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Orientation dependence of high-order harmonic generation in graphene
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We investigate the orientation dependence of high-order harmonic generation (HHG) in graphene by solving
the semiconductor Bloch equations. The tight-binding approximation including up to the third-nearest-neighbor
atoms is used to model the graphene. Our simulations show that the orientation dependence of HHG shows
different patterns for different harmonics. With increasing the laser intensity, these patterns become similar
except for a double-peak structure shown in lower-order harmonics. The double-peak structure appears at high
laser intensity due to the contribution of the harmonic perpendicular to the laser polarization direction. The
harmonic yield is decomposed as the contributions of the nearest-neighbor interaction, the second-nearest-
neighbor interaction, and the third-nearest-neighbor interaction. Our results show that the harmonic yields are
mainly contributed by the nearest-neighbor interaction, but the third-nearest-neighbor interaction also plays an
important role and modifies the orientation dependence.
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I. INTRODUCTION

Thanks to the advance of laser technology, the study of the
interaction between strong laser fields and matter has attracted
much attention. High-order harmonic generation (HHG) is
one of the research hot spots. The study of HHG in atomic
and molecular gases has resulted in great achievements and in
the birth of attosecond science [1–5]. HHG in solids has been
observed experimentally in the past few years [6–15]. There
has been a growing interest in utilizing HHG in solids to probe
the electronic band structures [11,16–20] and obtain coherent
and bright attosecond pulses [11,21].

Recently, HHG in two-dimensional materials has become
a new research frontier. Graphene is a representative two-
dimensional material with great potential applications because
of its unusual optical properties [22]. Several works have
been done both theoretically [23–26] and experimentally
[7,27–29]. Yoshikawa et al. reported that the HHG in
graphene can be enhanced by elliptically polarized light [7].
Higuchi et al. demonstrated the manipulation of electrons in
sub-optical-cycle timescales [27]. However, the model used
to describe graphene in the previous works is the simplest
tight-binding model that only considers the effect of the
nearest-neighbor atoms [23–25,27]. When the intensity of
the laser reaches the TW/cm2 level, the effect of more dis-
tant neighbor atoms should be considered. The effect of the
second-nearest-neighbor atoms and the third-nearest-neighbor
atoms has not yet been discussed. In this work, we use the
tight-binding model including up to third-nearest-neighbor
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atoms to better describe graphene [30]. With this model, we
can get more accurate energy bands and dipole transition
moments analytically in the whole Brillouin zone.

The HHG efficiency is affected by the spatial structure of
the crystal. This has the potential to probe the information
of crystals. In recent years, the orientation dependence of
HHG has been investigated in several crystals [10,31–41] like
MgO [10,40,41] and ZnO [14,15,33,34,38]. The information
contained in the orientation dependence is also helpful to
understand the HHG process.

We numerically simulate the orientation dependence of
HHG in graphene. The HHG process is decomposed as the
contribution of the nearest-neighbor interaction, the second-
nearest-neighbor interaction, and the third-nearest-neighbor
interaction. Our results show that the third-nearest-neighbor
interaction greatly affects the orientation dependence. Com-
pared to previous works, our work provides a more complete
perspective to understand the HHG process.

This paper is organized as follows. In Sec. II, we introduce
the theoretical models we use in this work. The HHG process
is numerically simulated. The results are shown in Sec. III.
We decompose the harmonic in the directions parallel and
perpendicular to the laser polarization directions. The two
components are analyzed respectively. The summary and con-
clusions are given in Sec. IV.

II. THEORETICAL METHOD

A. The third-nearest-neighbor tight-binding model

Graphene is a two-dimensional material constituted of
carbon atoms. As shown in Fig. 1(a), there are two dif-
ferent types of atoms in each primitive cell, labeled as
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FIG. 1. (a) The structure of graphene. a1 and a2 denote the
basis vectors of the primitive cell. The dashed cycles label the
nearest-neighbor, the second-nearest-neighbor and the third-nearest-
neighbor atoms, respectively. The numbers of atoms are labeled.
(b) The band structure of graphene calculated by density functional
theory (DFT), nearest-neighbor tight-binding approximation (near-
est nb. TB), and third-nearest-neighbor tight-binding approximation
(third nb. TB), respectively. K , M, and � points of the Brillouin zone
are labeled.

