. For the sake of
simplicity, the effect of the Coulomb potential is neglected.

F = d

dt

(
∂L

∂k

)
− ∂L

∂r
= E. (16)

According to the adiabatic approximation, the initial momen-
tum of each electron is perpendicular to the instantaneous
direction of the driving field. For harmonics with specific en-
ergy ω, we select only those trajectories whose return energy
satisfies Ip + |k|2r /2 = ω, where Ip is the ionization energy.
The interference in Eq. (14) can be calculated as follows.

The total amplitude |C| is related to the ionization and
recollision amplitudes given by the scalar function ϒ(ki ) and
the transition dipole matrix element d∗(kr ) [46,47]:

|C| ∝ |ϒ(ki )d∗(kr )| =
∣∣∣∣
(

Ip + k2
i

2

)
〈ki|g〉〈g|r|kr〉

∣∣∣∣. (17)

We ignore the ground-state depletion and apply the plane
wave approximation. The polarization direction α is parallel
to the direction of recollision momentum kr . The total phase ϕ

contains two parts. S is the phase related to electron dynamics:

ϕ = S − ωtr, S = Ip(tr − ti ) +
∫ tr

ti

|k|2
2

dt . (18)

III. RESULTS AND DISCUSSION

A. Polarization of harmonics in the BCCP and OTC
driving fields

The BCCP driving field is obtained by combining the right-
circularly polarized fundamental field and the left-circularly
polarized second-harmonic (SH) field. The field can be written
as

E(t ) = E0 f (t )

[
cos(ω0t ) + cos(2ω0t )
sin(ω0t ) − sin(2ω0t )

]
. (19)

As Fig. 2(a) shows, the Lissajous figure of the driving field
has threefold rotational symmetry. The 3n-order (n is a pos-
itive integer) harmonics are absent. The (3n + 1)-order and
(3n − 1)-order harmonics are circularly polarized with the
same helicity as the fundamental and SH fields, respectively.
To analyze the temporal properties of harmonics, we employ
the Gabor time-frequency analysis [48] in Fig. 2(b). There are
three dominant channels in each optical cycle. The intracycle
interference can be described as

Ehhg(ω) = C1 + C2e
ϕ + C3e2
ϕ, 
ϕ = ω
t = ω

ω0

2π

3
,

(20)
where C1, C2, and C3 are three vectors shown in Fig. 2(c).
Their angle difference is 2π/3. Their time delay leads to the
phase difference 
ϕ. Consequently, as shown in Fig. 2(d), the
temporal interference of 3n-order harmonics can be simplified
as C1 + C2 + C3 = 0, which is completely destructive. As a
result, 3n-order harmonics are suppressed. To investigate the
ellipticity features of (3n ± 1)-order harmonics, we focus on
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FIG. 2. The calculation results in the BCCP field. The intensity
of the fundamental and SH fields is 5 × 1014 W/cm2. (a) The in-
tensity of helical components of harmonics. (b) The time-frequency
spectrogram of the HHG. The color map represents the intensity
distribution in the logarithmic scale. (c) The schematic diagram of
intracycle interference. The three arrows show the amplitude, po-
larization angle, and emission time of three temporal components.
(d) The interference result of 3n-order harmonics.

interference of each helical harmonic component. The right-
and left-circularly polarized components of the harmonics can
be represented as

Ehhg
± (ω) ∝

3∑
j=1

[
1
∓i

]
exp

{
−i

[
j
2π

3

( ω

ω0
∓ 1

)]}
. (21)

The right- and left-circularly polarized harmonics can be co-
herently enhanced when

2π

3

( ω

ω0
∓ 1

)
= 2nπ,

ω

ω0
= 3n ± 1. (22)

Therefore, (3n + 1)-order harmonics are purely right circu-
larly polarized, and (3n − 1)-order harmonics are purely left
circularly polarized, which is coincident with the selection
rules.

