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High-order harmonic signals generated in molecules are the consequence of coherent summation of complex
laser-induced transition dipoles d (θ, ω) with each fixed-in-space molecule; here θ is the angle of the molecular
axis with respect to the laser polarization axis and ω is the harmonic energy. In the so-called rotational coherent
spectroscopy, it is proposed to extract the fixed-in-space d (θ, ω) in the molecular frame by measuring harmonics
generated by a probing laser from the rotational molecular wave packets that have been prepared by a prior pump
laser. By varying the time delay between the two lasers, methods have been utilized to extract the θ dependence
of both the amplitude and phase of each individual harmonic, but the relative phase between harmonics cannot
be retrieved. Here we report that this limitation can be removed. It requires the additional measurement of
harmonic spectra versus the pump-probe angles at one fixed time delay. The two-dimensional input harmonic
data (time-delay and pump-probe angle) are then used to retrieve the full complex transition dipole d (θ, ω)
using a retrieval method based on machine learning algorithms. We demonstrate this method on N2 and CO2

molecules.
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I. INTRODUCTION

The structure of a molecule is most conveniently studied
through its interaction with photons. While powerful syn-
chrotron radiation facilities have been used to generate a large
amount of data for many molecules, due to its long duration
(of the order of picoseconds) and the fact that molecules
are mostly isotropically distributed, at the most fundamental
level, the state-to-state transition information is still lacking.
In particular, in quantum chemistry calculation, one can obtain
complex transition dipole d (θ, θe, ω) in the molecular frame,
where θ is the relative angle between the molecular axis of
a fixed-in-space molecule with the polarization direction of
the incident light, θe is the angle of the emission electrons
for photonionization or the emission photons for high-order
harmonics generation (HHG), and ω is the photon energy. For
long pulses (hundreds of picoseconds and more) the photon
energy ω can be considered to be fixed, and the magnitude and
phase difference of partial wave dipole matrix elements can be
extracted from the measured photoelectron angular distribu-
tions for isotropically distributed molecules [1–4]. However,
the ω dependence of d (θ, θe, ω) in the molecular frame,
especially the phase, has been left mostly unexplored so far.

In recent years, it has been established [5,6] that spectra
from HHG from the interaction of intense laser pulses with
molecules contain information about molecules similar to
those from photoionization experiments. The relation has
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been further established according to the quantitative rescat-
tering theory (QRS) [7–10] where it is shown that HHG
from a fixed-in-space molecule is related to the fixed-in-space
photoionization cross section. For linearly polarized driving
lasers, harmonic spectra are the emission of radiation fol-
lowing the recombination of ions with laser-driven electrons
returning along the laser polarization axis (i.e., θ = θe), thus
providing equivalent transition dipole information for photo-
electrons emitted along the polarization axis of the harmonics.
As a result, it gives complementary information on the typical
photoionization transition dipole. Since harmonics of different
orders are coherent, the HHG spectra inherently also contain
phase relations between different harmonic energies, thus
providing ω dependence in d (θ, ω), which is to be extracted
from the experimental data.

It is well understood that high-order harmonic generation
is a coherent process, thus, the measured harmonics are the
consequence of coherent summation of each fixed-in-space
complex transition dipole d (θ, ω) weighted by the angular
distribution of molecules in the gas jet. Fortunately, molecules
can be oriented or aligned with lasers. In this article, we will
focus on aligned molecules; specifically, on the HHG from N2

and CO2, which are the two most widely studied molecules in
HHG. In these experiments, typically two lasers are used. One
laser (the pump laser) with longer duration (of a few hundred
femtoseconds) and weaker intensity is used to align molecules
[11–13]. This laser will create a rotational wave packet which
will align or antialign molecules with respect to the pump
polarization axis at times of fractional rotational periods. Dur-
ing such a time interval, the angular distribution of molecules
changes within many tens of femtoseconds. A second laser
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(the probe laser) with a shorter duration and higher intensity
is used to generate harmonic spectra as the time delays are
varied. These spectra, called rotational coherent spectra, are
the results of harmonic spectra collectively emitted from
the ensemble of fixed-in-space molecules averaged over the
molecular angular distribution at the time delay of the probe
pulse. Since harmonics emitted are coherent, the average is
over the complex laser-induced transition dipoles instead of
the cross sections. In other words, the laser-induced transition
dipole, both the phase and the amplitude of each fixed-in-
space molecule, are to be retrieved from the harmonic spectra
intensity with respect to the time delay. Such a study is often
called rotational coherent spectroscopy (RCS), following an
earlier work [14]. If the phase and amplitude of harmonic
yields for fixed-in-space molecules are determined, then ac-
cording to the QRS theory, the complex molecular frame pho-
toionization transition amplitudes can be obtained trivially.