A and B. Each atom has three nearest-neighbor atoms,
six second-nearest-neighbor atoms, and three third-nearest-
neighbor atoms [labeled by dashed cycles in Fig. 1(a)]. The
distances between an atom and the nearest-, the second-
nearest, and the third-nearest-neighbor atoms are 1.42, 2.46,
and 2.84 Å, respectively. We consider the interaction with up
to third-nearest-neighbor atoms in the tight-binding approxi-
mation. The pz orbitals of the carbon atoms are considered.

In this third-nearest-neighbor tight-binding model, the ba-
sis vector |φhk〉 is given by linear combinations of atomic
orbital wave functions:

|φhk〉 =
∑

j

ei�k· �Rj |χ jh〉, h = A, B (1)

|χ jh〉 is the atomic orbital wave function. A and B label the
two types of atoms. j is the number of an atom, j = 1l for
the nearest-neighbor atoms, j = 2l for the second-nearest-
neighbor atoms, and j = 3l for the third-nearest-neighbor
atoms [as shown in Fig. 1(a)]. k is the crystal momentum. �Rj

is the position vector of an atom.
The overlap of atomic orbital wave functions is considered:

SAA = 〈φAk|φAk〉 = 〈χ0A|χ0A〉 +
∑
j=2l

ei�k· �Rj 〈χ0A|χ jA〉

= 1 +
∑
j=2l

ei�k· �Rj s1,

SAB = 〈φAk|φBk〉 =
∑
j=1l

ei�k· �Rj 〈χ0A|χ jB〉

+
∑
j=3l

ei�k· �Rj 〈χ0A|χ jB〉

=
∑
j=1l

ei�k· �Rj s0 +
∑
j=3l

ei�k· �Rj s2. (2)

Here s0, s1, and s2 are the parameters for the overlap between
corresponding atomic orbital wave functions.

The interaction energies of the atoms are

HAA = 〈φAk|Ĥ |φAk〉

= 〈χ0A|Ĥ |χ0A〉 +
∑
j=2l

ei�k· �Rj 〈χ0A|Ĥ |χ jA〉

= ε2p +
∑
j=2l

ei�k· �Rj γ1,

HAB = 〈φAk|Ĥ |φBk〉
=

∑
j=1l

ei�k· �Rj 〈χ0A|Ĥ |χ jB〉

+
∑
j=3l

ei�k· �Rj 〈χ0A|Ĥ |χ jB〉

=
∑
j=1l

ei�k· �Rj γ0 +
∑
j=3l

ei�k· �Rj γ2. (3)

Here γ0, γ1, and γ2 are the parameters for the two-center
hopping integrals between corresponding atoms. ε2p is the
energy of an atom itself.

To obtain the band structure of graphene, the time-
independent Schrödinger equation is solved:

Ĥ |ψnk〉 = En|ψnk〉. (4)

The Bloch state |ψnk〉 can be expanded into

|ψnk〉 = CnA|φAk〉 + CnB|φBk〉. (5)

Using Eqs. (2), (3), (4), and (5), we can get[
HAA HAB

H∗
AB HAA

][
CnA

CnB

]
= En

[
SAA SAB

S∗
AB SAA

][
CnA

CnB

]
, (6)

where En is the energy of the system, |ψn〉 is the Bloch state,
and n = c and v means the conduction band and the valence
band in this two-band model, respectively.

We can obtain the energy bands by solving the following
equation: ∣∣∣∣HAA − EnSAA HAB − EnSAB

H∗
AB − EnS∗

AB HAA − EnSAA

∣∣∣∣ = 0. (7)

The energy bands are

En(�k) = −(−2E0 + E1) ±
√

(−2E0 + E1)2 − 4E2E3

2E3
. (8)

Several intermediate variables are defined as follows:

E0 = HAASAA, E1 = SABH∗
AB + HABS∗

AB,

E2 = H2
AA − HABH∗

AB, E3 = S2
AA − SABS∗

AB,
(9)

The expansion coefficient Cnh can be obtained as

C =
[
CcA CvA

CcB CvB

]
=

[
1 1

−HAA−EcSAA
HAB−EcSAB

−HAA−EvSAA
HAB−EvSAB

]
. (10)

To determine the seven unknown parameters in the model,
we fit the energy bands calculated from density functional
theory (DFT) [42]. The parameters are ε2p = −0.28 eV, γ0 =
−2.97 eV, s0 = 0.073, γ1 = −0.073 eV, s1 = 0.018, γ2 =
−0.33 eV, and s2 = 0.026. These parameters are the same as
those in Ref. [30].

