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Abstract: Exceptional points (EPs) of non-Hermitian systems are the degeneracies of both the
eigenvalues and eigenvectors, which have led to a series of novel and counterintuitive physical
effects. Adiabatically encircling the EP in parameter space could lead to chiral mode transfer
in coupled waveguides. However, the fixed refractive index distribution in existing devices
will confine the parametric loops and lay great limitations on the performances of the mode
conversion. Herein, we theoretically propose a non-Hermitian system based on refractive index
modulation of coupled liquid crystal (LC) waveguides, which allows for encircling the EP with
tunable loops. As a result, chiral mode transfer is achieved with optimized performances at
wide telecommunication wavelengths, including a high transfer efficiency (>80%). Moreover,
the dynamic modulation of the refractive index enables a directional mode transfer which is
solely dependent on the modulation direction, even with non-closing evolution routes. The
tunable non-Hermitian system serves as a versatile platform for realizing tunable mode transfer
processes with optimized performances, showing great promise for developing multifunctional
non-Hermitian nanophotonic devices.

© 2021 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Nonconservative physical systems containing gain or loss can be described by non-Hermitian
Hamiltonians which feature complex eigenvalues and non-orthogonal eigenvectors [1–7]. Re-
cently, non-Hermitian physics have drawn great research interests in optics, including microcavi-
ties [8–12], integrated waveguides [13–17], photonic lattice [18–20], and metasurfaces [21,22].
Different from the degeneracies in Hermitian systems, the eigenvalues and the corresponding
eigenvectors of the non-Hermitian systems coalesce simultaneously under specific conditions,
thus giving rise to the exceptional points (EPs) [3,23–28]. Interestingly, the EPs have led to
series of counterintuitive and fascinating phenomena, such as light stopping [29], unidirectional
reflectionless light propagation [30], electromagnetically induced transparency [31,32] and
coherent perfect absorption [28], which have played important roles in light steering and show
great potential for constructing nanophotonic devices with novel functionalities.

In the parameter space, EPs are represented as the branch points of the complex Riemann sheets.
Tuning the parameters of the non-Hermitian system will cause the eigenvalues to move on the
Riemann surface. In particular, the eigenvalues and the corresponding eigenstates will exchange
while adiabatically encircling an EP due to the topological features of the Riemann sheets in
the vicinity of EPs [15,17,27,33–36]. This unique physical property has created conditions to
implement chiral mode switching with the output state solely dependent on the direction of the
parameter loop regardless of the input state [15,37,38]. For examples, dynamically encircling the
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EP for chiral mode switching was originally implemented in the microwave systems [17], which
has also been extended to the on-chip platforms based on silicon-on-insulator (SOI) waveguides
[13,39,40]. However, in current nanophotonic non-Hermitian systems, the static structural
properties of the components have limited the performances of the chiral mode switching, which
may lead to fixed encircling loops with low conversion efficiency. Therefore, to construct a
tunable non-Hermitian system is highly desirable for realizing modulated parameter loops in the
vicinity of the EP, as well as achieving mode transfer with optimized performances.

In this work, we theoretically propose a tunable non-Hermitian system based on the electric-
optic modulation of coupled liquid crystal (LC) waveguides, to realize tunable mode transfer in
the optical telecommunication band. LC is advantageous for fabricating nanophotonic devices
with tunable refractive index [41,42]. By applying variable voltages along the coupled LC
waveguides, dynamically encircling the EP of the non-Hermitian system is realized to obtain
the chiral mode switching between the odd and even modes. Taking advantages of the tunable
non-Hermitian system, the evolution can be modulated to optimize the performances of the mode
transfer for specific routes, thus achieving a high transfer efficiency (>80%) in a wide range of the
wavelengths. Moreover, the dynamic modulation of the refractive index of the LC waveguides
allows for designing non-closing routes without encircling the EP of the non-Hermitian system,
which indicates that the topological feature of the parametric evolution still keeps and the mode
transfer is solely dependent on the modulation direction (termed as “directional mode transfer”).