Earlier researches on RCS have utilized the variation of
the signals with time to retrieve the rotational constants of
large molecules or compounds [14], whose structures are hard
to determine. Recently, the method has been expanded to
obtain, for example, molecular-frame angular distributions of
photoelectrons [15], fixed-in-space tunneling or multiphoton
ionization rates [16–19], and the time dependence of molecu-
lar alignment distributions [20,21]. In these cases, except for
[15], the parameters to be extracted from the experiments are
positive-definite quantities. Other experimental data that can
benefit from similar applications in the future will be electron
spectrum and molecular breakup due to strong-field double
ionization, including sequential and nonsequential double ion-
ization of aligned molecules. In the present article, we focused
on HHG from aligned linear molecules only. In this case, both
the amplitude and phase of fixed-in-space harmonic yield of
the molecule will be retrieved. Both of these quantities depend
on the harmonic order as well as the angle between the laser
axis and the molecular axis.

Earlier works on retrieving amplitudes and phases from
harmonics can be found in [22–25]. These methods work well
but have limitations. First, the induced dipole to be retrieved
is a complex number, thus there are two unknown real values.
However, all of the above methods are limited since they tried
to retrieve two-dimensional unknown real values using only
one-dimensional data—the harmonic signals versus the time
delays. Such retrieval would severely limit the accuracy of the
retrieved quantities.

In this work our goal is to obtain the relative phases of
harmonics between the orders and at the same time improve
the accuracy of the retrieval method. We have found that by
adding an additional data set—the dependence of harmonic
spectra on pump-probe angles at a given fixed time delay—to
the previous rotational spectra would accomplish this goal.
The two sets of two-dimensional experimental data are ade-
quate to retrieve the two-dimensional unknowns in d (θ, ω).
For the retrieval, we apply a machine learning algorithm to
iterate the retrieved induced dipole repeatedly until the output
matches the experimentally measured signals in both angular
and energy domain to within a predetermined criterion. With
the development of artificial intelligence, in recent years the
modern machine learning community has developed tech-
niques with remarkable abilities to recognize, classify, and

characterize complex sets of data with a high degree of ac-
curacy. These machine learning techniques have been widely
used in computer science [26,27], biology [28], and physics
[29,30]. Applying this useful tool allows us to retrieve the
amplitude and phase of harmonic yield in the molecular frame
as well as the photoionization transition dipole to compare
with results obtained from quantum chemistry calculations.

This article is organized as follows. In Sec. II, we introduce
the theory used in our retrieval method. Section III shows the
retrieved results using data generated from the QRS theory. A
summary and outlook of this approach are given in Sec. IV.

II. THEORETICAL METHODS

In this section, we present the essential elements needed
in order to retrieve the complex-valued fixed-in-space single-
molecule laser-induced transition dipoles d (θ, ω) from ex-
perimental harmonic spectra through time-domain rotational
coherence spectroscopy. These include the calculations of
nonadiabatic field-free molecular alignment, the harmonic
spectra from individual fixed-in-space molecules, and the
convolution of harmonic amplitudes with the alignment dis-
tributions of these molecules. In order to “deconvolute” the
harmonic spectra taken at different time delays and different
pump-probe angles such that complex-valued single-molecule
transition dipole d (θ, ω) can be retrieved, we will employ
the so-called singular value decomposition (SVD) method
and expand the laser-induced dipole using two-dimensional
B-spline basis.

A. Nonadiabatic field-free molecular alignment
and convolution of HHG

Theories of molecular alignment by an external laser pulse
have been widely given in the literature [11–13,31]. When a
linear molecule interacts with a short laser pulse (the pump
laser), it will excite an ensemble of rotational states for each
initially populated rotational state ψJM . By treating the linear
molecule as a rigid rotor, the rotational motion of the molecule
with initial state ψJM evolves in the laser field and follows the
time-dependent Schrödinger equation:

i
∂ψJM (θ, φ, τ )

∂τ
=

[
ηJ2 − E (τ )2

2
(α‖cos2θ + α⊥sin2θ )

]
×ψJM (θ, φ, τ ). (1)

Here E (τ ) is the laser’s electric field, η is the rotational
constant of the molecule, and α‖ and α⊥ are the anisotropic
polarizabilities in parallel and perpendicular directions with
respect to the molecular axis, respectively.