Next, we use the same method to analyze the harmonics in
the OTC field. The fundamental field is along the x axis, and
the SH field is along the y axis. The relative phase between
them is fixed to π/2. The OTC field is represented as

E(t ) = E0 f (t )

[
cos(ω0t )

cos(2ω0t − π/2)

]
. (23)

As Fig. 3(a) shows, the Lissajous figure of the driving field
is symmetric about the y direction. Odd- and even-order har-
monics are linearly polarized in the same direction as the
fundamental and SH fields, respectively. The time-frequency
spectrogram in Fig. 3(b) shows there are two dominant
channels in each optical cycle. Therefore, the intracycle in-
terference can be written as

Ehhg(ω) = C1 + C2e
ϕ, 
ϕ = ω
t = ω

ω0
π. (24)

C1 and C2 are vectors shown in Fig. 3(c). The phase differ-
ence 
ϕ is derived from the half-cycle time delay. As shown
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FIG. 3. The calculation results in the OTC field. The intensity
of the fundamental and SH fields is 5 × 1014 W/cm2. (a) The in-
tensity of harmonic components parallel to the x and y directions.
(b) The time-frequency spectrogram of the HHG. The color map
represents the intensity distribution in the logarithmic scale. (c) The
schematic diagram of intracycle interference. The two arrows show
the amplitude, polarization angle, and emission time of two temporal
components. (d) The interference results of odd- and even-order
harmonics.

in Fig. 3(d), for odd-order harmonics, the phase difference
is (2n + 1)π , which causes a sign reversion; therefore, the
interference turns into C1 − C2. For even-order harmonics,
the phase difference is 2nπ , and the interference is simplified
as C1 + C2. Therefore, both odd- and even-order harmonics
are linearly polarized, and their polarization directions are
orthogonal.

B. Polarization of harmonics in nearly OTC driving fields

In this section, we investigate the origin of the ellipticity of
harmonics in the nearly OTC field. The nearly OTC field can
be written as

E(t ) = E0 f (t )

[
cos(ω0t ) + η cos θ cos(2ω0t − π/2)

η sin θ cos(2ω0t − π/2)

]
, (25)

where η and θ are the amplitude ratio and crossing angle
between the SH and fundamental fields. As Fig. 4(a) shows,
the Lissajous figure of the driving field is no longer symmetric
about the y direction. The intensity distributions of right- and
left-circularly polarized components are different in the spec-
trum, which leads to harmonics that are elliptically polarized.
The Lissajous figures of H46 shows the ellipticity can reach
0.8, which is much larger than that in the OTC field. To explain
the ellipticity, we investigate the time-frequency properties
of the HHG process in Fig. 4(b). The cutoff energy of each
channel is different from that in the OTC field shown in
Fig. 3(b). Compared with those in Fig.3(b), the cut-off energy
of the former channel in Fig.4(b) is lower, while the cut-off
energy of latter channel is higher. The solid lines in Fig. 4(b)
are calculated by representative paths, and the dashed lines
show the corresponding results in the OTC field. It is obvious
that the emission time of the harmonics also changes slightly.
The time delay between two channels deviates from 0.5T0.
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FIG. 4. The calculation result in nearly OTC field. The intensity
of the fundamental and SH fields is 5 × 1014 W/cm2; their crossing
angle is 85◦. (a) The intensity of helical components of harmonics.
(b) The time-frequency spectrogram of the HHG. The color map
represents the intensity distribution in the logarithmic scale. The
solid lines are obtained by path analysis. (c) The two representative
electron paths. (d) The schematic diagram of intracycle interference.
The two solid arrows show the amplitude, polarization angle, and
emission time of two temporal components. The dashed lines in (b),
(c), and (d) show the corresponding results in the OTC field as a
reference.