As shown in Fig. 1(b), the band structures of DFT and the
nearest-neighbor tight-binding model agree well only in the
area very close to the K point (Dirac point, zero band gaps)
of the Brillouin zone. In the nearest-neighbor tight-binding
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model, the valence band and the conduction band are com-
pletely symmetric, i.e., Ec = −Ev , but the band structure of
DFT is not. The energy difference between the bands does not
agree with that of DFT’s [the dot-dashed line and the solid
line in Fig. 1(b)]. For the third-nearest-neighbor tight-binding
model, the band structure agrees well with the band structure
of DFT in the whole Brillouin zone.

To numerically simulate the interaction between graphene
and light, the dipole transition element �dmn(�k) should be cal-
culated:

dmn,α (�k) = i〈umk|∂α|unk〉, m, n = c, v. (11)

Here α = x or y means the x or y component of the vector
∂α = ∂

∂kα
. |unk〉 is the periodical part of the Bloch state

〈r|unk〉 = e−i�k·�r〈r|ψnk〉. (12)

Because of the overlap of atomic orbital wave functions, the
basis vectors in this tight-binding model are not orthogonal,
i.e., 〈φAk|φAk〉 = SAA �= 0 and 〈φAk|φBk〉 = SAB �= 0. Substi-
tute Eqs. (5) and (12) into Eq. (11) and we can get �dmn(�k).
The matrix composed of �dmn(�k) is

Dα =
[

dcc,α dcv,α

dvc,α dvv,α

]

= C†S(i∂αN )N−1C + (CN−1)
†
i∂α (N−1C). (13)

Several intermediate variables are defined as follows:

S =
[

SAA SAB

S∗
AB SAA

]
, (14)

N =
[

SAA
− 1

2 − SAB
SAA

S1
− 1

2

0 S1
− 1

2

]
,

S1 = SAA − SABSAB
∗

SAA
.

(15)

Because of the inversion symmetry of graphene, the Berry
connection �dcc and �dvv can always become zero by choosing a
proper gauge. In our numerical simulation �dcc = �dvv = 0. The
dipole transition moment �dcv = �d∗

vc.

B. Semiconductor Bloch equations

The semiconductor Bloch equations in the Bloch represen-
tation with the length gauge read as follows:

∂ρcv (�k, t )

∂t
=

[
i(Ec − Ev ) − 1

T2

]
ρcv (�k, t ) + �F (t ) · ∇kρcv (�k, t )

+ i �F (t ) · �dcv[ρvv (�k, t ) − ρcc(�k, t )],
(16)

∂ρvv (�k, t )

∂t
= − �F (t ) · 2Im[ �dcvρcv (�k, t )] + �F (t ) · ∇kρvv (�k, t ).

(17)

Unless otherwise indicate, atomic units (a.u.) are used
throughout: e = h̄ = me = 1, where e and me are the elec-
tron charge and mass, respectively. ρcc(�k) and ρvv (�k) are the
populations in the conduction band and the valence band,
respectively. ρcv (�k) is for the polarization between the two

bands. �F (t ) is the electric field of the laser pulse. The wave-
length of the laser is 800 nm. The sine square envelope with
11 optical cycles (zero-to-zero) is used. In this work, the
dephasing time T2 = 35 fs for graphene [25].

In the numerical simulation, We sample the first Brillouin
zone using a grid with 1501 × 1501 points along the direc-
tions of two basis vectors in the reciprocal space. We use the
finite difference method to solve the time evolution process.
The step size of the time-grid is 0.0303 a.u. (40 000 steps).

The current induced by the laser can be decomposed as the
intraband current �Jra (t ) and the interband current �Jer (t ):

�Jra (t ) =
∑

n=c,v

∫
BZ

�vnρnn(�k, t )dkxdky, (18)

�Jer (t ) = −i
∫

BZ
[Ec(�k) − Ev (�k)] �dcv (k)ρcv (�k, t )d�k + c.c.