Assuming a thermal distribution of the initial rota-
tional states, the time-dependent molecular axis distribution
ρ(θ, φ, τ ) can be written as a weighted average of the modu-
lus square of the wave packet ψJM ,

ρ(θ, φ, τ ) =
∑
JM

�JM |ψJM (θ, φ, τ )|2, (2)

where �JM is the statistical weight (i.e., the population) of the
initial state ψJM given by the Boltzmann distribution.

HHG from the impulsively excited molecular ensemble
can be related to single-molecule contribution through the
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convolution of the angular distribution ρ(θ, φ, τ ) with the
laser-induced dipole of single-molecule response:

I (ω, α, τ ) =
∣∣∣∣
∫ 2π

φ=0

∫ π

θ=0
d (ω, β )ρ(θ, φ, τ )sin(θ )dθ dφ

∣∣∣∣
2

.

(3)

Here θ and φ are the polar and azimuthal angles of the
molecular axis with respect to the laboratory-fixed z and x
axes, β is the angle between the molecular axis and the
polarization of the probe laser, and α is the angle between
and pump and probe pulses. The angles are related by

cos(β ) = sin(θ )sin(α)cos(φ) + cos(θ )cos(α), (4)

with d (ω, β ) being the induced dipole moment of the har-
monic due to a single molecule with a given orientation.

In this work, we calculate the single-molecule-induced
dipole in Eq. (3) by using the QRS theory [7]. For simplicity,
at a given time delay τ0, Eq. (3) is rewritten as

I (ω, α, τ0) = I (ω, α)

=
∣∣∣∣
∫ 2π

φ=0

∫ π

θ=0
d (ω, β )ρ(θ, φ, τ0)sin(θ )dθ dφ

∣∣∣∣
2

.

(5)

If the pump and probe lasers are parallel, α = 0, then Eq. (3)
can be written simply as

I (ω, α0, τ ) = I (ω, τ )

=
∣∣∣∣2π

∫ π

θ=0
d (ω, θ )ρ(θ, τ )sin(θ )dθ

∣∣∣∣
2

. (6)

Equations (5) and (6) are the functional form from which we
do deconvolution to retrieve the induced dipole. Equation (6)
can be expressed as a summation of d (ω, θ )ρ(θ, τ )sin(θ ) by
defining the dipoles at discrete angles:

I (ω, τ )

4π2
=

∣∣∣∣∣
∑
θi

d (ω, θi )ρ(θi, τ )sin(θi )dθ

∣∣∣∣∣
2

. (7)

Here the d (ω, θi ) is a complex number and the ρ(θi, τ ) is a
real number. Further, it can be derived that

I (ω, τ )

4π2
=

(∑
θi

d (ω, θi )ρ(θi, τ )sin(θi )dθ

)

× c.c.

⎛
⎝∑

θ j

d (ω, θ j )ρ(θ j, τ )sin(θ j )dθ

⎞
⎠. (8)

The induced dipole d (ω, θi ) can be expressed in the form of
amplitude and phase:

d (ω, θi ) = A(ω, θi )e
iφ(ω,θi )

= A(ω, θi )cos[φ(ω, θi )]+iA(ω, θi )sin[φ(ω, θi )]. (9)

Substituting Eq. (9) into Eq. (8), we obtain the final equations
that are used for retrieval:

I (ω, τ )

4π2
=

∑
i, j

Ji, j (ω)bi, j (τ )dθ dθ, (10)

where

Ji, j (ω) = A(ω, θi )A(ω, θ j )cos[φ(ω, θi ) − φ(ω, θ j )],

bi, j (τ ) = ρ(θi, τ )sin(θi )ρ(θ j, τ )sin(θ j ). (11)

Here A(ω, θi ) and φ(ω, θi ) are the amplitude and phase of the
induced dipole that are to be retrieved, respectively.