2. Theoretical analysis and device design

In an optical system composed of two waveguides with weak coupling and loss applied on one of
the waveguides, the coupled-mode equation can be written as [13,43,44]
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where α1,2 represent the effective mode indices, and γ is the loss coefficient of the second
waveguide. C stands for the coupling coefficient between the waveguides. a1(z) and a2(z) are the
amplitudes of the modes in the individual waveguides related to the propagation distance. The
eigenvalues of the Hamiltonian matrix H are expressed as

E1,2 =
α1 + α2 + iγ ±

√︂
[α1 − (α2 + iγ)]2 + 4C2

2
. (2)

In particular, the eigenvalues and the eigenvectors will simultaneously coalesce at the EP, where
∆α=α1−α2 = 0 and C= γ/2.

Here we demonstrate the tunable non-Hermitian system consisted of coupled LC waveguides
operating in the transverse-electric (TE) modes. Figure 1(a) depicts the schematic of the designed
device consisting of LC waveguides. The inset shows the Ex profiles of the odd and even modes.
Quartz is used as the substrate (nQuartz = 1.50). The LC is filled into the channels fabricated in
the polymethyl methacrylate (PMMA) film with a thickness of 800 nm (nPMMA = 1.4807). The
width of the LC waveguides is set as wLC = 1200 nm to ensure that only the fundamental mode is
permitted. The gap between the two LC waveguides varies along the direction of propagation
as g(z)= g0−∆gcos(2πz/L), where g0 = 800 nm and ∆g= 400 nm. The refractive index of LC
waveguide 1 (WG1) can be tunable by an external electric field, n1(z)= 1.67−∆n1sin(2πz/L), and
the refractive index of waveguide 2 (WG2) is fixed at n2 = 1.67. The refractive index of the LC
waveguide can be also modulated in segmentations, as detailed in Supplement 1. To introduce
loss to LC WG2, a chromium film with width of 150 nm and thickness of 10 nm is deposited
on the top of the waveguide. The corresponding loss coefficient is determined to be γ = 0.0061.

https://doi.org/10.6084/m9.figshare.17012303
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To guarantee adiabatic evolution, the length L of the waveguides is set to be 100 µm to make
n1(z) and g(z) varies slowly [13,17,39]. Figure 1(b) shows the encircling loops on the parameter
space for various modulation amplitudes of the refractive index of WG1. The EP is located at
n1 = 1.67 and g= 1140 nm. The starting/end point is set on the line where the imaginary parts of
the two eigenvalues coalesce to ensure that no more than one non-adiabatic transition (NAT)
occurs for simplicity [15,34,45,46]. As the propagation distance increases, the corresponding ∆α
at 1550 nm are plotted in Fig. 1(c). Injections from the left (z= 0) and from the right (z= L) side
of the waveguides respectively correspond to the clockwise (CW) and counterclockwise (CCW)
directions in the encircling loops in Fig. 1(b).

Fig. 1. (a) Scheme of the LC waveguide doublet and the profiles of the odd and even
eigenmodes at both ends of the waveguides. (b) Parameter space of the system constituted
by the refractive index of LC WG1 and the gap. The circle and the star mark the starting/end
point of the loop and the EP. The parameter loops with ∆n1 = 0.01, 0.02, 0.03 and 0.04 are
plotted for example. (c) Calculated effective mode index contrast ∆α between LC WG1 and
WG2 along the z-axis corresponding to the loops shown in (b). Propagations along+ z and −z
directions correspond to clockwise (CW) and counterclockwise (CCW) loops respectively.

To make a clear manifestation of the evolution of the eigenvalues, the Riemann surface in the
parameter space composed of ∆α and C and the corresponding trajectories of eigenvalues are
illustrated in Fig. 2 (∆n1 is set to be 0.04 for example). The real parts of eigenvalues represent
the effective mode index while the imaginary parts represent the corresponding effective loss
coefficients of the supermodes. The line on the upper sheet of the Riemann surfaces stands
for the even mode, while that on the lower sheet stands for the odd mode. The parts of the
Riemann sheets with higher loss are plotted in red and those with lower loss are plotted in green
respectively. The field distribution at each propagation distance in the device can be expressed as
the superposition of two eigenmodes [15,45,47]

|ψ(z)⟩ = Ah(z)|φh(z)⟩ + Al(z)|φl(z)⟩, (3)