This deviation can be explained by the dynamical asymmetry
of quantum paths. Path 1 and path 2 shown in Fig. 4(c) are
the representative quantum paths responsible for H50. The
results indicate that electrons which recollide with parent ion
during former half (4.2∼4.7) optical cycle travel farther than
electrons which recollide during latter half (4.7∼5.2) optical
cycle. Compared with those in the OTC field, the asymme-
try of quantum paths affects the structure of the temporal
interferometer. As Fig. 4(d) shows, vectors C1 and C2 are
no longer symmetric about the y direction, and their time
delay is shortened to 0.46T0. In addition, the dynamical phase
difference 
S leads to another phase difference. Therefore,
the harmonics can be represented as

Ehhg(ω) = C1 + C2ei(
S−ω
t ). (26)

The right- and left-circularly polarized components can be
written as

Ehhg(ω)± ∝
[

1
∓i

]{
1 + |C2|

|C1| exp[i(
ϕ ± 
α)]

}
. (27)

It is clear that the phase difference 
ϕ and angle difference

α determine the polarization of harmonics. If 
ϕ = nπ ,
harmonics are lineally polarized, just like those in the OTC
field. Otherwise, the harmonics are elliptically polarized.
Particularly, if 
ϕ ± 
α = (2n + 1)π , the right- and left-
circularly polarized components interfere destructively, and
the other helical component is dominant, which leads to a
large ellipticity.

Next, we investigate the ellipticity features shown in
Fig. 4(a). Like in Fig. 4(c), we show the representative quan-
tum paths of different harmonics in Fig. 5. As harmonic order

-5 0 5

-5

0

-5 0 5

-10

-5

0

-10 0 10

-20

-10

0

10

x (a.u.)

y
(a

.u
.)

H35(a) H45(b)

H55(c)

-20 0 20

-20

0

H60(d)

x (a.u.)

y
(a

.u
.)

x (a.u.)

y
(a

.u
.)

x (a.u.)

y
(a

.u
.)

FIG. 5. Representative electron paths of different harmonics. The
parameters are the same as those in Fig. 4.

increases, two properties become apparent: (i) For H35, the
blue and orange solid paths have comparable lengths. As har-
monic order increases to 55, the degree of asymmetry between
the blue and orange solid paths increases. However, the differ-
ence in path length decreases as the harmonic order increases
from 55 to 60. (ii) For H35, the solid paths locate on the right
side of the dashed paths. As harmonic order increases, the
solid paths move to the left side of the dashed path gradually.
In Fig. 6(a), we show the dynamic phase 
S and recollision
time difference 
t between two representative paths. As har-
monic order increases, both 
S and 
t first decrease and then
increase. As shown in Fig. 6(b), the total phase difference

ϕ = 
S − ω
t increases monotonously. Moreover, there is
a π shift between adjacent even and odd harmonic orders.
Figures 6(c) and 6(d) show the polarization angle θhhg (the
angle of the major axis of the Lissajous figure) and the DCP
ζ of each harmonic. As harmonic order increases, the ellip-
ticity and polarization angle are modulated. When harmonic
order is lower than 30, harmonics are nearly linearly polarized
because 
ϕ is close to nπ . As harmonic order increases to
45, 
ϕ increases obviously, and the ellipticity reaches the
maximal value. As harmonic order increases further, 
ϕ is
close to nπ again; therefore, the DCP varies in the opposite
direction.

In Fig. 7, we further investigate the influence of the cross-
ing angle and intensity ratio on the harmonic polarization
spectrum. For the sake of clarity, we present only the results
for even-order harmonics. The analysis of odd-order harmon-
ics is similar to that for the even ones. Figure 7(a1) shows the
DCP is not monotonously related to the crossing angle. For
harmonics higher than H40, the DCP varies between 1 and −1
alternately. The modulation of the ellipticity can also be ex-
plained by temporal interferometry. According to Eq. (27), the
phase difference 
ϕ plays an important role in determining
the harmonic polarization. When adjusting the driving field,
the quantum paths change, and 
ϕ changes consequently.
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By analyzing the representative paths, we calculate 
ϕ for
different crossing angles, as shown in Fig. 7(a2). For each
harmonic order, 
ϕ increases monotonously with decreasing
crossing angle. As shown in Fig. 7(a3), the DCP calculated
by temporal double-slit interferometry is in good agreement
with Fig. 7(a1). Similarly, the influence of the intensity ratio
on ellipticity, shown in Fig. 7(b1), can also be explained as a
modification of the temporal interferometer. Compared with
Fig. 7(a2), the varying range of 
ϕ in Fig. 7(b2) is smaller,
which can be understood by the different influences of the
crossing angle and intensity ratio in modulating the driving

laser field. When decreasing the crossing angle, the Lissajous
figure of the driving field changes obviously, and the degree
of asymmetry of the quantum paths increases continuously.
However, when changing the intensity ratio, the Lissajous
figure of the driving field is just stretched. Additionally, when
the intensity ratio deviates from 1:1 too much, the synthesized
driving field behaves like a one-color linearly polarized laser
field; therefore, the degree of asymmetry of the quantum path
decreases.