B. Deconvolution via singular value decomposition

Equation (10) can be solved using a standard linear re-
gression method. First, it can be recast in matrix form, I =
BJ. Consider a particular harmonic; the intensity has been
measured in N steps in time (τi, i = 1 : N ). The angular
dependence of the fixed-in-space–induced dipole d (ω, θi ) will
be denoted at M angles varying from 0 to 180◦. The matrix
equation is given by

I =

⎛
⎜⎜⎜⎜⎝

I (ω,τ1 )
4π2

I (ω,τ1 )
4π2

...
I (ω,τN )

4π2

⎞
⎟⎟⎟⎟⎠, B =

⎛
⎜⎜⎝

b(τ1)i=1, j=1:M b(τ1)i=2, j=1:M . . . b(τ1)i=M, j=1:M

b(τ2)i=1, j=1:M b(τ2)i=2, j=1:M . . . b(τ2)i=M, j=1:M
...

b(τN )i=1, j=1:M b(τN )i=2, j=1:M . . . b(τN )i=M, j=1:M

⎞
⎟⎟⎠, J =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

J (ω)i=1, j=1
...

J (ω)i=1, j=M

J (ω)i=2, j=1
...

J (ω)i=2, j=M
...

J (ω)i=N, j=M

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (12)

To solve this matrix equation, the angular distribution is
first assumed to be known if the left-hand side of Eq. (12) is
obtained theoretically, thus the coefficient matrix B is known
in advance. For experimental data, the angular distributions
of molecules can be deduced following the previous work by
Yoshii et al. [32].

In the first example, we fix the harmonic energy and only
retrieve the angular dependence of the induced dipole. This

is called a one-dimensional (1D) retrieval method. In this
case, I is a column vector with dimension of N × 1, B is a
matrix with dimension N × M2, and J is a vector with dimen-
sion of M2 × 1. The necessary and sufficient conditions for
which this system of linear equations has unique solution are
N = M2 and the determinant | B |�= 0. However, the second
condition is not satisfied here. The matrix B contains only M
independent parameters while it has dimension N × M2. This
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FIG. 1. (a) Checking the error defined in Eq. (15) by the SVD
method in solving the system of linear equations. The error drops to
a few percent as the number of singular values is increased. (b) Check
of the dependence of the error of the SVD method with the degree of
alignment (measured in terms of 〈cos2(θ )〉). The number of singular
values used is 180.

type of matrix is called a singular matrix, and one of the most
common approaches to solve such matrix equation is called
the SVD method.

In the SVD method, the coefficient matrix B of size N ×
M2 is first decomposed into the form

B = U · S · V�, (13)

where the sizes of U, S, and V are N × N , N ×
M2, and M2 × M2, respectively. The singular matrix S =
diag(S1, S2, . . . , SN ) has N diagonal elements, where the ele-
ments are arranged in descending order S1 	 S2 	 · · · 	 SN .
The distribution of the diagonal elements tells how singular
the matrix B is. The ratio between the largest and the smallest
singular values, viz., S1/SN , is called the condition number.
The matrices U and V are each orthogonal columnwise, with
U · U� = 1 and V · V� = 1. The singular equations can then
be solved as

J = V · S−1 · U� · I. (14)

The singular values of the diagonal S reflect the charac-
teristics of the solution. The more numbers of these singular
values we use, the more accurate the solution J is. Figure 1(a)
shows the error of the retrieved signal using the SVD method
with the number of singular values truncated up to N = 50
for the case where angular distributions have an alignment
parameter given in terms of 〈cos2(θ )〉 = 0.55. The error is
defined as

error =
√

1

NJ
�i, j

(
JSVD

i, j − JQRS
i, j

�i, jJQRS

)2

, (15)

where JQRS
i, j is the exact value for harmonic energy of 23 eV

(15th harmonic for an 800-nm probe laser) in Eq. (11) and
JSVD

i, j is the solution of I (ω, τ ) using SVD. NJ is the total
number of JSVD

i, j and is equal to M2.
It can be seen from Fig. 1(a) that the error is 7% when the

number of singular values included is 10. It means that we do
not need to know all the values of the singular matrix S. One
can solve the system of linear equations just by including the
first ten singular values and it will give an error of about 5%.
If the number is increased to 180, the error is reduced to 1.5%.

This method is called a regularization process and the method
will be implemented in the following. For different angular
distributions, for 〈cos2(θ )〉 from 0.45 to 0.7 and N = 180, the
error is shown in Fig. 1(b). It shows that with better alignment,
the error of the SVD retrieval is smaller. We have also tested
the method by introducing random errors on the harmonic
spectra and found that the error of the retrieved induced
dipole does not change much with the number of singular
values.