where the subscripts h and l represent the eigenmode with the higher and lower loss respectively.
The trajectories are plotted on the red (green) sheet of the Riemann surfaces when |Ah | > |Al |
(|Ah | < |Al |), indicating that the higher-loss (lower-loss) mode dominates in the system. The
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encircling process is adiabatic and stable when the state evolves on the lower-loss Riemann
sheet. However, when the state evolves into the higher-loss Riemann sheet, the encircling process
becomes unstable and an NAT may occur to lead the state to evolve towards the stable lower-loss
Riemann sheet again [15,34–36,45,47]. This behavior is represented as the trajectory jumps
from the higher-loss sheet to the lower-loss sheet. As a result, the eigenmode with the lower loss
always dominates at the output and the final field distribution depends on the direction of the
encircling loop. Figures 2(a)–2(d) show the trajectories of state evolution on the Riemann sheets
of the real parts of eigenvalues, where the odd mode and even mode are injected from the left
side and the right side respectively. According to the Riemann sheets and the trajectories, the
output is expected to be dominated by the even mode for the CW loops and and odd mode for the
CCW loops respectively, regardless of the input mode.

Fig. 2. Riemann sheets in the (∆α, C) space. The green and red sheets represent the
eigenvalues with lower and higher imaginary parts respectively. The yellow curves represent
the trajectories for injecting (a) odd mode with CW loop, (b) even mode with CW loop, (c)
odd mode with CCW loop and (d) even mode with CCW loop, respectively.

3. Results and discussions

3.1. Encircling the EP for chiral mode transfer with optimized performances

To demonstrate the chiral mode transfer, we simulate the field distribution of the coupled LC
waveguides using full-wave 3D simulation in Comsol Multiphysics. We demonstrated that the
anisotropy of the LC waveguide has little effect on the mode distribution (Section 2, Supplement
1), and an isotropic refractive index was utilized in the simulation. Figures 3(a)–3(d) show
the calculated field distributions (Ex) for the CW and CCW encircling loops, with the odd and
even mode incidence respectively. The modulated amplitude of the refractive index of WG1
is set to be ∆n1 = 0.04. For the CW loop, the even mode is always obtained at the output,
regardless whether the odd mode or the even mode is injected from the left side of the waveguides
(Figs. 3(a)–3(b)). On the contrary, for the CCW loop, the odd mode is always obtained at the
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output (Figs. 3(c)–3(d)). Therefore, the simulation results indicate that the output mode is solely
dependent on the direction of the encircling loop, regardless of the input mode. This result is
consistent with the theoretical predictions, which demonstrate the chiral mode transfer between
the eigenmodes of the coupled waveguides.

Fig. 3. (a)-(d) Numerically simulated field distributions (Ex) in the LC waveguides at
1550 nm with different encircling directions and injections. (a) The odd mode with CW loop,
(b) even mode with CW loop, (c) odd mode with CCW loop, and (d) even mode with CCW
loop. The input modes and the dominant modes at the output are marked with “o” for odd
modes and “e” for even modes. The positions of NATs are marked by the red dashed lines in
(b) and (c). Calculated transmittance for (e) CW loop, (f) CCW loop. The corresponding
power ratio as ∆n1 varies for (g) CW loop, and (h) CCW loop. The solid curves in (e), (f)
represent the transmittance of the predicted dominant modes at the output while the dashed
curves represent the transmittance of the other. The arrows represent the corresponding
encircling directions in the parameter space of (n1, g).

The light transmittance and mode transfer efficiency are vital to characterize the performance
of the chiral mode transfer. The mode transmittance, Tmn (Tmn

′), is defined as the transmittance
from input mode m to output mode n for the CW (CCW) loop. The mode transmittance can be
calculated with Tmn = |A1(2) |

2Pout/Pin, where Pin and Pout refer to the input and output powers,
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respectively, and A1(2) is the normalized amplitude of the odd (even) mode at the output terminal.
Figures 3(e) and 3(f) present the mode transmittance at 1550 nm versus ∆n1, which corresponds
to the encircling loops plotted in Fig. 1(b). We can observe that the transmittance of the even
(odd) mode is always larger than that of the odd (even) mode for the CW (CCW) encircling
loop within the range of ∆n1 > 0.012, which indicates that the even (odd) mode dominates at the
output for the CW (CCW) encircling loop. For ∆n1 < 0.012, there is a slight discrepancy between
T1n, T2n