By using the interference model, one can realize optimal
control over the harmonic ellipticity more conveniently. The
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FIG. 7. The influence of crossing angle and intensity ratio on harmonics. Only even-order harmonics are presented. In (a), the intensity of
the fundamental and SH fields is fixed at 5 × 1014 W/cm2. In (b), the crossing angle between the fundamental field and the SH field is fixed at
75◦. The intensity ratio is changed by adjusting the intensity of the SH field. The intensity of the fundamental field is fixed at 5 × 1014 W/cm2.
(a1) and (b1) The DCP calculated by TDSE. (a2) and (b2) The phase difference calculated by quantum path analysis. (a3) and (b3) The DCP
calculated by temporal interferometry.
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FIG. 8. The control of DCP of harmonics by modifying
the nearly OTC field. The results are calculated by temporal
interferometry.

DCPs of specific harmonics as a function of crossing angle
and intensity ratio are shown in Fig. 8. The result shows
that the magnitudes of the ellipticity of adjacent odd- and
even-order harmonics are similar, but their signs are opposite.
Meanwhile, as harmonic order increases, polarization is more
sensitive to the driving fields. It is clear that by adjusting
the crossing angle and intensity ratio, full control over po-
larization of the harmonic can be realized in nearly OTC
fields.

To validate our results, we further perform calculations
for the Ne atom with p symmetry in Fig. 9. The atomic
Coulomb potential is modeled by the 2D effective potential
V (r) = −[1 + 9 exp(−r2)]/

√
r2 + b. The parameters are the

same as in [49]. The two degenerate current-carrying states
2p± with magnetic quantum numbers m = ±1, denoted by
|φ2p±〉, are obtained as |φ2p±〉 = (|φ2px 〉 ± i|φ2py〉)/

√
2, where

|φ2px 〉 and |φ2py〉 are obtained through imaginary-time prop-
agation. We calculate the harmonic spectra from |φ2p+〉 and
|φ2p−〉 by numerically solving TDSE and add up the two
results coherently. As shown in Fig. 9, the polarization of
harmonics from Ne is similar to that for He, shown in Fig. 6.
The results of temporal interferometry are calculated by the
reference 1s orbital with the same ionization potential of Ne.
It is shown that our method can be applied to different noble
gas atoms. For molecule targets, the plane wave approxi-
mation should be corrected, and the temporal interferometry
model is still valid for resolving the polarization of high
harmonics.
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FIG. 9. The calculation results for 2p orbitals of the Ne atom.
The wavelength of the fundamental field is 1000 nm. The intensity
of the fundamental and SH fields is 3 × 1014 W/cm2; their crossing
angle is 85◦. (a) and (b) show the polarization angle and the degree
of circular polarization of harmonics in nearly OTC field.

IV. CONCLUSION

In conclusion, we presented a temporal multislit inter-
ference model which can explain the polarization of high
harmonics. We showed its applications in various driving
fields. From the perspective of interference, the selection rules
and ellipticity features of harmonics can be attributed to in-
tracycle interference. Moreover, the control of polarization
can be simply understood as the modulation of temporal in-
terferometer. The results demonstrated that by adjusting the
crossing angle and intensity ratio, full control over harmonic
polarization can be realized in nearly orthogonal two-color
fields. Our work shows the link between the harmonic po-
larization spectrum and the electron dynamics. It provides
an intuitive and convenient method to investigate high-order
harmonic generation. Meanwhile, the interference picture will
facilitate the probe of electron dynamics from the harmonic
spectrum.
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