C. Retrieving the induced dipole by expanding in B-spline basis

In 1D retrieval, the solution J is a vector of real numbers
in the form of Eq. (11), with the size of M2. To retrieve the
amplitude A(θ ) and phase φ(θ ), we expand each function
using B-spline basis [33–38]:

A(θ ) = gABkθ

i (θ ), φ(θ ) = gφBkθ

i (θ ), (16)

where gA and gφ are coefficients of expansion for the ampli-
tude and phase, respectively. Here i is the number of B-spline
basis and kθ is the order of the B spline in the angular domain.
The B-spline function is defined as

B1
i (x) =

{
1, xi 
 x 
 xi+1

0, otherwise,

Bk
i (x) = x − xi

xi+k−1 − xi
Bk−1

i (x) + xi+k − x

xi+k − xi+1
Bk−1

i+1 (x). (17)

To expand a function f (x) which is defined in [a, b] in
terms of B-spline basis, first we should choose a suitable order
k and the number n of B splines to split this region [a, b] into
[a, x1, x2, . . . , xn, b]. Each B spline is only defined in the inter-
val of [xi, xi+k] with the same order k but different expansion
coefficients gA or gφ . The value of the reconstructed function
f (x) in the [xi, xi+k] interval is expressed as a summation of
neighboring B splines. This was also illustrated in Fig. 1 in
our previous paper [33–37].

The order k of the B spline is related to the smoothness
of the function. A third-order B spline is a C2 continuous
function, which means that the second-order derivative is
continuous but the third-order derivative is not. It can be seen
that a higher order B-spline function will have a more strict
constraint.

If we would like to obtain the induced dipole as a function
of angle and energy, in particular, if we want to know the
relative phase between neighboring harmonic orders as well
as the neighboring angles, then a two-dimensional (2D) re-
trieval method should be applied. The induced dipole is then
expanded in two-dimensional B-spline basis functions:

A(ω, θ ) = gABkθ

i (θ )Bkω

i (ω), φ(ω, θ ) = gφBkθ

i (θ )Bkω

i (ω).
(18)

Here kθ is the order of B spline in the angular domain and
kω is the order in the energy domain. The 2D B-spline basis
has higher order continuity in both the θ and ω dependence.
The 2D map appears like a net that ensures constraints on
both coordinates. For both 1D and 2D retrievals, the expan-
sion coefficients gA and gφ are obtained iteratively until the
retrieved induced dipole can give harmonic spectra that are
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in good agreement with harmonic signals measured in the
experiment.

It is worth noting that the induced dipole we want to
retrieve has two unknown values: amplitude and phase. Thus
they require two functions from experiments for the retrieval.
In previous works, only one function—harmonic signals ver-
sus time delays—is used for the retrieval, which causes errors
in specific angles [24]. In the present work, we use two sets
of input data: (1) the harmonic signal I (ω, τ ) as a function
of time delay while the pump and probe lasers are parallel,
and (2) the harmonic signal I (ω, α) as a function of angles
between the pump and probe lasers when the alignment is
maximum. This would reduce the error of the retrieval and
improve the stability of the retrieved results. The 2D retrieval
allows us to obtain amplitude and phase at all angles and har-
monic orders. We use a machine learning algorithm to ensure
that we can acquire a group of amplitudes and phases that can
satisfy the harmonic signals both in time-delay domain and
angular domain. The details of this algorithm aare provided in
the Appendix.

III. RESULTS AND DISCUSSION

A. Nitrogen molecules

We first illustrate the retrieval of the complex induced
transition dipoles d (ω, θ ) from the harmonic yields I (ω, τ )
of aligned N2 molecules calculated at different time delays
τ [see Eq. (6)] and from I (ω, α) at different pump-probe
angles α [see Eq. (5)]. The pump pulse has a peak intensity
of 6 × 1013 W/cm2 and a duration of 50 fs (FWHM). The
temperature of the gas is 130 K. From Eqs. (1) and (2), we can
calculate the time-dependent molecular angular distributions
ρ(θi, t ). The probe laser is set at 2.5 × 1014 W/cm2 and the
duration is 30 fs (FWHM). Both lasers have a wavelength of
800 nm and is linearly polarized along the same direction.
We calculated the single-molecule-induced transition dipole
input d (ω, θ ) using the QRS theory, and from Eqs. (5) and

(6), I (ω, τ ) and I (ω, α) can be calculated. These calculated
results will be treated as the “experimental” data.

To calibrate the accuracy of the retrieval method, we first
demonstrate how well the input d (ω, θ ), including its phase
and amplitude, can be retrieved from I (ω, τ ) for different
τ ’s and from I (ω, α) for different pump-probe angle α’s.
Note that d (ω, θ ) is a complex two-dimensional matrix, while
I (ω, τ ) and I (ω, α) are two-dimensional positive-definite real
matrices, respectively.