′ and the theoretical results, which is due to the weak coupling between eigenstates
caused by the small modulation range of refractive index. The mode transfer efficiency for the
CW (CCW) encircling is defined as ηm2 =Tm2/(Tm1+Tm2) (ηm1

′ =Tm1
′/(Tm1

′+Tm2
′)), i.e., the

power ratio of the output modes. Figures 3(g) and 3(h) present the calculated power ratios for the
two encircling directions respectively. All the results show that the power ratios are larger than
0.8 within the range 0.025<∆n1 < 0.04, indicating a high mode transfer efficiency. In particular,
taking advantages of the tunable refractive index of the LC waveguides, the encircling trajectory
of the non-Hermitian system can be modulated to achieve the highest mode transfer efficiency for
different encircling directions and input modes, which suggests great superiority compared with
the static non-Hermitian systems.

We also calculated the spectral response of the LC-waveguide based non-Hermitian system.
Figure 4 shows the mapping of transfer efficiencies as functions of ∆n1 and wavelength. In
the simulation, the frequency dispersion of the LC waveguide can be negligible (Section 3,
Supplement 1) [48]. For the CW encircling loop with odd and even modes injected, as shown
in Figs. 4(a) and 4(b) respectively, ηm2 is always above 0.7 with 0.017<∆n1 < 0.033 in the
whole C+L communication bands, indicating that the even mode dominates at the output.
Figures 4(c) and 4(d) show that under the condition 0.021<∆n1 < 0.04, ηm1

′ is also above 0.7
at wavelengths below 1595 nm, suggesting that the output is dominated by the odd mode. The
calculated results show an excellent performance of the chiral mode transfer for the optical
communication applications. Moreover, the highest transfer efficiency at a specific wavelength

Fig. 4. Simulated spectral response of the transfer efficiency as ∆n1 varies for injecting (a)
odd mode with CW loop, (b) even mode with CW loop, (c) odd mode with CCW loop, and
(d) even mode with CCW loop. The white dashed lines mark the wavelength at 1550 nm.
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Fig. 5. (a) Arched parameter trajectories for various ∆n1 in the (n1, g) space without
encircling the EP. The start/end point of the trajectories is marked by the black circle and the
evolution directions of the parameters are shown by the arrows. (b) Plot of ∆α as functions
of the propagation distance, for different ∆n. (c)-(f) Riemann sheets with the parameter
paths corresponding to the arched trajectories in (a). ∆n1 =−0.02 for (c)(d), and ∆n1 = 0.02
for (e)(f), respectively.

for every mode transfer process can be achieved respectively via appropriate refractive index
modulation amplitude, which demonstrates the optimization property of the designed device.

3.2. Modulation-induced directional mode transfer without encircling the EP

The tunable non-Hermitian system provides a versatile platform to achieve flexible paths
to investigate the mode evolution. Here we design some non-closing paths to investigate
the mode transfer without encircling the EP. The refractive index of LC WG1 is defined as
n1(z)= 1.67+∆n1 |sin(2πz/L)|, while that of LC WG2 is still kept to be 1.67. Figure 5(a) shows
the arched trajectories in the parameter space for various modulation amplitudes of the refractive
index, and Fig. 5(b) plots the corresponding ∆α as a function of z. For each ∆n1, the evolution
paths move around the EP and return back to the start in the same trajectory. As shown in
Fig. 5(c), for a negative ∆n1, the odd mode injection will lead to an evolution trajectory along the
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low-loss (green) sheet. As a result, no NAT occurs, and the input mode can directly propagate to
the output terminal. However, the even mode injection will lead to an evolution trajectory along
the high-loss (red) sheet (Fig. 5(d)). After z reaches L/2, the trajectories retrace in the vicinity of
the EP. As a result, the mode would still experience an NAT in the evolution process even though
the EP is not encircled, thus leading to a transfer from the even mode to the odd mode. Similarly,
for a positive ∆n1, the odd mode injection could experience NAT and transfer to the even mode
(Fig. 5(e)), while the even mode injection can directly propagate to the output terminal (Fig. 5(f)).
Although the parameter trajectory that does not encircle but passes in the vicinity of the EP, the
topological feature still remains, because the output mode is solely dependent on the modulation
direction of the refractive index, regardless of the input mode. Moreover, the transfer between
the odd and even modes here is attributed to the NAT, which is different from the situation by
encircling the EP.