(19)

Here �vn(�k) = ∇kEn(�k) is the group velocity. The total current
is

�J (t ) = �Jra (t ) + �Jer (t ). (20)

The spectrum of harmonics can be obtained by calculating
the absolute square of the Fourier-transformed total current:

I (ω) ∝ |FT[ �J (t )]|2. (21)

III. RESULTS AND DISCUSSION

A. Orientation dependence of the harmonics

We calculate the orientation dependence of the HHG by
scanning the polarization direction of the laser. The orien-
tation dependencies of the third harmonic (H3), the fifth
harmonic (H5), the seventh harmonic (H7), and the ninth har-
monic(H9) are shown in Fig. 2. Because of the symmetry of
the graphene only odd-order harmonics exist. The orientation
dependence is sixfold symmetric, so we only need to discuss
in one period from 60◦ to 120◦. For H3, the orientation depen-
dence reaches its maximum at 90◦ when the laser intensities
are 0.6 and 0.8 TW/cm2. The double-peak structure appears
when the laser intensity is 1.4 TW/cm2. The peaks are at
75◦ and 105◦. For H5, the orientation dependence is nearly
isotropic when the laser intensity is 0.6 TW/cm2. There is a
peak at 60◦ when the laser intensity is 0.8 TW/cm2. A similar
double-peak structure appears when the laser intensity is 1.4
TW/cm2. The orientation dependence of H7 reaches its max-
imums at 60◦ or 90◦. The peak of the orientation dependence
for H9 is at 60◦ for the three intensities. For different-order
harmonics, when the laser intensity is 1.4 TW/cm2, the peaks
appear at 60◦ for all of these orientation dependencies except
the double-peak structure.

To analyze the anisotropy of the harmonics, the contribu-
tions of the intraband current and the interband current are
compared. Figure 3 shows the harmonic spectra when the
laser polarization direction is at 60◦. Regardless of the change
of laser intensities, the interband contribution is larger than
the intraband contribution. The high-order harmonic spectra
with other laser polarization directions show the same result.
Therefore, the interband transition dominates the HHG pro-
cess. From now on we only consider the interband current.
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FIG. 2. The orientation dependence of the harmonics. The ori-
entation angle is defined as the angle between the laser polarization
direction and the x axis. The orientation dependencies of H3, H5, H7,
and H9 are shown in different rows. Three laser intensities are used:
0.6, 0.8, and 1.4 TW/cm2.

B. Contribution of the vertical current

We decompose the interband current in the directions par-
allel and perpendicular to the laser polarization directions:

�Jer (t ) = �Jer‖(t ) + �Jer⊥(t ). (22)

First, we discuss the effect of the vertical current �Jer⊥(t ).
Figure 4 shows the orientation dependence corresponding to
�Jer⊥(t ). The peaks of the orientation dependence appear at
75◦ and 105◦. For all the intensities, different-order harmonics
show the same result.

As shown in Fig. 5, we compare the orientation depen-
dence corresponding to the total current, the parallel current,
and the vertical current for H3 and H5. The peak positions
for the vertical current fit the double-peak structures. Only the
peaks at 60◦ and 90◦ exist if we only consider the parallel
component of the interband current. Therefore, the existence
of the vertical current is responsible for the double-peak
structure.

The vertical current at 75◦ and 105◦ can be explained by the
structure of the dipole transition moment �dcv (�k). The structure
of �dcv (�k) is shown in Fig. 6(a). As we can see, the large
magnitudes of �dcv (�k) appear around the K and the K ′ points
(Dirac points), and the direction of �dcv (�k) shows a circular
vortex structure. Because the ionization rate is proportional to
�F (t ) · �dcv (�k), the transition between the energy bands mainly
occurs in the areas perpendicular to the laser polarization di-

FIG. 3. High-order harmonic spectra with laser polarization di-
rection at 60◦: (a) at laser intensity 0.6 TW/cm2, (b) at laser intensity
0.8 TW/cm2, and (c) at laser intensity 1.4 TW/cm2. The insets show
the comparison of intraband and interband contributions. Regardless
of the change of laser intensities, the interband contribution is larger
than the intraband contribution.

rection near the K and K ′ points [gray area near the K point in
Fig. 6(a)]. We only need to consider these areas. Moreover, the
ionization rate dominates the change of the polarization be-
tween the bands, so ρcv (�k, t ) ∝ �F (t ) · �dcv (�k). By substituting