First we consider each harmonic order separately. We use
Eq. (10), with matrix elements given in Eq. (11). We first
use the SVD method to solve Eq. (10). Taking M = 180, the
number of singular values is 180. Taking all of these singular
values, the corresponding error is 1.5%. After obtaining JSVD

i, j ,
we expand the amplitude and phase in 1D B-spline functions
with the expanding coefficients gA and gφ and iterate until the
harmonic spectra based on Eqs. (5) and (11) agree with the
“experiment” JSVD

i, j and I (ωi, α) to within an accuracy of 5%.
The error function is defined as

error =
√

1

NJ
�i, j

(
JR

i, j − JSVD
i, j

�i, jJSVD

)2

+
√

1

Nα

�α

(
IR(ωi, α) − Ie(ωi, α)

�αIe(ωi, α)

)2

, (19)

NI is the total number of Ie(ωi, α), and NJ is the total number
of JSVD

i, j .
The retrieved results are shown in Fig. 2. The amplitudes

are accurately retrieved and compared well with the experi-
mental data. Nevertheless, the agreement in the phase is poor.
This is not surprising since φ(ω, θ ) was retrieved for each ω

separately. There is no relation between the phases of neigh-
boring harmonics. A more precise quantitative comparison of
the retrieved results is to show some individual harmonics, as
given in Fig. 3, for the 17th and 27th harmonic orders. The
amplitudes agree very well, but the phases do not. Therefore,

FIG. 2. The amplitude (a) and phase (b) of the induced dipole calculated from the QRS theory that are to serve as the “experimental” data.
The amplitude (c) and phase (d) obtained using 1D retrieval. The amplitudes are well retrieved but not the phases, as expected for the 1D
retrieval method.
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FIG. 3. Detailed lineouts from Fig. 2 are compared. A cut of the
amplitude (a) and phase (b) for the 17th harmonic in Fig. 2. (c) and
(d) Similar cut but for the 27th harmonic.

using 1D retrieval, the phases between harmonics cannot be
determined.

We next apply the 2D retrieval method. The error function
is defined as

error =
√√√√ 1

NJ
�i, j�ω

(
JR

i, j (ω) − JSVD
i, j (ω)

�i, j�ωJSVD
i, j

)2

+
√

1

NI
�α�ω

(
IR(ω, α) − Ie(ω, α)

�α�ωIe(ω, α)

)2

, (20)

with the induced dipoles expanded in 2D B-spline functions,
as in Eq. (18).

In Figs. 4(a)–4(d), we check the convergence of the order
of B-spline functions in kω from second to fifth, while the
order of kθ remains at 2. Comparing Figs. 4(a)–4(d), it is

found that as the order of B spline increases, the retrieved
phase becomes smoother and the jump of phase shift between
orders is effectively eliminated. From Figs. 4(c) and 4(d), it
shows that the retrieved result is converged when kω is 4 or
5. Comparing the retrieved phase from Fig. 4(d) to the input
phase from the QRS theory in Fig. 4(e), it shows that the
angular and harmonic order dependence of the phase of the
induced dipole has been fairly retrieved, thus confirming the
full retrieval of the amplitude and phase of the induced dipole
from the “measured experimental” harmonic spectra. Note
that the amplitudes obtained from 1D or from 2D B-spline
basis sets are identical.

The use of 2D B splines forces the constraint on the
induced dipole to be a smooth function of θ and ω simulta-
neously, thus allowing the extraction of the relative phases
between harmonics and angles. One approximate method to
retrieve the whole complex induced dipole using the 1D model
is to set the relative phase between harmonics at a given angle
θ using the results from some theory. This procedure was used
in Vozzi et al. [23]. Applying such a procedure, the 2D phases
obtained are shown in Fig. 4(f). It agrees well with Figs. 4(d)
and 4(e). This procedure, of course, assumes that one can
obtain accurate results in the theory already.

Figure 5 shows some cuts of Figs. 4(d) and 4(e) to demon-
strate the phases for the 17th, 19th, 23rd, and 29th orders,
in comparison with the input phases from the QRS theory.
From Fig. 5, the relative phase shift between orders has been
correctly retrieved.