Fig. 6. (a) The simulated transmittance as a function of ∆n1. The grey regions I and II
mark the range of ∆n1 which guarantees that the odd and even mode dominate at the output
respectively regardless of the initial state. (b)(c) The power ratio at the output with the odd and
the even mode injected respectively. The black dashed lines mark ∆n1 = 0.0140 and −0.0225
where η12 and η21 reach the maximum respectively. (d)-(f) Numerically simulated field
distributions (Ex) in the LC waveguides at 1550 nm with the arched parameter trajectories
where (d) ∆n1 =−0.0375, (e) ∆n1 = 0.0140, (f) ∆n1 =−0.0225 and (g) ∆n1 = 0.0315, to
achieve the maximum mode transfer efficiency. The selected values of ∆n1 are given in the
same color as the curves in Fig. 6(b) and 6(c), which corresponds to maximum η11, η12, η21
and η22 respectively. The positions of NATs are marked by the red dashed lines in (e) and
(f).
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Figure 6(a) presents the calculated mode transmittances as functions of ∆n1. For ∆n1 <−0.012
(region I), Tm1 is always larger than Tm2, suggesting that the input is dominantly transferred
into the odd mode. In contrast, for ∆n1 > 0.002 (region II), the input is dominantly transferred
into the even mode, which is consistent with the theoretical predictions. We also notice that the
propagation processes without mode transfer possess the lower loss, i.e., T11 and T22 act as the
highest transmittance in region I and II respectively, which is due to that both the parameter
evolution processes are dominated by the stable eigenstates. Figures 6(b) and 6(c) show the
corresponding power ratios for odd and even mode injections respectively, where the peak value
of η12 and η21 located at ∆n1 = 0.0140 and ∆n1 =−0.0225 are respectively marked by the black
dashed lines. In particular, the mode transfer efficiency can be up to ∼100%, which exhibits
further improvement compared with the corresponding mode transfer efficiencies (η12 and η21

′)
in Figs. 3(g) and 3(h). Therefore, an efficient mode transfer can still be realized even though the
EP is not encircled by the arched parameter trajectory.

The field distributions for arched parameter trajectories are calculated to demonstrate the mode
transfer without encircling the EP, as presented in Figs. 6(d)–6(g). According to Figs. 6(b) and
6(c), ∆n1 is respectively set to be −0.0375, 0.0140, −0.0225 and 0.0315 to achieve optimized
power ratios (η11, η12, η21, η22). One can observe that the output is dominated by the odd mode
for the first and third case while the even mode for the second and forth case, as analyzed above.
The evolution is due to the topological feature of the Riemann sheets, and the NAT in the vicinity
of the EP remains strong even without encircling the EP [14,49]. Therefore, we can conclude
that the existence of the NAT is not strictly dependent on the parameter loop encircling the EP.
Though chiral mode transfers have been demonstrated by closing loops even without encircling
the EPs, the transfer processes were similar to that with encircling the EPs [14,49]. In contrast,
the non-closing arched paths here enable to realize a directional mode transfer, and the output
can be flexibly tuned through refractive index modulation in an individual device. The utilization
of the tunable non-Hermitian system and the arched parameter trajectory not only demonstrate
the feasibility of realizing directional mode transfer without encircling the EP, but also offer an
effective approach to achieving a high mode transfer efficiency.

4. Conclusions

In summary, we have theoretically proposed a non-Hermitian system based on coupled liquid
crystal (LC) waveguides to realize tunable mode transfer for optical communications. The
refractive index modulation along the coupled LC waveguides enables to realize chiral mode
transfer by dynamically encircling the EP of the non-Hermitian system. In particular, the
performances of the mode transfer can be optimized to obtain a high transfer efficiency (>80%) in
a wide range of the wavelengths. Moreover, the directional mode transfer is realized even without
encircling the EP of the non-Hermitian system. The tunable non-Hermitian system provides a
versatile platform for realizing tunable mode transfer processes with optimized performances,
which shows great promise for developing multifunctional non-Hermitian nanophotonic devices.
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