FIG. 4. Orientation dependence of the harmonics corresponding
to the vertical interband current. The yields of the harmonics are
scaled for a better look as shown in the legends.
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FIG. 5. Comparison of the orientation dependencies correspond-
ing to the total current, the parallel current, and the vertical current
for H3 and H5. The laser intensity is 1.4 TW/cm2.

this relation into Eq. (19), the vertical interband current can be
calculated. The maximums of the vertical interband currents
�Jer⊥ for different-order harmonics are shown in Fig. 6(b). Note
that we consider all the areas where electrons can move in the
first Brillouin zone. As shown in Fig. 6(b), the peaks of �Jer⊥
for H3, H5, H7, and H9 all appear around 75◦ and 105◦. These
angles agree with the angles of the peaks in Fig. 4. Therefore,
the structure of the dipole transition moment is responsible for
the existence of the vertical interband current.

C. Effect of the neighbor atoms

Next, we consider the parallel component of the interband
current. We can analyze the interaction of different kinds of
neighbor atoms by decomposing the interband current:

�Jer‖(t ) = �J 1
er‖(t ) + �J 2

er‖(t ) + �J 3
er‖(t ), (23)

where �J 1
er‖(t ), �J 2

er‖(t ), and �J 3
er‖(t ) are the parallel interband

currents only contributed by the nearest-neighbor interaction,
the second-nearest-neighbor interaction, and the third-nearest-
neighbor interaction.

According to Eq. (19), the parallel component of the in-
terband current �Jer‖(t ) is affected by the dipole transition
moment �dcv (�k) and the energy band En. As is well known, the
dipole transition moment �dcv (�k) represent the ability of tran-
sition between the energy bands. In the third-nearest-neighbor

FIG. 6. (a) The dipole transition moment �dcv (�k) of graphene.
Color means the magnitude of �dcv (�k) and arrows mean the direction
of �dcv (�k). The double-headed arrow means the laser polarization
direction. The gray region is the main ionization area. (b) The
maximum vertical interband current for each order harmonic as the
function of the laser polarization direction when the laser intensity is
1.4 TW/cm2.

FIG. 7. Panels (a), (c), and (e) show the orientation dependence
of H5 corresponding to the total current �Jer‖(t ) at different laser in-
tensities. Only the parallel component of the total interband current is
considered. Panels (b), (d), and (f) show the orientation dependence
corresponding to �J 1

er‖(t ), �J 2
er‖(t ), �J 3

er‖(t ), �J 1
er‖(t ) + �J 3

er‖(t ), and �Jer‖(t ) at
different laser intensities.

tight-binding model, �dcv (�k) can be written as a function of
the seven parameters, i.e., �dcv (ε2p, γ0, s0, γ1, s1, γ2, s2). By
setting part of the parameters to zeros, we can exclude the
influence of the corresponding interaction. In detail, γ0 and
s0 correspond to the nearest-neighbor interaction, γ1 and s1

correspond to the second-nearest-neighbor interaction, and γ2

and s2 correspond to the third-nearest-neighbor interaction. So
�J 1
er‖(t ), �J 2

er‖(t ), and �J 3
er‖(t ) can be defined as

�J 1
er‖(t ) = �Jer‖[Ec, Ev, �dcv (ε2p, γ0, s0, 0, 0, 0, 0)],

�J 2
er‖(t ) = �Jer‖[Ec, Ev, �dcv (ε2p, γ0, s0, γ1, s1, 0, 0)]

− �Jer‖[Ec, Ev, �dcv (ε2p, γ0, s0, 0, 0, 0, 0)],

�J 3
er‖(t ) = �Jer‖[Ec, Ev, �dcv (ε2p, γ0, s0, γ1, s1, γ2, s2)]

− �Jer‖[Ec, Ev, �dcv (ε2p, γ0, s0, γ1, s1, 0, 0)].

(24)

By calculating �J 1
er‖(t ), �J 2

er‖(t ), �J 3
er‖(t ), and �Jer‖(t ), the cor-

responding high-order harmonic spectrum and orientation
dependence can be obtained. Figures 7(a), 7(c) and 7(e) show
the orientation dependence of H5 corresponding to �Jer‖(t )
at three laser intensities. The peaks of the orientation de-
pendence are at 60◦, but the peak-valley ratio is different.
As shown in Figs. 7(b), 7(d) and 7(f), the biggest contribu-
tion comes from the nearest-neighbor interaction, i.e., �J 1

er‖(t ).
�J 2
er‖(t ) contributes the least and is nearly isotropic, so it does
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FIG. 8. The contribution of �J 1
er‖(t ), �J 2

er‖(t ), �J 3
er‖(t ), �J 1

er‖(t ) +
�J 3
er‖(t ), and the total current �Jer‖(t ) in the same intensity 1.4 TW/cm2.