B. Carbon dioxide

We next apply the retrieval method to harmonics generated
from CO2 molecules. Photoionization cross sections in CO2

are known to have complex angular and energy dependence
with sharp minima. The latter is accompanied by the exis-
tence of strong phase jumps [39,40] in the angle and energy

FIG. 4. (a)–(d) The retrieved phase in which the order kω of B spline is 2, 3, 4, and 5, respectively. (e) The phase calculated from the QRS
which is taken as the experimental data. (f) The 2D phases extracted from the 1D retrieval model with the aid of normalizing the phases of
harmonics at a particular angle to theoretically calculated values (see text).
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FIG. 5. (a)–(d) Cuts along the 17th, 19th, 23rd, and 29th orders
in Fig. 4 to show that the phases of harmonics versus angles have
been accurately retrieved.

dependence of the laser-induced transition dipole d (θ, ω) as
well. Such complex amplitude and phase jumps requires us
to increase the number of B-spline functions in the retrieval
calculations. For example, we used ten splines within the
range of 0◦–90◦ for N2 (since harmonic spectra are symmetric
with respect to 90◦ to expand the amplitude and phase, respec-
tively), but for CO2, this number is doubled to 20 within the
same angular range of 0◦–90◦. But note that the phase of CO2

is asymmetric for 0◦ to 90◦ and 90◦ to 180◦, thus the number
of B splines on phase is 40. In addition, the spline order kθ

was increased to six (only two for N2), but kω remains at four
to ensure that convergence is reached.

The same laser parameters used in N2 are used for CO2. In
testing the retrieval using harmonics generated from theory,
we include harmonics from the highest occupied molecular
orbital only. Figure 6 compares the amplitude and phase for
harmonics from the 15th to 31st orders, showing the input
amplitude and phase from the QRS can be quite accurately
retrieved using the 2D fitting. The agreement between the
input and the retrieved amplitudes is good, but the phase
still shows some minor discrepancy. Figure 7 compares the
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FIG. 7. (a), (b) Cuts of amplitude and phase, respectively, for the
17th harmonic, with data from Fig. 9. (c), (d) The same, but for the
29th harmonic.

amplitudes and phases of the 17th and the 29th harmonics,
respectively. The agreement is quite satisfactory.

In the above discussion, both of these retrieval results come
from the QRS theory and the degree of molecular alignment
is assumed to be known exactly. While applying this method
to experiment, the uncertainty in the angular distributions of
molecules in laser parameters as well as possible propagation
effect of the harmonics in the medium should be taken into
consideration. They would induce a lack of convergence in the
SVD process [24]. To overcome it, a regularization process
should be introduced. We can maintain using only the first
several values (10–20; depends on the error of the extracting
alignment function) of the singular matrix S for the SVD
and for retrieval. These would lose some accuracy but would
preserve the main structure of the induced dipole.

IV. CONCLUSION

In summary, we have presented a retrieval method to
extract the amplitude and phase of laser-induced transition

FIG. 6. (a), (b) The amplitude and phase, respectively, of the induced dipole calculated from the QRS theory. (c), (d) The same but from
the 2D retrieved results.
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dipole d (θ, ω) for harmonics generated from fixed-in-space
molecules using experimental harmonic spectra from partially
aligned molecules. Molecules can be impulsively aligned
where the degree of alignment changes with time after the
pump laser pulse is terminated. By measuring the time depen-
dence of the harmonics, the amplitude of the fixed-in-space
molecules can be retrieved, but the retrieval of the phase
has been an unsolved problem over the years. In this article,
we demonstrated the retrieval of the phase by introducing
two ingredients. First, we need the harmonic spectra versus
the pump-probe angles at a fixed time delay, taken at the
time of maximal alignment, in addition to the more familiar
harmonic spectra versus the pump-probe time delay where the
pump and probe lasers are parallel to each other. Second, we
propose a two-dimensional B spline to expand the induced
transition dipole in angles and in harmonic orders. Such
an expansion allows the induced transition dipole to have
smooth angular dependence as well as smooth dependence
on the harmonic order. The method has been demonstrated
to work well for harmonic spectra generated with theoretical
models for N2 and CO2 molecules, more so for N2 than
for CO2.

The larger retrieval effort for CO2 molecules lies in the fact
that its induced dipole d (θ, ω) has a much more complicated
dependence on θ and ω, with the presence of interference
minima (in the literature some would also call them Cooper
minima, but others strongly objected such usage) where the
phase would undergo a rapid change of π in a narrow energy
region. Under such circumstance it is expected that many
more parameters in the two-dimensional B-spline functions
need to be introduced. In spite of these challenges, the
present retrieval method is still capable of obtaining quite
accurate induced dipoles. Here, d (θ, ω) has been extracted
for CO2 molecules, as in the much simpler earlier model used
in [23].

Based on this theoretical work, it is expected that the
retrieval method presented here can be applied to other linear
molecules, but the effort always would increase with the
complexity of the transition dipole of the molecule. Clearly,
the next effort would be to apply this retrieval method to
experimental HHG data taken on N2 and CO2. The uncertainty
of laser parameters and angular distribution of the molecules
would introduce errors and uncertainty to the retrieved results.
The retrieved d (θ, ω), by combining with the QRS theory,
would allow one to compare the complex transition dipoles in
fixed-in-space molecules calculated from quantum scattering
theory. In addition, the present approach can also be extended
to other molecular processes such as photoelectron angular
distributions or processes in Coulomb explosions. While ex-
tending the present idea to nonlinear molecules may be envi-
sioned, the quick increase in the degrees of freedom may deem
the full retrieval of polyatomic molecules in general extremely
challenging. On the other hand, with more dedicated efforts
in experiments and better machine learning algorithms in the
future, one should never say that it is impossible.

ACKNOWLEDGMENTS

This article is supported by National Key R&D Pro-
gram (2017YFE0116600), National Natural Science Founda-

tion of China (91950202, 11627809, 11874165, 11704137,
11774109, and 11904192), and China Scholarship Council.
Partial support of the work carried out in the U.S. was sup-
ported by Chemical Sciences, Geosciences and Biosciences
Division, Office of Basic Energy Sciences, Office of Sci-
ence, U.S. Department of Energy under Grant No. DE-FG02-
86ER13491.

APPENDIX: RETRIEVAL ALGORITHM

The retrieval algorithm we used is a combination of the
particle swarm search algorithm (PSO) [41] and the anneal
arithmetic (AA) [42]. These two algorithms are combined
together to iterate the expansion coefficients gA and gφ of
B splines to obtain the amplitude and phase of the induced
dipole. The induced dipole output is used to calculate JR

i, j and
IR(ω, α) based on Eqs. (5) and (11), respectively. When the
calculated JR

i, j and IR(ω, α) are equal to the experimental data
JSVD

i, j and Ie(ω, α) to within a certain precision, the iteration
is terminated and the output-induced dipole is the retrieved
induced dipole. The AA has been discussed in a previous
paper [21]. Here, we just give an introduction of the PSO.
Figure 8 is a flowchart for this algorithm.

The details of this algorithm are as follows:

FIG. 8. The flowchart of this algorithm.
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(1) At the beginning, we generate a group of random
initial positions x(i) and a group of random initial velocities
V (i) for each initial position x(i). i is the mark of the iteration
number. In this problem, as the number of the expansion
coefficients for N2 is 10 for amplitude and 10 for phase, the
initial position x(i) and the initial velocity V (i) are arrays with
the size of 1 × 20.

(2) According to the error function Eq. (A1) and the steps
we discussed above, we calculate the fitness value s(i) for
each x(i) and record the best one of the total group, which is
called best position of group Pg(i). In addition, it also needs
to record the best value for every iteration, which is called best
position of individual P(i).

The error function is defined as

s =
√√√√ 1

NJ
�i, j�ω

(
JR

i, j (ω) − JSVD
i, j (ω)

�i, j�ωJSVD
i, j (ω)

)2

+
√

1

NI
�α�ω

(
IR(ω, α) − Ie(ω, α)

�α�ωIe(ω, α)

)2

, (A1)

where JSVD
i, j is the solution of Ie(ω, τ ) using SVD and JR

i, j
is the retrieved result. The Ie(ω, α) is the harmonic signal
measured from experiment and the IR(ω, α) is the retrieved
result.

(3) Next we update the position x(i + 1) and velocity
V (i + 1) for every individual of the next iteration based on
Eq. (A2), then we repeat step (2) and record the fitness value
s(i) as the retrieval error.

V (i + 1) = wV (i) + C1ε[P(i) − x(i)] + C2ε[Pg(i) − x(i)],

x(i + 1) = x(i) + V (i), (A2)

where w is the inertia weight, C1 is the weight of individual,
C2 is the weight of group, and ε is a random value between 0
and 1.

(4) Until the fitness value s(i) satisfies the stop condition,
we obtain a group of output data x(i) which corresponds
to the expansion coefficients gA and gφ of B splines. In
our work, the stop condition is s(i) < 5%. The detailed
steps of this algorithm can be found on the website of
MathWorks [43].
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