Panels (a), (b), (c), and (d) show the results of different-order har-
monics from H3 to H9, respectively. Only the parallel component of
the total interband current is considered.

not change the orientation dependence. The minor contribu-
tion of �J 2

er‖(t ) is because the overlaps between the atomic
orbital wave functions s1 and the two-center hopping inte-
grals γ1 are both small for the second-nearest-neighbor atoms.
The contribution of the third-nearest-neighbor interaction, i.e.,
�J 3
er‖(t ) is smaller than �J 1

er‖(t ) but cannot be neglected. The
orientation dependence could be modified by the interference
between �J 1

er‖(t ) and �J 3
er‖(t ). We consider the result of 1.4

TW/cm2 as an example. As we can see in Fig. 7(f), the
peaks of the orientation dependence corresponding to �J 1

er‖(t )
appear at both 60◦ and 90◦ (diamond blue line). Due to the
interference between �J 1

er‖(t ) and �J 3
er‖(t ), the peak at 90◦ is

suppressed. The orientation dependence corresponding to the
total interband current �Jer‖(t ) only shows the peaks at 60◦
(hexagonal black line), and the peak-valley ratio is smaller.
To further verify this result, we calculate the sum of �J 1

er‖(t )

and �J 3
er‖(t ). If we consider the contribution of �J 1

er‖(t ) + �J 3
er‖(t )

(pentagonal green line), the orientation dependence has the
same structure as the total orientation dependence (hexagonal
black line) except for the slightly different intensities. For

other laser intensities, as shown in Figs. 7(b) and 7(d), the
orientation dependence corresponding to �J 1

er‖(t ) + �J 3
er‖(t ) also

has the same structure as the total orientation dependence.
Figure 8 shows the orientation dependence of H3, H5, H7,

and H9 at 1.4 TW/cm2. The biggest contribution still comes
from �J 1

er‖(t ). For different harmonic orders, the intensity ra-

tios of �J 1
er‖(t ), �J 2

er‖(t ), and �J 3
er‖(t ) are different. �J 2

er‖(t ) is still
isotropic and does not change the orientation dependence. The
interference between �J 1

er‖(t ) and �J 3
er‖(t ) plays an important role

in the orientation dependence. In Fig. 8(a), the orientation
dependence corresponding to �J 1

er‖(t ) only has a peak at 90◦.
The peaks appear at both 60◦ and 90◦ for the orientation
dependence corresponding to �J 1

er‖(t ) + �J 3
er‖(t ). This orienta-

tion dependence (pentagonal green line) also has the same
structure as the total orientation dependence (hexagonal black
line). The interference between �J 1

er‖(t ) and �J 3
er‖(t ) is important

for H5, H7, and H9 as well.

IV. SUMMARY AND CONCLUSIONS

In summary, we investigate the orientation dependence
of HHG in graphene. The tight-binding approximation con-
sidering the effect up to the third-nearest-neighbor atoms is
used. Our results show that the effect of the second-nearest-
neighbor atoms and the third-nearest-neighbor atoms cannot
be neglected in order to obtain a more reliable band structure
and dipole transition moment.

The HHG process is dominated by the interband current.
To analyze our results, the interband current has been de-
composed in the directions perpendicular and parallel to the
laser polarization direction. The harmonics contributed by
the perpendicular component of the interband current only
appear around 75◦ and 105◦ regardless of the change of laser
intensity. This result can be explained by the structure of the
transition dipole moment. For the parallel component of the
interband current, we decompose the interband current into
the currents contributed by the nearest-neighbor interaction
�J 1
er‖(t ), the second-nearest-neighbor interaction �J 2

er‖(t ), and the

third-nearest-neighbor interaction �J 3
er‖(t ). The contribution of

�J 2
er‖(t ) is small and nearly isotropic, so it does not change the

relative harmonic intensity of different angles. The interfer-
ence between �J 1

er‖(t ) and �J 3
er‖(t ) is the key to understanding

the orientation dependence.
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